| /* |
| * Copyright 2011 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <memory> |
| #include <string> |
| |
| #include "webrtc/base/gunit.h" |
| #include "webrtc/base/helpers.h" |
| #include "webrtc/base/ssladapter.h" |
| #include "webrtc/base/sslidentity.h" |
| |
| using rtc::SSLIdentity; |
| |
| const char kTestCertificate[] = "-----BEGIN CERTIFICATE-----\n" |
| "MIIB6TCCAVICAQYwDQYJKoZIhvcNAQEEBQAwWzELMAkGA1UEBhMCQVUxEzARBgNV\n" |
| "BAgTClF1ZWVuc2xhbmQxGjAYBgNVBAoTEUNyeXB0U29mdCBQdHkgTHRkMRswGQYD\n" |
| "VQQDExJUZXN0IENBICgxMDI0IGJpdCkwHhcNMDAxMDE2MjIzMTAzWhcNMDMwMTE0\n" |
| "MjIzMTAzWjBjMQswCQYDVQQGEwJBVTETMBEGA1UECBMKUXVlZW5zbGFuZDEaMBgG\n" |
| "A1UEChMRQ3J5cHRTb2Z0IFB0eSBMdGQxIzAhBgNVBAMTGlNlcnZlciB0ZXN0IGNl\n" |
| "cnQgKDUxMiBiaXQpMFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJ+zw4Qnlf8SMVIP\n" |
| "Fe9GEcStgOY2Ww/dgNdhjeD8ckUJNP5VZkVDTGiXav6ooKXfX3j/7tdkuD8Ey2//\n" |
| "Kv7+ue0CAwEAATANBgkqhkiG9w0BAQQFAAOBgQCT0grFQeZaqYb5EYfk20XixZV4\n" |
| "GmyAbXMftG1Eo7qGiMhYzRwGNWxEYojf5PZkYZXvSqZ/ZXHXa4g59jK/rJNnaVGM\n" |
| "k+xIX8mxQvlV0n5O9PIha5BX5teZnkHKgL8aKKLKW1BK7YTngsfSzzaeame5iKfz\n" |
| "itAE+OjGF+PFKbwX8Q==\n" |
| "-----END CERTIFICATE-----\n"; |
| |
| const unsigned char kTestCertSha1[] = { |
| 0xA6, 0xC8, 0x59, 0xEA, 0xC3, 0x7E, 0x6D, 0x33, |
| 0xCF, 0xE2, 0x69, 0x9D, 0x74, 0xE6, 0xF6, 0x8A, |
| 0x9E, 0x47, 0xA7, 0xCA}; |
| const unsigned char kTestCertSha224[] = { |
| 0xd4, 0xce, 0xc6, 0xcf, 0x28, 0xcb, 0xe9, 0x77, |
| 0x38, 0x36, 0xcf, 0xb1, 0x3b, 0x4a, 0xd7, 0xbd, |
| 0xae, 0x24, 0x21, 0x08, 0xcf, 0x6a, 0x44, 0x0d, |
| 0x3f, 0x94, 0x2a, 0x5b}; |
| const unsigned char kTestCertSha256[] = { |
| 0x41, 0x6b, 0xb4, 0x93, 0x47, 0x79, 0x77, 0x24, |
| 0x77, 0x0b, 0x8b, 0x2e, 0xa6, 0x2b, 0xe0, 0xf9, |
| 0x0a, 0xed, 0x1f, 0x31, 0xa6, 0xf7, 0x5c, 0xa1, |
| 0x5a, 0xc4, 0xb0, 0xa2, 0xa4, 0x78, 0xb9, 0x76}; |
| const unsigned char kTestCertSha384[] = { |
| 0x42, 0x31, 0x9a, 0x79, 0x1d, 0xd6, 0x08, 0xbf, |
| 0x3b, 0xba, 0x36, 0xd8, 0x37, 0x4a, 0x9a, 0x75, |
| 0xd3, 0x25, 0x6e, 0x28, 0x92, 0xbe, 0x06, 0xb7, |
| 0xc5, 0xa0, 0x83, 0xe3, 0x86, 0xb1, 0x03, 0xfc, |
| 0x64, 0x47, 0xd6, 0xd8, 0xaa, 0xd9, 0x36, 0x60, |
| 0x04, 0xcc, 0xbe, 0x7d, 0x6a, 0xe8, 0x34, 0x49}; |
| const unsigned char kTestCertSha512[] = { |
| 0x51, 0x1d, 0xec, 0x02, 0x3d, 0x51, 0x45, 0xd3, |
| 0xd8, 0x1d, 0xa4, 0x9d, 0x43, 0xc9, 0xee, 0x32, |
| 0x6f, 0x4f, 0x37, 0xee, 0xab, 0x3f, 0x25, 0xdf, |
| 0x72, 0xfc, 0x61, 0x1a, 0xd5, 0x92, 0xff, 0x6b, |
| 0x28, 0x71, 0x58, 0xb3, 0xe1, 0x8a, 0x18, 0xcf, |
| 0x61, 0x33, 0x0e, 0x14, 0xc3, 0x04, 0xaa, 0x07, |
| 0xf6, 0xa5, 0xda, 0xdc, 0x42, 0x42, 0x22, 0x35, |
| 0xce, 0x26, 0x58, 0x4a, 0x33, 0x6d, 0xbc, 0xb6}; |
| |
| class SSLIdentityTest : public testing::Test { |
| public: |
| SSLIdentityTest() {} |
| |
| ~SSLIdentityTest() { |
| } |
| |
| virtual void SetUp() { |
| identity_rsa1_.reset(SSLIdentity::Generate("test1", rtc::KT_RSA)); |
| identity_rsa2_.reset(SSLIdentity::Generate("test2", rtc::KT_RSA)); |
