blob: 426ee767792576653ef4cbb2addbb438ccdbd00b [file] [log] [blame]
/* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/vp8/default_temporal_layers.h"
#include <stdlib.h>
#include <algorithm>
#include <array>
#include <memory>
#include <set>
#include <utility>
#include <vector>
#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
DefaultTemporalLayers::PendingFrame::PendingFrame() = default;
DefaultTemporalLayers::PendingFrame::PendingFrame(
bool expired,
uint8_t updated_buffers_mask,
const DependencyInfo& dependency_info)
: expired(expired),
updated_buffer_mask(updated_buffers_mask),
dependency_info(dependency_info) {}
namespace {
using BufferFlags = Vp8FrameConfig::BufferFlags;
using FreezeEntropy = Vp8FrameConfig::FreezeEntropy;
using Vp8BufferReference = Vp8FrameConfig::Vp8BufferReference;
constexpr BufferFlags kNone = BufferFlags::kNone;
constexpr BufferFlags kReference = BufferFlags::kReference;
constexpr BufferFlags kUpdate = BufferFlags::kUpdate;
constexpr BufferFlags kReferenceAndUpdate = BufferFlags::kReferenceAndUpdate;
constexpr FreezeEntropy kFreezeEntropy = FreezeEntropy::kFreezeEntropy;
static constexpr uint8_t kUninitializedPatternIndex =
std::numeric_limits<uint8_t>::max();
static constexpr std::array<Vp8BufferReference, 3> kAllBuffers = {
{Vp8BufferReference::kLast, Vp8BufferReference::kGolden,
Vp8BufferReference::kAltref}};
std::vector<unsigned int> GetTemporalIds(size_t num_layers) {
switch (num_layers) {
case 1:
// Temporal layer structure (single layer):
// 0 0 0 0 ...
return {0};
case 2:
// Temporal layer structure:
// 1 1 ...
// 0 0 ...
return {0, 1};
case 3:
// Temporal layer structure:
// 2 2 2 2 ...
// 1 1 ...
// 0 0 ...
return {0, 2, 1, 2};
case 4:
// Temporal layer structure:
// 3 3 3 3 3 3 3 3 ...
// 2 2 2 2 ...
// 1 1 ...
// 0 0 ...
return {0, 3, 2, 3, 1, 3, 2, 3};
default:
RTC_NOTREACHED();
break;
}
RTC_NOTREACHED();
return {0};
}
uint8_t GetUpdatedBuffers(const Vp8FrameConfig& config) {
uint8_t flags = 0;
if (config.last_buffer_flags & BufferFlags::kUpdate) {
flags |= static_cast<uint8_t>(Vp8BufferReference::kLast);
}
if (config.golden_buffer_flags & BufferFlags::kUpdate) {
flags |= static_cast<uint8_t>(Vp8BufferReference::kGolden);
}
if (config.arf_buffer_flags & BufferFlags::kUpdate) {
flags |= static_cast<uint8_t>(Vp8BufferReference::kAltref);
}
return flags;
}
} // namespace
std::vector<DefaultTemporalLayers::DependencyInfo>
DefaultTemporalLayers::GetDependencyInfo(size_t num_layers) {
// For indexing in the patterns described below (which temporal layers they
// belong to), see the diagram above.
// Layer sync is done similarly for all patterns (except single stream) and
// happens every 8 frames:
// TL1 layer syncs by periodically by only referencing TL0 ('last'), but still
// updating 'golden', so it can be used as a reference by future TL1 frames.
// TL2 layer syncs just before TL1 by only depending on TL0 (and not depending
// on TL1's buffer before TL1 has layer synced).
// TODO(pbos): Consider cyclically updating 'arf' (and 'golden' for 1TL) for
// the base layer in 1-3TL instead of 'last' periodically on long intervals,
// so that if scene changes occur (user walks between rooms or rotates webcam)
// the 'arf' (or 'golden' respectively) is not stuck on a no-longer relevant
// keyframe.
switch (num_layers) {
case 1:
// Always reference and update the same buffer.
return {{"S", {kReferenceAndUpdate, kNone, kNone}}};
case 2:
// All layers can reference but not update the 'alt' buffer, this means
// that the 'alt' buffer reference is effectively the last keyframe.
