blob: 6a8e20fe147699e61e0762b384149753e2a36fe7 [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef WEBRTC_BASE_NATSOCKETFACTORY_H_
#define WEBRTC_BASE_NATSOCKETFACTORY_H_
#include <string>
#include <map>
#include <set>
#include "webrtc/base/natserver.h"
#include "webrtc/base/socketaddress.h"
#include "webrtc/base/socketserver.h"
namespace rtc {
const size_t kNATEncodedIPv4AddressSize = 8U;
const size_t kNATEncodedIPv6AddressSize = 20U;
// Used by the NAT socket implementation.
class NATInternalSocketFactory {
public:
virtual ~NATInternalSocketFactory() {}
virtual AsyncSocket* CreateInternalSocket(int family, int type,
const SocketAddress& local_addr, SocketAddress* nat_addr) = 0;
};
// Creates sockets that will send all traffic through a NAT, using an existing
// NATServer instance running at nat_addr. The actual data is sent using sockets
// from a socket factory, given to the constructor.
class NATSocketFactory : public SocketFactory, public NATInternalSocketFactory {
public:
NATSocketFactory(SocketFactory* factory, const SocketAddress& nat_addr);
// SocketFactory implementation
virtual Socket* CreateSocket(int type);
virtual Socket* CreateSocket(int family, int type);
virtual AsyncSocket* CreateAsyncSocket(int type);
virtual AsyncSocket* CreateAsyncSocket(int family, int type);
// NATInternalSocketFactory implementation
virtual AsyncSocket* CreateInternalSocket(int family, int type,
const SocketAddress& local_addr, SocketAddress* nat_addr);
private:
SocketFactory* factory_;
SocketAddress nat_addr_;
DISALLOW_EVIL_CONSTRUCTORS(NATSocketFactory);
};
// Creates sockets that will send traffic through a NAT depending on what
// address they bind to. This can be used to simulate a client on a NAT sending
// to a client that is not behind a NAT.
// Note that the internal addresses of clients must be unique. This is because
// there is only one socketserver per thread, and the Bind() address is used to
// figure out which NAT (if any) the socket should talk to.
//
// Example with 3 NATs (2 cascaded), and 3 clients.
// ss->AddTranslator("1.2.3.4", "192.168.0.1", NAT_ADDR_RESTRICTED);
// ss->AddTranslator("99.99.99.99", "10.0.0.1", NAT_SYMMETRIC)->
// AddTranslator("10.0.0.2", "192.168.1.1", NAT_OPEN_CONE);
// ss->GetTranslator("1.2.3.4")->AddClient("1.2.3.4", "192.168.0.2");
// ss->GetTranslator("99.99.99.99")->AddClient("10.0.0.3");
// ss->GetTranslator("99.99.99.99")->GetTranslator("10.0.0.2")->
// AddClient("192.168.1.2");
class NATSocketServer : public SocketServer, public NATInternalSocketFactory {
public:
class Translator;
// holds a list of NATs
class TranslatorMap : private std::map<SocketAddress, Translator*> {
public:
~TranslatorMap();
Translator* Get(const SocketAddress& ext_ip);
Translator* Add(const SocketAddress& ext_ip, Translator*);
void Remove(const SocketAddress& ext_ip);
Translator* FindClient(const SocketAddress& int_ip);
};
// a specific NAT
class Translator {
public:
Translator(NATSocketServer* server, NATType type,
const SocketAddress& int_addr, SocketFactory* ext_factory,
const SocketAddress& ext_addr);
SocketFactory* internal_factory() { return internal_factory_.get(); }
SocketAddress internal_address() const {
return nat_server_->internal_address();
}
SocketAddress internal_tcp_address() const {
return SocketAddress(); // nat_server_->internal_tcp_address();
}
Translator* GetTranslator(const SocketAddress& ext_ip);
Translator* AddTranslator(const SocketAddress& ext_ip,
const SocketAddress& int_ip, NATType type);
void RemoveTranslator(const SocketAddress& ext_ip);
bool AddClient(const SocketAddress& int_ip);
void RemoveClient(const SocketAddress& int_ip);
// Looks for the specified client in this or a child NAT.
Translator* FindClient(const SocketAddress& int_ip);
private:
NATSocketServer* server_;
scoped_ptr<SocketFactory> internal_factory_;
scoped_ptr<NATServer> nat_server_;
TranslatorMap nats_;
std::set<SocketAddress> clients_;
};
explicit NATSocketServer(SocketServer* ss);
SocketServer* socketserver() { return server_; }
MessageQueue* queue() { return msg_queue_; }
Translator* GetTranslator(const SocketAddress& ext_ip);
Translator* AddTranslator(const SocketAddress& ext_ip,
const SocketAddress& int_ip, NATType type);
void RemoveTranslator(const SocketAddress& ext_ip);
// SocketServer implementation
virtual Socket* CreateSocket(int type);
virtual Socket* CreateSocket(int family, int type);
virtual AsyncSocket* CreateAsyncSocket(int type);
virtual AsyncSocket* CreateAsyncSocket(int family, int type);
virtual void SetMessageQueue(MessageQueue* queue) {
msg_queue_ = queue;
server_->SetMessageQueue(queue);
}
virtual bool Wait(int cms, bool process_io) {
return server_->Wait(cms, process_io);
}
virtual void WakeUp() {
server_->WakeUp();
}
// NATInternalSocketFactory implementation
virtual AsyncSocket* CreateInternalSocket(int family, int type,
const SocketAddress& local_addr, SocketAddress* nat_addr);
private:
SocketServer* server_;
MessageQueue* msg_queue_;
TranslatorMap nats_;
DISALLOW_EVIL_CONSTRUCTORS(NATSocketServer);
};
// Free-standing NAT helper functions.
size_t PackAddressForNAT(char* buf, size_t buf_size,
const SocketAddress& remote_addr);
size_t UnpackAddressFromNAT(const char* buf, size_t buf_size,
SocketAddress* remote_addr);
} // namespace rtc
#endif // WEBRTC_BASE_NATSOCKETFACTORY_H_