| identity_ecdsa1_.reset(SSLIdentity::Generate("test3", rtc::KT_ECDSA)); |
| identity_ecdsa2_.reset(SSLIdentity::Generate("test4", rtc::KT_ECDSA)); |
| |
| ASSERT_TRUE(identity_rsa1_); |
| ASSERT_TRUE(identity_rsa2_); |
| ASSERT_TRUE(identity_ecdsa1_); |
| ASSERT_TRUE(identity_ecdsa2_); |
| |
| test_cert_.reset(rtc::SSLCertificate::FromPEMString(kTestCertificate)); |
| ASSERT_TRUE(test_cert_); |
| } |
| |
| void TestGetSignatureDigestAlgorithm() { |
| std::string digest_algorithm; |
| |
| ASSERT_TRUE(identity_rsa1_->certificate().GetSignatureDigestAlgorithm( |
| &digest_algorithm)); |
| ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); |
| |
| ASSERT_TRUE(identity_rsa2_->certificate().GetSignatureDigestAlgorithm( |
| &digest_algorithm)); |
| ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); |
| |
| ASSERT_TRUE(identity_ecdsa1_->certificate().GetSignatureDigestAlgorithm( |
| &digest_algorithm)); |
| ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); |
| |
| ASSERT_TRUE(identity_ecdsa2_->certificate().GetSignatureDigestAlgorithm( |
| &digest_algorithm)); |
| ASSERT_EQ(rtc::DIGEST_SHA_256, digest_algorithm); |
| |
| // The test certificate has an MD5-based signature. |
| ASSERT_TRUE(test_cert_->GetSignatureDigestAlgorithm(&digest_algorithm)); |
| ASSERT_EQ(rtc::DIGEST_MD5, digest_algorithm); |
| } |
| |
| typedef unsigned char DigestType[rtc::MessageDigest::kMaxSize]; |
| |
| void TestDigestHelper(DigestType digest, |
| const SSLIdentity* identity, |
| const std::string& algorithm, |
| size_t expected_len) { |
| DigestType digest1; |
| size_t digest_len; |
| bool rv; |
| |
| memset(digest, 0, expected_len); |
| rv = identity->certificate().ComputeDigest(algorithm, digest, |
| sizeof(DigestType), &digest_len); |
| EXPECT_TRUE(rv); |
| EXPECT_EQ(expected_len, digest_len); |
| |
| // Repeat digest computation for the identity as a sanity check. |
| memset(digest1, 0xff, expected_len); |
| rv = identity->certificate().ComputeDigest(algorithm, digest1, |
| sizeof(DigestType), &digest_len); |
| EXPECT_TRUE(rv); |
| EXPECT_EQ(expected_len, digest_len); |
| |
| EXPECT_EQ(0, memcmp(digest, digest1, expected_len)); |
| } |
| |
| void TestDigestForGeneratedCert(const std::string& algorithm, |
| size_t expected_len) { |
| DigestType digest[4]; |
| |
| ASSERT_TRUE(expected_len <= sizeof(DigestType)); |
| |
| TestDigestHelper(digest[0], identity_rsa1_.get(), algorithm, expected_len); |
| TestDigestHelper(digest[1], identity_rsa2_.get(), algorithm, expected_len); |
| TestDigestHelper(digest[2], identity_ecdsa1_.get(), algorithm, |
| expected_len); |
| TestDigestHelper(digest[3], identity_ecdsa2_.get(), algorithm, |
| expected_len); |
| |
| // Sanity check that all four digests are unique. This could theoretically |
| // fail, since cryptographic hash collisions have a non-zero probability. |
| for (int i = 0; i < 4; i++) { |
| for (int j = 0; j < 4; j++) { |
| if (i != j) |