// TL0 also references and updates the 'last' buffer.
// TL1 also references 'last' and references and updates 'golden'.
if (!field_trial::IsDisabled("WebRTC-UseShortVP8TL2Pattern")) {
// Shortened 4-frame pattern:
// 1---1 1---1 ...
// / / / /
// 0---0---0---0 ...
return {{"SS", {kReferenceAndUpdate, kNone, kNone}},
{"-S", {kReference, kUpdate, kNone}},
{"SR", {kReferenceAndUpdate, kNone, kNone}},
{"-D", {kReference, kReference, kNone, kFreezeEntropy}}};
} else {
// "Default" 8-frame pattern:
// 1---1---1---1 1---1---1---1 ...
// / / / / / / / /
// 0---0---0---0---0---0---0---0 ...
return {{"SS", {kReferenceAndUpdate, kNone, kNone}},
{"-S", {kReference, kUpdate, kNone}},
{"SR", {kReferenceAndUpdate, kNone, kNone}},
{"-R", {kReference, kReferenceAndUpdate, kNone}},
{"SR", {kReferenceAndUpdate, kNone, kNone}},
{"-R", {kReference, kReferenceAndUpdate, kNone}},
{"SR", {kReferenceAndUpdate, kNone, kNone}},
{"-D", {kReference, kReference, kNone, kFreezeEntropy}}};
}
case 3:
if (field_trial::IsEnabled("WebRTC-UseShortVP8TL3Pattern")) {
// This field trial is intended to check if it is worth using a shorter
// temporal pattern, trading some coding efficiency for less risk of
// dropped frames.
// The coding efficiency will decrease somewhat since the higher layer
// state is more volatile, but it will be offset slightly by updating
// the altref buffer with TL2 frames, instead of just referencing lower
// layers.
// If a frame is dropped in a higher layer, the jitter
// buffer on the receive side won't be able to decode any higher layer
// frame until the next sync frame. So we expect a noticeable decrease
// in frame drops on links with high packet loss.
// TL0 references and updates the 'last' buffer.
// TL1 references 'last' and references and updates 'golden'.
// TL2 references both 'last' & 'golden' and references and updates
// 'arf'.
return {{"SSS", {kReferenceAndUpdate, kNone, kNone}},
{"--S", {kReference, kNone, kUpdate}},
{"-DR", {kReference, kUpdate, kNone}},
{"--D", {kReference, kReference, kReference, kFreezeEntropy}}};
} else {
// All layers can reference but not update the 'alt' buffer, this means
// that the 'alt' buffer reference is effectively the last keyframe.
// TL0 also references and updates the 'last' buffer.
// TL1 also references 'last' and references and updates 'golden'.
// TL2 references both 'last' and 'golden' but updates no buffer.
return {{"SSS", {kReferenceAndUpdate, kNone, kNone}},
{"--D", {kReference, kNone, kNone, kFreezeEntropy}},
{"-SS", {kReference, kUpdate, kNone}},
{"--D", {kReference, kReference, kNone, kFreezeEntropy}},
{"SRR", {kReferenceAndUpdate, kNone, kNone}},
{"--D", {kReference, kReference, kNone, kFreezeEntropy}},
{"-DS", {kReference, kReferenceAndUpdate, kNone}},
{"--D", {kReference, kReference, kNone, kFreezeEntropy}}};
}
case 4:
// TL0 references and updates only the 'last' buffer.
// TL1 references 'last' and updates and references 'golden'.
// TL2 references 'last' and 'golden', and references and updates 'arf'.
// TL3 references all buffers but update none of them.
