blob: f86ad5dee66fb2c0fa45c592c63c1ddd34ba606a [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
#define WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_
#include <cmath>
#include <vector>
#include "webrtc/base/optional.h"
namespace webrtc {
// Coordinates in meters. The convention used is:
// x: the horizontal dimension, with positive to the right from the camera's
// perspective.
// y: the depth dimension, with positive forward from the camera's
// perspective.
// z: the vertical dimension, with positive upwards.
template<typename T>
struct CartesianPoint {
CartesianPoint() {
c[0] = 0;
c[1] = 0;
c[2] = 0;
}
CartesianPoint(T x, T y, T z) {
c[0] = x;
c[1] = y;
c[2] = z;
}
T x() const { return c[0]; }
T y() const { return c[1]; }
T z() const { return c[2]; }
T c[3];
};
using Point = CartesianPoint<float>;
// Calculates the direction from a to b.
Point PairDirection(const Point& a, const Point& b);
float DotProduct(const Point& a, const Point& b);
Point CrossProduct(const Point& a, const Point& b);
bool AreParallel(const Point& a, const Point& b);
bool ArePerpendicular(const Point& a, const Point& b);
// Returns the minimum distance between any two Points in the given
// |array_geometry|.
float GetMinimumSpacing(const std::vector<Point>& array_geometry);
// If the given array geometry is linear it returns the direction without
// normalizing.
rtc::Optional<Point> GetDirectionIfLinear(
const std::vector<Point>& array_geometry);
// If the given array geometry is planar it returns the normal without
// normalizing.
rtc::Optional<Point> GetNormalIfPlanar(
const std::vector<Point>& array_geometry);
// Returns the normal of an array if it has one and it is in the xy-plane.
rtc::Optional<Point> GetArrayNormalIfExists(
const std::vector<Point>& array_geometry);
// The resulting Point will be in the xy-plane.
Point AzimuthToPoint(float azimuth);
template<typename T>
float Distance(CartesianPoint<T> a, CartesianPoint<T> b) {
return std::sqrt((a.x() - b.x()) * (a.x() - b.x()) +
(a.y() - b.y()) * (a.y() - b.y()) +
(a.z() - b.z()) * (a.z() - b.z()));
}
// The convention used:
// azimuth: zero is to the right from the camera's perspective, with positive
// angles in radians counter-clockwise.
// elevation: zero is horizontal, with positive angles in radians upwards.
// radius: distance from the camera in meters.
template <typename T>
struct SphericalPoint {
SphericalPoint(T azimuth, T elevation, T radius) {
s[0] = azimuth;
s[1] = elevation;
s[2] = radius;
}
T azimuth() const { return s[0]; }
T elevation() const { return s[1]; }
T distance() const { return s[2]; }
T s[3];
};
using SphericalPointf = SphericalPoint<float>;
// Helper functions to transform degrees to radians and the inverse.
template <typename T>
T DegreesToRadians(T angle_degrees) {
return M_PI * angle_degrees / 180;
}
template <typename T>
T RadiansToDegrees(T angle_radians) {
return 180 * angle_radians / M_PI;
}
} // namespace webrtc
#endif // WEBRTC_MODULES_AUDIO_PROCESSING_BEAMFORMER_ARRAY_UTIL_H_