| EXPECT_NE(0, memcmp(digest[i], digest[j], expected_len)); |
| } |
| } |
| } |
| |
| void TestDigestForFixedCert(const std::string& algorithm, |
| size_t expected_len, |
| const unsigned char* expected_digest) { |
| bool rv; |
| DigestType digest; |
| size_t digest_len; |
| |
| ASSERT_TRUE(expected_len <= sizeof(DigestType)); |
| |
| rv = test_cert_->ComputeDigest(algorithm, digest, sizeof(digest), |
| &digest_len); |
| EXPECT_TRUE(rv); |
| EXPECT_EQ(expected_len, digest_len); |
| EXPECT_EQ(0, memcmp(digest, expected_digest, expected_len)); |
| } |
| |
| void TestCloningIdentity(const SSLIdentity& identity) { |
| // Convert |identity| to PEM strings and create a new identity by converting |
| // back from the string format. |
| std::string priv_pem = identity.PrivateKeyToPEMString(); |
| std::string publ_pem = identity.PublicKeyToPEMString(); |
| std::string cert_pem = identity.certificate().ToPEMString(); |
| std::unique_ptr<SSLIdentity> clone( |
| SSLIdentity::FromPEMStrings(priv_pem, cert_pem)); |
| EXPECT_TRUE(clone); |
| |
| // Make sure the clone is identical to the original. |
| EXPECT_TRUE(identity == *clone); |
| ASSERT_EQ(identity.certificate().CertificateExpirationTime(), |
| clone->certificate().CertificateExpirationTime()); |
| |
| // At this point we are confident that the identities are identical. To be |
| // extra sure, we compare PEM strings of the clone with the original. Note |
| // that the PEM strings of two identities are not strictly guaranteed to be |
| // equal (they describe structs whose members could be listed in a different |
| // order, for example). But because the same function is used to produce |
| // both PEMs, its a good enough bet that this comparison will work. If the |
| // assumption stops holding in the future we can always remove this from the |
| // unittest. |
| std::string clone_priv_pem = clone->PrivateKeyToPEMString(); |
| std::string clone_publ_pem = clone->PublicKeyToPEMString(); |
| std::string clone_cert_pem = clone->certificate().ToPEMString(); |
| ASSERT_EQ(priv_pem, clone_priv_pem); |
| ASSERT_EQ(publ_pem, clone_publ_pem); |
| ASSERT_EQ(cert_pem, clone_cert_pem); |
| } |
| |
| protected: |
| std::unique_ptr<SSLIdentity> identity_rsa1_; |
| std::unique_ptr<SSLIdentity> identity_rsa2_; |
| std::unique_ptr<SSLIdentity> identity_ecdsa1_; |
| std::unique_ptr<SSLIdentity> identity_ecdsa2_; |
| std::unique_ptr<rtc::SSLCertificate> test_cert_; |
| }; |
| |
| TEST_F(SSLIdentityTest, FixedDigestSHA1) { |
| TestDigestForFixedCert(rtc::DIGEST_SHA_1, 20, kTestCertSha1); |
| } |
| |
| // HASH_AlgSHA224 is not supported in the chromium linux build. |
| TEST_F(SSLIdentityTest, FixedDigestSHA224) { |
| TestDigestForFixedCert(rtc::DIGEST_SHA_224, 28, kTestCertSha224); |
| } |
| |
| TEST_F(SSLIdentityTest, FixedDigestSHA256) { |
| TestDigestForFixedCert(rtc::DIGEST_SHA_256, 32, kTestCertSha256); |
| } |
| |
| TEST_F(SSLIdentityTest, FixedDigestSHA384) { |