// TODO(philipel): Set decode target information for this structure.
return {{"----", {kReferenceAndUpdate, kNone, kNone}},
{"----", {kReference, kNone, kNone, kFreezeEntropy}},
{"----", {kReference, kNone, kUpdate}},
{"----", {kReference, kNone, kReference, kFreezeEntropy}},
{"----", {kReference, kUpdate, kNone}},
{"----", {kReference, kReference, kReference, kFreezeEntropy}},
{"----", {kReference, kReference, kReferenceAndUpdate}},
{"----", {kReference, kReference, kReference, kFreezeEntropy}},
{"----", {kReferenceAndUpdate, kNone, kNone}},
{"----", {kReference, kReference, kReference, kFreezeEntropy}},
{"----", {kReference, kReference, kReferenceAndUpdate}},
{"----", {kReference, kReference, kReference, kFreezeEntropy}},
{"----", {kReference, kReferenceAndUpdate, kNone}},
{"----", {kReference, kReference, kReference, kFreezeEntropy}},
{"----", {kReference, kReference, kReferenceAndUpdate}},
{"----", {kReference, kReference, kReference, kFreezeEntropy}}};
default:
RTC_NOTREACHED();
break;
}
RTC_NOTREACHED();
return {{"", {kNone, kNone, kNone}}};
}
DefaultTemporalLayers::DefaultTemporalLayers(int number_of_temporal_layers)
: num_layers_(std::max(1, number_of_temporal_layers)),
temporal_ids_(GetTemporalIds(num_layers_)),
temporal_pattern_(GetDependencyInfo(num_layers_)),
pattern_idx_(kUninitializedPatternIndex) {
RTC_CHECK_GE(kMaxTemporalStreams, number_of_temporal_layers);
RTC_CHECK_GE(number_of_temporal_layers, 0);
RTC_CHECK_LE(number_of_temporal_layers, 4);
// pattern_idx_ wraps around temporal_pattern_.size, this is incorrect if
// temporal_ids_ are ever longer. If this is no longer correct it needs to
// wrap at max(temporal_ids_.size(), temporal_pattern_.size()).
RTC_DCHECK_LE(temporal_ids_.size(), temporal_pattern_.size());
#if RTC_DCHECK_IS_ON
checker_ = TemporalLayersChecker::CreateTemporalLayersChecker(
Vp8TemporalLayersType::kFixedPattern, number_of_temporal_layers);
#endif
// Always need to start with a keyframe, so pre-populate all frame counters.
for (Vp8BufferReference buffer : kAllBuffers) {
frames_since_buffer_refresh_[buffer] = 0;
}
kf_buffers_ = {kAllBuffers.begin(), kAllBuffers.end()};
for (const DependencyInfo& info : temporal_pattern_) {
uint8_t updated_buffers = GetUpdatedBuffers(info.frame_config);
for (Vp8BufferReference buffer : kAllBuffers) {
if (static_cast<uint8_t>(buffer) & updated_buffers)
kf_buffers_.erase(buffer);
}
}
}
DefaultTemporalLayers::~DefaultTemporalLayers() = default;
void DefaultTemporalLayers::SetQpLimits(size_t stream_index,
int min_qp,
int max_qp) {
RTC_DCHECK_LT(stream_index, StreamCount());
// Ignore.
}
size_t DefaultTemporalLayers::StreamCount() const {
return 1;
}
bool DefaultTemporalLayers::SupportsEncoderFrameDropping(
size_t stream_index) const {
RTC_DCHECK_LT(stream_index, StreamCount());
// This class allows the encoder drop frames as it sees fit.
return true;
}
void DefaultTemporalLayers::OnRatesUpdated(
size_t stream_index,
const std::vector<uint32_t>& bitrates_bps,
int framerate_fps) {
RTC_DCHECK_LT(stream_index, StreamCount());
RTC_DCHECK_GT(bitrates_bps.size(), 0);
RTC_DCHECK_LE(bitrates_bps.size(), num_layers_);
// |bitrates_bps| uses individual rate per layer, but Vp8EncoderConfig wants
// the accumulated rate, so sum them up.
new_bitrates_bps_ = bitrates_bps;
new_bitrates_bps_->resize(num_layers_);
for (size_t i = 1; i < num_layers_; ++i) {
(*new_bitrates_bps_)[i] += (*new_bitrates_bps_)[i - 1];
}
}
Vp8EncoderConfig DefaultTemporalLayers::UpdateConfiguration(
size_t stream_index) {
RTC_DCHECK_LT(stream_index, StreamCount());
Vp8EncoderConfig config;
if (!new_bitrates_bps_) {
return config;
}
config.temporal_layer_config.emplace();
Vp8EncoderConfig::TemporalLayerConfig& ts_config =
config.temporal_layer_config.value();
for (size_t i = 0; i < num_layers_; ++i) {
ts_config.ts_target_bitrate[i] = (*new_bitrates_bps_)[i] / 1000;
// ..., 4, 2, 1
ts_config.ts_rate_decimator[i] = 1 << (num_layers_ - i - 1);
}
ts_config.ts_number_layers = num_layers_;
ts_config.ts_periodicity = temporal_ids_.size();
std::copy(temporal_ids_.begin(), temporal_ids_.end(),
ts_config.ts_layer_id.begin());
new_bitrates_bps_.reset();
return config;
}
bool DefaultTemporalLayers::IsSyncFrame(const Vp8FrameConfig& config) const {
// Since we always assign TL0 to 'last' in these patterns, we can infer layer
// sync by checking if temporal id > 0 and we only reference TL0 or buffers
// containing the last key-frame.
if (config.packetizer_temporal_idx == 0) {
// TL0 frames are per definition not sync frames.
return false;
}
if ((config.last_buffer_flags & BufferFlags::kReference) == 0) {
// Sync frames must reference TL0.
return false;
}
if ((config.golden_buffer_flags & BufferFlags::kReference) &&
kf_buffers_.find(Vp8BufferReference::kGolden) == kf_buffers_.end()) {
// Referencing a golden frame that contains a non-(base layer|key frame).
return false;
}
if ((config.arf_buffer_flags & BufferFlags::kReference) &&
kf_buffers_.find(Vp8BufferReference::kAltref) == kf_buffers_.end()) {
// Referencing an altref frame that contains a non-(base layer|key frame).
return false;
}
return true;
}
Vp8FrameConfig DefaultTemporalLayers::NextFrameConfig(size_t stream_index,
uint32_t timestamp) {
RTC_DCHECK_LT(stream_index, StreamCount());
RTC_DCHECK_GT(num_layers_, 0);
RTC_DCHECK_GT(temporal_pattern_.size(), 0);
RTC_DCHECK_GT(kUninitializedPatternIndex, temporal_pattern_.size());
const bool first_frame = (pattern_idx_ == kUninitializedPatternIndex);
pattern_idx_ = (pattern_idx_ + 1) % temporal_pattern_.size();
DependencyInfo dependency_info = temporal_pattern_[pattern_idx_];
Vp8FrameConfig& tl_config = dependency_info.frame_config;
tl_config.encoder_layer_id = tl_config.packetizer_temporal_idx =
temporal_ids_[pattern_idx_ % temporal_ids_.size()];
if (pattern_idx_ == 0) {
// Start of new pattern iteration, set up clear state by invalidating any
// pending frames, so that we don't make an invalid reference to a buffer
// containing data from a previous iteration.
for (auto& it : pending_frames_) {
it.second.expired = true;
}
}
if (first_frame) {
tl_config = Vp8FrameConfig::GetIntraFrameConfig();
} else {
// Last is always ok to reference as it contains the base layer. For other
// buffers though, we need to check if the buffer has actually been
// refreshed this cycle of the temporal pattern. If the encoder dropped
// a frame, it might not have.
ValidateReferences(&tl_config.golden_buffer_flags,
Vp8BufferReference::kGolden);
ValidateReferences(&tl_config.arf_buffer_flags,
Vp8BufferReference::kAltref);
// Update search order to let the encoder know which buffers contains the
// most recent data.
UpdateSearchOrder(&tl_config);
// Figure out if this a sync frame (non-base-layer frame with only
// base-layer references).
tl_config.layer_sync = IsSyncFrame(tl_config);
// Increment frame age, this needs to be in sync with |pattern_idx_|,
// so must update it here. Resetting age to 0 must be done when encoding is
// complete though, and so in the case of pipelining encoder it might lag.
// To prevent this data spill over into the next iteration,
// the |pedning_frames_| map is reset in loops. If delay is constant,
// the relative age should still be OK for the search order.
for (Vp8BufferReference buffer : kAllBuffers) {
++frames_since_buffer_refresh_[buffer];
}
}
// Add frame to set of pending frames, awaiting completion.
pending_frames_[timestamp] =
PendingFrame{false, GetUpdatedBuffers(tl_config), dependency_info};
#if RTC_DCHECK_IS_ON
// Checker does not yet support encoder frame dropping, so validate flags
// here before they can be dropped.