| TestDigestForFixedCert(rtc::DIGEST_SHA_384, 48, kTestCertSha384); |
| } |
| |
| TEST_F(SSLIdentityTest, FixedDigestSHA512) { |
| TestDigestForFixedCert(rtc::DIGEST_SHA_512, 64, kTestCertSha512); |
| } |
| |
| // HASH_AlgSHA224 is not supported in the chromium linux build. |
| TEST_F(SSLIdentityTest, DigestSHA224) { |
| TestDigestForGeneratedCert(rtc::DIGEST_SHA_224, 28); |
| } |
| |
| TEST_F(SSLIdentityTest, DigestSHA256) { |
| TestDigestForGeneratedCert(rtc::DIGEST_SHA_256, 32); |
| } |
| |
| TEST_F(SSLIdentityTest, DigestSHA384) { |
| TestDigestForGeneratedCert(rtc::DIGEST_SHA_384, 48); |
| } |
| |
| TEST_F(SSLIdentityTest, DigestSHA512) { |
| TestDigestForGeneratedCert(rtc::DIGEST_SHA_512, 64); |
| } |
| |
| TEST_F(SSLIdentityTest, IdentityComparison) { |
| EXPECT_TRUE(*identity_rsa1_ == *identity_rsa1_); |
| EXPECT_FALSE(*identity_rsa1_ == *identity_rsa2_); |
| EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa1_); |
| EXPECT_FALSE(*identity_rsa1_ == *identity_ecdsa2_); |
| |
| EXPECT_TRUE(*identity_rsa2_ == *identity_rsa2_); |
| EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa1_); |
| EXPECT_FALSE(*identity_rsa2_ == *identity_ecdsa2_); |
| |
| EXPECT_TRUE(*identity_ecdsa1_ == *identity_ecdsa1_); |
| EXPECT_FALSE(*identity_ecdsa1_ == *identity_ecdsa2_); |
| } |
| |
| TEST_F(SSLIdentityTest, FromPEMStringsRSA) { |
| // These PEM strings were created by generating an identity with |
| // |SSLIdentity::Generate| and invoking |identity->PrivateKeyToPEMString()|, |
| // |identity->PublicKeyToPEMString()| and |
| // |identity->certificate().ToPEMString()|. If the crypto library is updated, |
| // and the update changes the string form of the keys, these will have to be |
| // updated too. |
| static const char kRSA_PRIVATE_KEY_PEM[] = |
| "-----BEGIN PRIVATE KEY-----\n" |
| "MIICdQIBADANBgkqhkiG9w0BAQEFAASCAl8wggJbAgEAAoGBAMQPqDStRlYeDpkX\n" |
| "erRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/FL/nr\n" |
| "4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuFLNEl\n" |
| "7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAECgYA8FWBC5GcNtSBcIinkZyigF0A7\n" |
| "6j081sa+J/uNz4xUuI257ZXM6biygUhhvuXK06/XoIULJfhyN0fAm1yb0HtNhiUs\n" |
| "kMOYeon6b8FqFaPjrQf7Gr9FMiIHXNK19uegTMKztXyPZoUWlX84X0iawY95x0Y3\n" |
| "73f6P2rN2UOjlVVjAQJBAOKy3l2w3Zj2w0oAJox0eMwl+RxBNt1C42SHrob2mFUT\n" |
| "rytpVVYOasr8CoDI0kjacjI94sLum+buJoXXX6YTGO0CQQDdZwlYIEkoS3ftfxPa\n" |
| "Ai0YTBzAWvHJg0r8Gk/TkHo6IM+LSsZ9ZYUv/vBe4BKLw1I4hZ+bQvBiq+f8ROtk\n" |
| "+TDRAkAPL3ghwoU1h+IRBO2QHwUwd6K2N9AbBi4BP+168O3HVSg4ujeTKigRLMzv\n" |
| "T4R2iNt5bhfQgvdCgtVlxcWMdF8JAkBwDCg3eEdt5BuyjwBt8XH+/O4ED0KUWCTH\n" |
| "x00k5dZlupsuhE5Fwe4QpzXg3gekwdnHjyCCQ/NCDHvgOMTkmhQxAkA9V03KRX9b\n" |
| "bhvEzY/fu8gEp+EzsER96/D79az5z1BaMGL5OPM2xHBPJATKlswnAa7Lp3QKGZGk\n" |
| "TxslfL18J71s\n" |
| "-----END PRIVATE KEY-----\n"; |
| static const char kRSA_PUBLIC_KEY_PEM[] = |
| "-----BEGIN PUBLIC KEY-----\n" |
| "MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQDED6g0rUZWHg6ZF3q0Zr/mtZ2j\n" |