// TODO(sprang): Update checker to support dropping.
RTC_DCHECK(checker_->CheckTemporalConfig(first_frame, tl_config));
#endif
return tl_config;
}
void DefaultTemporalLayers::ValidateReferences(BufferFlags* flags,
Vp8BufferReference ref) const {
// Check if the buffer specified by |ref| is actually referenced, and if so
// if it also a dynamically updating one (buffers always just containing
// keyframes are always safe to reference).
if ((*flags & BufferFlags::kReference) &&
kf_buffers_.find(ref) == kf_buffers_.end()) {
auto it = frames_since_buffer_refresh_.find(ref);
if (it == frames_since_buffer_refresh_.end() ||
it->second >= pattern_idx_) {
// No valid buffer state, or buffer contains frame that is older than the
// current pattern. This reference is not valid, so remove it.
*flags = static_cast<BufferFlags>(*flags & ~BufferFlags::kReference);
}
}
}
void DefaultTemporalLayers::UpdateSearchOrder(Vp8FrameConfig* config) {
// Figure out which of the buffers we can reference, and order them so that
// the most recently refreshed is first. Otherwise prioritize last first,
// golden second, and altref third.
using BufferRefAge = std::pair<Vp8BufferReference, size_t>;
std::vector<BufferRefAge> eligible_buffers;
if (config->last_buffer_flags & BufferFlags::kReference) {
eligible_buffers.emplace_back(
Vp8BufferReference::kLast,
frames_since_buffer_refresh_[Vp8BufferReference::kLast]);
}
if (config->golden_buffer_flags & BufferFlags::kReference) {
eligible_buffers.emplace_back(
Vp8BufferReference::kGolden,
frames_since_buffer_refresh_[Vp8BufferReference::kGolden]);
}
if (config->arf_buffer_flags & BufferFlags::kReference) {
eligible_buffers.emplace_back(
Vp8BufferReference::kAltref,
frames_since_buffer_refresh_[Vp8BufferReference::kAltref]);
}
std::sort(eligible_buffers.begin(), eligible_buffers.end(),
[](const BufferRefAge& lhs, const BufferRefAge& rhs) {
if (lhs.second != rhs.second) {
// Lower count has highest precedence.
return lhs.second < rhs.second;
}
return lhs.first < rhs.first;
});
// Populate the search order fields where possible.
if (!eligible_buffers.empty()) {
config->first_reference = eligible_buffers.front().first;
if (eligible_buffers.size() > 1)
config->second_reference = eligible_buffers[1].first;
}
}
void DefaultTemporalLayers::OnEncodeDone(size_t stream_index,
uint32_t rtp_timestamp,
size_t size_bytes,
bool is_keyframe,
int qp,
CodecSpecificInfo* info) {
RTC_DCHECK_LT(stream_index, StreamCount());
RTC_DCHECK_GT(num_layers_, 0);
if (size_bytes == 0) {
RTC_LOG(LS_WARNING) << "Empty frame; treating as dropped.";
OnFrameDropped(stream_index, rtp_timestamp);
return;
}
auto pending_frame = pending_frames_.find(rtp_timestamp);
RTC_DCHECK(pending_frame != pending_frames_.end());
PendingFrame& frame = pending_frame->second;
const Vp8FrameConfig& frame_config = frame.dependency_info.frame_config;
#if RTC_DCHECK_IS_ON
if (is_keyframe) {
// Signal key-frame so checker resets state.