| "PL0lUmNIBtqZZ656H1YlkVtzEalgvtNtDLCI94T2XkgJ7f8vxS/56+BGuzV3MHUa\n" |
| "Nf9cRCu1P3/3I0oNWrp8rxwh8HBXDK99Ryxbx69GYHBcG4CLhSzRJe5CuRzDvQD8\n" |
| "9Z7VI3pPAZgY/MjJfQIDAQAB\n" |
| "-----END PUBLIC KEY-----\n"; |
| static const char kCERT_PEM[] = |
| "-----BEGIN CERTIFICATE-----\n" |
| "MIIBnDCCAQWgAwIBAgIJAOEHLgeWYwrpMA0GCSqGSIb3DQEBCwUAMBAxDjAMBgNV\n" |
| "BAMMBXRlc3QxMB4XDTE2MDQyNDE4MTAyMloXDTE2MDUyNTE4MTAyMlowEDEOMAwG\n" |
| "A1UEAwwFdGVzdDEwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMQPqDStRlYe\n" |
| "DpkXerRmv+a1naM8vSVSY0gG2plnrnofViWRW3MRqWC+020MsIj3hPZeSAnt/y/F\n" |
| "L/nr4Ea7NXcwdRo1/1xEK7U/f/cjSg1aunyvHCHwcFcMr31HLFvHr0ZgcFwbgIuF\n" |
| "LNEl7kK5HMO9APz1ntUjek8BmBj8yMl9AgMBAAEwDQYJKoZIhvcNAQELBQADgYEA\n" |
| "C3ehaZFl+oEYN069C2ht/gMzuC77L854RF/x7xRtNZzkcg9TVgXXdM3auUvJi8dx\n" |
| "yTpU3ixErjQvoZew5ngXTEvTY8BSQUijJEaLWh8n6NDKRbEGTdAk8nPAmq9hdCFq\n" |
| "e3UkexqNHm3g/VxG4NUC1Y+w29ai0/Rgh+VvgbDwK+Q=\n" |
| "-----END CERTIFICATE-----\n"; |
| |
| std::unique_ptr<SSLIdentity> identity( |
| SSLIdentity::FromPEMStrings(kRSA_PRIVATE_KEY_PEM, kCERT_PEM)); |
| EXPECT_TRUE(identity); |
| EXPECT_EQ(kRSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString()); |
| EXPECT_EQ(kRSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString()); |
| EXPECT_EQ(kCERT_PEM, identity->certificate().ToPEMString()); |
| } |
| |
| TEST_F(SSLIdentityTest, FromPEMStringsEC) { |
| // These PEM strings were created by generating an identity with |
| // |SSLIdentity::Generate| and invoking |identity->PrivateKeyToPEMString()|, |
| // |identity->PublicKeyToPEMString()| and |
| // |identity->certificate().ToPEMString()|. If the crypto library is updated, |
| // and the update changes the string form of the keys, these will have to be |
| // updated too. |
| static const char kECDSA_PRIVATE_KEY_PEM[] = |
| "-----BEGIN PRIVATE KEY-----\n" |
| "MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQg/AkEA2hklq7dQ2rN\n" |
| "ZxYL6hOUACL4pn7P4FYlA3ZQhIChRANCAAR7YgdO3utP/8IqVRq8G4VZKreMAxeN\n" |
| "rUa12twthv4uFjuHAHa9D9oyAjncmn+xvZZRyVmKrA56jRzENcEEHoAg\n" |
| "-----END PRIVATE KEY-----\n"; |
| static const char kECDSA_PUBLIC_KEY_PEM[] = |
| "-----BEGIN PUBLIC KEY-----\n" |
| "MFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAEe2IHTt7rT//CKlUavBuFWSq3jAMX\n" |
| "ja1GtdrcLYb+LhY7hwB2vQ/aMgI53Jp/sb2WUclZiqwOeo0cxDXBBB6AIA==\n" |
| "-----END PUBLIC KEY-----\n"; |
| static const char kCERT_PEM[] = |
| "-----BEGIN CERTIFICATE-----\n" |
| "MIIBFDCBu6ADAgECAgkArpkxjw62sW4wCgYIKoZIzj0EAwIwEDEOMAwGA1UEAwwF\n" |
| "dGVzdDMwHhcNMTYwNDI0MTgxNDM4WhcNMTYwNTI1MTgxNDM4WjAQMQ4wDAYDVQQD\n" |
| "DAV0ZXN0MzBZMBMGByqGSM49AgEGCCqGSM49AwEHA0IABHtiB07e60//wipVGrwb\n" |
| "hVkqt4wDF42tRrXa3C2G/i4WO4cAdr0P2jICOdyaf7G9llHJWYqsDnqNHMQ1wQQe\n" |
| "gCAwCgYIKoZIzj0EAwIDSAAwRQIhANyreQ/K5yuPPpirsd0e/4WGLHou6bIOSQks\n" |
| "DYzo56NmAiAKOr3u8ol3LmygbUCwEvtWrS8QcJDygxHPACo99hkekw==\n" |
| "-----END CERTIFICATE-----\n"; |
| |
| std::unique_ptr<SSLIdentity> identity( |
| SSLIdentity::FromPEMStrings(kECDSA_PRIVATE_KEY_PEM, kCERT_PEM)); |
| EXPECT_TRUE(identity); |
| EXPECT_EQ(kECDSA_PRIVATE_KEY_PEM, identity->PrivateKeyToPEMString()); |
| EXPECT_EQ(kECDSA_PUBLIC_KEY_PEM, identity->PublicKeyToPEMString()); |
| EXPECT_EQ(kCERT_PEM, identity->certificate().ToPEMString()); |
| } |
| |
| TEST_F(SSLIdentityTest, CloneIdentityRSA) { |
| TestCloningIdentity(*identity_rsa1_); |
| TestCloningIdentity(*identity_rsa2_); |
| } |
| |
| TEST_F(SSLIdentityTest, CloneIdentityECDSA) { |
| TestCloningIdentity(*identity_ecdsa1_); |
| TestCloningIdentity(*identity_ecdsa2_); |
| } |
| |
| TEST_F(SSLIdentityTest, PemDerConversion) { |
| std::string der; |
| EXPECT_TRUE(SSLIdentity::PemToDer("CERTIFICATE", kTestCertificate, &der)); |
| |
| EXPECT_EQ(kTestCertificate, SSLIdentity::DerToPem( |
| "CERTIFICATE", |
| reinterpret_cast<const unsigned char*>(der.data()), der.length())); |
| } |
| |
| TEST_F(SSLIdentityTest, GetSignatureDigestAlgorithm) { |
| TestGetSignatureDigestAlgorithm(); |
| } |
| |
| class SSLIdentityExpirationTest : public testing::Test { |
| public: |
| SSLIdentityExpirationTest() { |
| // Set use of the test RNG to get deterministic expiration timestamp. |
| rtc::SetRandomTestMode(true); |
| } |
| ~SSLIdentityExpirationTest() { |
| // Put it back for the next test. |
| rtc::SetRandomTestMode(false); |
| } |
| |
| void TestASN1TimeToSec() { |
| struct asn_example { |
| const char* string; |
| bool long_format; |
| int64_t want; |
| } static const data[] = { |
| // Valid examples. |
| {"19700101000000Z", true, 0}, |
| {"700101000000Z", false, 0}, |
| {"19700101000001Z", true, 1}, |
| {"700101000001Z", false, 1}, |
| {"19700101000100Z", true, 60}, |
| {"19700101000101Z", true, 61}, |
| {"19700101010000Z", true, 3600}, |
| {"19700101010001Z", true, 3601}, |
| {"19700101010100Z", true, 3660}, |
| {"19700101010101Z", true, 3661}, |
| {"710911012345Z", false, 53400225}, |
| {"20000101000000Z", true, 946684800}, |
| {"20000101000000Z", true, 946684800}, |
| {"20151130140156Z", true, 1448892116}, |
| {"151130140156Z", false, 1448892116}, |
| {"20491231235959Z", true, 2524607999}, |
| {"491231235959Z", false, 2524607999}, |
| {"20500101000000Z", true, 2524607999+1}, |
| {"20700101000000Z", true, 3155760000}, |
| {"21000101000000Z", true, 4102444800}, |
| {"24000101000000Z", true, 13569465600}, |
| |
| // Invalid examples. |
| {"19700101000000", true, -1}, // missing Z long format |
| {"19700101000000X", true, -1}, // X instead of Z long format |
| {"197001010000000", true, -1}, // 0 instead of Z long format |
| {"1970010100000000Z", true, -1}, // excess digits long format |
| {"700101000000", false, -1}, // missing Z short format |
| {"700101000000X", false, -1}, // X instead of Z short format |
| {"7001010000000", false, -1}, // 0 instead of Z short format |
| {"70010100000000Z", false, -1}, // excess digits short format |