RTC_DCHECK(checker_->CheckTemporalConfig(true, frame_config));
}
#endif
CodecSpecificInfoVP8& vp8_info = info->codecSpecific.VP8;
if (num_layers_ == 1) {
vp8_info.temporalIdx = kNoTemporalIdx;
vp8_info.layerSync = false;
} else {
if (is_keyframe) {
// Restart the temporal pattern on keyframes.
pattern_idx_ = 0;
vp8_info.temporalIdx = 0;
vp8_info.layerSync = true; // Keyframes are always sync frames.
for (Vp8BufferReference buffer : kAllBuffers) {
if (kf_buffers_.find(buffer) != kf_buffers_.end()) {
// Update frame count of all kf-only buffers, regardless of state of
// |pending_frames_|.
frames_since_buffer_refresh_[buffer] = 0;
} else {
// Key-frames update all buffers, this should be reflected when
// updating state in FrameEncoded().
frame.updated_buffer_mask |= static_cast<uint8_t>(buffer);
}
}
} else {
// Delta frame, update codec specifics with temporal id and sync flag.
vp8_info.temporalIdx = frame_config.packetizer_temporal_idx;
vp8_info.layerSync = frame_config.layer_sync;
}
}
vp8_info.useExplicitDependencies = true;
RTC_DCHECK_EQ(vp8_info.referencedBuffersCount, 0u);
RTC_DCHECK_EQ(vp8_info.updatedBuffersCount, 0u);
GenericFrameInfo& generic_frame_info = info->generic_frame_info.emplace();
for (int i = 0; i < static_cast<int>(Vp8FrameConfig::Buffer::kCount); ++i) {
bool references = false;
bool updates = is_keyframe;
if (!is_keyframe &&
frame_config.References(static_cast<Vp8FrameConfig::Buffer>(i))) {
RTC_DCHECK_LT(vp8_info.referencedBuffersCount,
arraysize(CodecSpecificInfoVP8::referencedBuffers));
references = true;
vp8_info.referencedBuffers[vp8_info.referencedBuffersCount++] = i;
}
if (is_keyframe ||
frame_config.Updates(static_cast<Vp8FrameConfig::Buffer>(i))) {
RTC_DCHECK_LT(vp8_info.updatedBuffersCount,
arraysize(CodecSpecificInfoVP8::updatedBuffers));
updates = true;
vp8_info.updatedBuffers[vp8_info.updatedBuffersCount++] = i;
}
if (references || updates)
generic_frame_info.encoder_buffers.emplace_back(i, references, updates);
}
// The templates are always present on keyframes, and then refered to by
// subsequent frames.
if (is_keyframe) {
info->template_structure = GetTemplateStructure(num_layers_);
}
generic_frame_info.decode_target_indications =
frame.dependency_info.decode_target_indications;
generic_frame_info.temporal_id = frame_config.packetizer_temporal_idx;
if (!frame.expired) {
for (Vp8BufferReference buffer : kAllBuffers) {
if (frame.updated_buffer_mask & static_cast<uint8_t>(buffer)) {
frames_since_buffer_refresh_[buffer] = 0;
}
}
}
pending_frames_.erase(pending_frame);
}
void DefaultTemporalLayers::OnFrameDropped(size_t stream_index,
uint32_t rtp_timestamp) {
auto pending_frame = pending_frames_.find(rtp_timestamp);
RTC_DCHECK(pending_frame != pending_frames_.end());
pending_frames_.erase(pending_frame);
}
void DefaultTemporalLayers::OnPacketLossRateUpdate(float packet_loss_rate) {}
void DefaultTemporalLayers::OnRttUpdate(int64_t rtt_ms) {}
void DefaultTemporalLayers::OnLossNotification(
const VideoEncoder::LossNotification& loss_notification) {}
FrameDependencyStructure DefaultTemporalLayers::GetTemplateStructure(
int num_layers) const {
RTC_CHECK_LT(num_layers, 5);
RTC_CHECK_GT(num_layers, 0);
FrameDependencyStructure template_structure;
template_structure.num_decode_targets = num_layers;