| {":9700101000000Z", true, -1}, // invalid character |
| {"1:700101000001Z", true, -1}, // invalid character |
| {"19:00101000100Z", true, -1}, // invalid character |
| {"197:0101000101Z", true, -1}, // invalid character |
| {"1970:101010000Z", true, -1}, // invalid character |
| {"19700:01010001Z", true, -1}, // invalid character |
| {"197001:1010100Z", true, -1}, // invalid character |
| {"1970010:010101Z", true, -1}, // invalid character |
| {"70010100:000Z", false, -1}, // invalid character |
| {"700101000:01Z", false, -1}, // invalid character |
| {"2000010100:000Z", true, -1}, // invalid character |
| {"21000101000:00Z", true, -1}, // invalid character |
| {"240001010000:0Z", true, -1}, // invalid character |
| {"500101000000Z", false, -1}, // but too old for epoch |
| {"691231235959Z", false, -1}, // too old for epoch |
| {"19611118043000Z", false, -1}, // way too old for epoch |
| }; |
| |
| unsigned char buf[20]; |
| |
| // Run all examples and check for the expected result. |
| for (const auto& entry : data) { |
| size_t length = strlen(entry.string); |
| memcpy(buf, entry.string, length); // Copy the ASN1 string... |
| buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk. |
| int64_t res = rtc::ASN1TimeToSec(buf, length, entry.long_format); |
| LOG(LS_VERBOSE) << entry.string; |
| ASSERT_EQ(entry.want, res); |
| } |
| // Run all examples again, but with an invalid length. |
| for (const auto& entry : data) { |
| size_t length = strlen(entry.string); |
| memcpy(buf, entry.string, length); // Copy the ASN1 string... |
| buf[length] = rtc::CreateRandomId(); // ...and terminate it with junk. |
| int64_t res = rtc::ASN1TimeToSec(buf, length - 1, entry.long_format); |
| LOG(LS_VERBOSE) << entry.string; |
| ASSERT_EQ(-1, res); |
| } |
| } |
| |
| void TestExpireTime(int times) { |
| // We test just ECDSA here since what we're out to exercise is the |
| // interfaces for expiration setting and reading. |
| for (int i = 0; i < times; i++) { |
| // We limit the time to < 2^31 here, i.e., we stay before 2038, since else |
| // we hit time offset limitations in OpenSSL on some 32-bit systems. |
| time_t time_before_generation = time(nullptr); |
| time_t lifetime = |
| rtc::CreateRandomId() % (0x80000000 - time_before_generation); |
| rtc::KeyParams key_params = rtc::KeyParams::ECDSA(rtc::EC_NIST_P256); |
| SSLIdentity* identity = |
| rtc::SSLIdentity::GenerateWithExpiration("", key_params, lifetime); |
| time_t time_after_generation = time(nullptr); |
| EXPECT_LE(time_before_generation + lifetime, |
| identity->certificate().CertificateExpirationTime()); |
| EXPECT_GE(time_after_generation + lifetime, |
| identity->certificate().CertificateExpirationTime()); |
| delete identity; |
| } |
| } |
| }; |
| |
| TEST_F(SSLIdentityExpirationTest, TestASN1TimeToSec) { |
| TestASN1TimeToSec(); |
| } |
| |
| TEST_F(SSLIdentityExpirationTest, TestExpireTime) { |
| TestExpireTime(500); |
| } |