using Builder = GenericFrameInfo::Builder;
switch (num_layers) {
case 1: {
template_structure.templates = {
Builder().T(0).Dtis("S").Build(),
Builder().T(0).Dtis("S").Fdiffs({1}).Build(),
};
return template_structure;
}
case 2: {
template_structure.templates = {
Builder().T(0).Dtis("SS").Build(),
Builder().T(0).Dtis("SS").Fdiffs({2}).Build(),
Builder().T(0).Dtis("SR").Fdiffs({2}).Build(),
Builder().T(1).Dtis("-S").Fdiffs({1}).Build(),
Builder().T(1).Dtis("-D").Fdiffs({1, 2}).Build(),
};
return template_structure;
}
case 3: {
template_structure.templates = {
Builder().T(0).Dtis("SSS").Build(),
Builder().T(0).Dtis("SSS").Fdiffs({4}).Build(),
Builder().T(0).Dtis("SRR").Fdiffs({4}).Build(),
Builder().T(1).Dtis("-SR").Fdiffs({2}).Build(),
Builder().T(1).Dtis("-DR").Fdiffs({2, 4}).Build(),
Builder().T(2).Dtis("--D").Fdiffs({1}).Build(),
Builder().T(2).Dtis("--D").Fdiffs({1, 3}).Build(),
};
return template_structure;
}
case 4: {
template_structure.templates = {
Builder().T(0).Dtis("SSSS").Build(),
Builder().T(0).Dtis("SSSS").Fdiffs({8}).Build(),
Builder().T(1).Dtis("-SRR").Fdiffs({4}).Build(),
Builder().T(1).Dtis("-SRR").Fdiffs({4, 8}).Build(),
Builder().T(2).Dtis("--SR").Fdiffs({2}).Build(),
Builder().T(2).Dtis("--SR").Fdiffs({2, 4}).Build(),
Builder().T(3).Dtis("---D").Fdiffs({1}).Build(),
Builder().T(3).Dtis("---D").Fdiffs({1, 3}).Build(),
};
return template_structure;
}
default:
RTC_NOTREACHED();
// To make the compiler happy!
return template_structure;
}
}
// Returns list of temporal dependencies for each frame in the temporal pattern.
// Values are lists of indecies in the pattern.
std::vector<std::set<uint8_t>> GetTemporalDependencies(
int num_temporal_layers) {
switch (num_temporal_layers) {
case 1:
return {{0}};
case 2:
if (!field_trial::IsDisabled("WebRTC-UseShortVP8TL2Pattern")) {
return {{2}, {0}, {0}, {1, 2}};
} else {
return {{6}, {0}, {0}, {1, 2}, {2}, {3, 4}, {4}, {5, 6}};
}
case 3:
if (field_trial::IsEnabled("WebRTC-UseShortVP8TL3Pattern")) {
return {{0}, {0}, {0}, {0, 1, 2}};
} else {
return {{4}, {0}, {0}, {0, 2}, {0}, {2, 4}, {2, 4}, {4, 6}};
}
case 4:
return {{8}, {0}, {0}, {0, 2},
{0}, {0, 2, 4}, {0, 2, 4}, {0, 4, 6},
{0}, {4, 6, 8}, {4, 6, 8}, {4, 8, 10},
{4, 8}, {8, 10, 12}, {8, 10, 12}, {8, 12, 14}};
default:
RTC_NOTREACHED();
return {};
}
}
DefaultTemporalLayersChecker::DefaultTemporalLayersChecker(
int num_temporal_layers)
: TemporalLayersChecker(num_temporal_layers),
num_layers_(std::max(1, num_temporal_layers)),
temporal_ids_(GetTemporalIds(num_layers_)),
temporal_dependencies_(GetTemporalDependencies(num_layers_)),
pattern_idx_(255) {
int i = 0;
while (temporal_ids_.size() < temporal_dependencies_.size()) {
temporal_ids_.push_back(temporal_ids_[i++]);
}
}
DefaultTemporalLayersChecker::~DefaultTemporalLayersChecker() = default;
bool DefaultTemporalLayersChecker::CheckTemporalConfig(
bool frame_is_keyframe,
const Vp8FrameConfig& frame_config) {
if (!TemporalLayersChecker::CheckTemporalConfig(frame_is_keyframe,
frame_config)) {
return false;
}
if (frame_config.drop_frame) {
return true;
}
if (frame_is_keyframe) {
pattern_idx_ = 0;
last_ = BufferState();
golden_ = BufferState();
arf_ = BufferState();
return true;
}
++pattern_idx_;
if (pattern_idx_ == temporal_ids_.size()) {
// All non key-frame buffers should be updated each pattern cycle.
if (!last_.is_keyframe && !last_.is_updated_this_cycle) {
RTC_LOG(LS_ERROR) << "Last buffer was not updated during pattern cycle.";
return false;
}
if (!arf_.is_keyframe && !arf_.is_updated_this_cycle) {
RTC_LOG(LS_ERROR) << "Arf buffer was not updated during pattern cycle.";
return false;
}
if (!golden_.is_keyframe && !golden_.is_updated_this_cycle) {
RTC_LOG(LS_ERROR)
<< "Golden buffer was not updated during pattern cycle.";
return false;
}
last_.is_updated_this_cycle = false;
arf_.is_updated_this_cycle = false;
golden_.is_updated_this_cycle = false;
pattern_idx_ = 0;
}
uint8_t expected_tl_idx = temporal_ids_[pattern_idx_];
if (frame_config.packetizer_temporal_idx != expected_tl_idx) {
RTC_LOG(LS_ERROR) << "Frame has an incorrect temporal index. Expected: "
<< static_cast<int>(expected_tl_idx) << " Actual: "
<< static_cast<int>(frame_config.packetizer_temporal_idx);
return false;
}
bool need_sync = temporal_ids_[pattern_idx_] > 0 &&
temporal_ids_[pattern_idx_] != kNoTemporalIdx;
std::vector<int> dependencies;
if (frame_config.last_buffer_flags & BufferFlags::kReference) {
uint8_t referenced_layer = temporal_ids_[last_.pattern_idx];
if (referenced_layer > 0) {
need_sync = false;
}
if (!last_.is_keyframe) {
dependencies.push_back(last_.pattern_idx);
}
} else if (frame_config.first_reference == Vp8BufferReference::kLast ||
frame_config.second_reference == Vp8BufferReference::kLast) {
RTC_LOG(LS_ERROR)
<< "Last buffer not referenced, but present in search order.";
return false;
}
if (frame_config.arf_buffer_flags & BufferFlags::kReference) {
uint8_t referenced_layer = temporal_ids_[arf_.pattern_idx];
if (referenced_layer > 0) {
need_sync = false;
}
if (!arf_.is_keyframe) {
dependencies.push_back(arf_.pattern_idx);
}
} else if (frame_config.first_reference == Vp8BufferReference::kAltref ||
frame_config.second_reference == Vp8BufferReference::kAltref) {
RTC_LOG(LS_ERROR)
<< "Altret buffer not referenced, but present in search order.";
return false;
}
if (frame_config.golden_buffer_flags & BufferFlags::kReference) {
uint8_t referenced_layer = temporal_ids_[golden_.pattern_idx];
if (referenced_layer > 0) {
need_sync = false;
}
if (!golden_.is_keyframe) {
dependencies.push_back(golden_.pattern_idx);
}
} else if (frame_config.first_reference == Vp8BufferReference::kGolden ||
frame_config.second_reference == Vp8BufferReference::kGolden) {
RTC_LOG(LS_ERROR)
<< "Golden buffer not referenced, but present in search order.";
return false;
}
if (need_sync != frame_config.layer_sync) {
RTC_LOG(LS_ERROR) << "Sync bit is set incorrectly on a frame. Expected: "
<< need_sync << " Actual: " << frame_config.layer_sync;
return false;
}
if (!frame_is_keyframe) {
size_t i;
for (i = 0; i < dependencies.size(); ++i) {
if (temporal_dependencies_[pattern_idx_].find(dependencies[i]) ==
temporal_dependencies_[pattern_idx_].end()) {
RTC_LOG(LS_ERROR)
<< "Illegal temporal dependency out of defined pattern "
"from position "
<< static_cast<int>(pattern_idx_) << " to position "
<< static_cast<int>(dependencies[i]);
return false;
}
}
}
if (frame_config.last_buffer_flags & BufferFlags::kUpdate) {
last_.is_updated_this_cycle = true;
last_.pattern_idx = pattern_idx_;
last_.is_keyframe = false;
}
if (frame_config.arf_buffer_flags & BufferFlags::kUpdate) {
arf_.is_updated_this_cycle = true;
arf_.pattern_idx = pattern_idx_;
arf_.is_keyframe = false;
}
if (frame_config.golden_buffer_flags & BufferFlags::kUpdate) {
golden_.is_updated_this_cycle = true;
golden_.pattern_idx = pattern_idx_;
golden_.is_keyframe = false;
}
return true;
}
} // namespace webrtc