| /* |
| * Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <memory> |
| #include <vector> |
| |
| #include "api/array_view.h" |
| #include "common_video/h264/h264_common.h" |
| #include "modules/include/module_common_types.h" |
| #include "modules/rtp_rtcp/mocks/mock_rtp_rtcp.h" |
| #include "modules/rtp_rtcp/source/byte_io.h" |
| #include "modules/rtp_rtcp/source/rtp_format.h" |
| #include "modules/rtp_rtcp/source/rtp_packet_to_send.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| namespace { |
| |
| using ::testing::ElementsAreArray; |
| |
| constexpr RtpPacketToSend::ExtensionManager* kNoExtensions = nullptr; |
| const size_t kMaxPayloadSize = 1200; |
| const size_t kLengthFieldLength = 2; |
| |
| enum Nalu { |
| kSlice = 1, |
| kIdr = 5, |
| kSei = 6, |
| kSps = 7, |
| kPps = 8, |
| kStapA = 24, |
| kFuA = 28 |
| }; |
| |
| static const size_t kNalHeaderSize = 1; |
| static const size_t kFuAHeaderSize = 2; |
| |
| // Bit masks for FU (A and B) indicators. |
| enum NalDefs { kFBit = 0x80, kNriMask = 0x60, kTypeMask = 0x1F }; |
| |
| // Bit masks for FU (A and B) headers. |
| enum FuDefs { kSBit = 0x80, kEBit = 0x40, kRBit = 0x20 }; |
| |
| void CreateThreeFragments(RTPFragmentationHeader* fragmentation, |
| size_t frameSize, |
| size_t payloadOffset) { |
| fragmentation->VerifyAndAllocateFragmentationHeader(3); |
| fragmentation->fragmentationOffset[0] = 0; |
| fragmentation->fragmentationLength[0] = 2; |
| fragmentation->fragmentationOffset[1] = 2; |
| fragmentation->fragmentationLength[1] = 2; |
| fragmentation->fragmentationOffset[2] = 4; |
| fragmentation->fragmentationLength[2] = |
| kNalHeaderSize + frameSize - payloadOffset; |
| } |
| |
| RtpPacketizer* CreateH264Packetizer(H264PacketizationMode mode, |
| size_t max_payload_size, |
| size_t last_packet_reduction) { |
| RTPVideoTypeHeader type_header; |
| type_header.H264.packetization_mode = mode; |
| return RtpPacketizer::Create(kRtpVideoH264, max_payload_size, |
| last_packet_reduction, &type_header, |
| kEmptyFrame); |
| } |
| |
| void VerifyFua(size_t fua_index, |
| const uint8_t* expected_payload, |
| int offset, |
| rtc::ArrayView<const uint8_t> packet, |
| const std::vector<size_t>& expected_sizes) { |
| ASSERT_EQ(expected_sizes[fua_index] + kFuAHeaderSize, packet.size()) |
| << "FUA index: " << fua_index; |
| const uint8_t kFuIndicator = 0x1C; // F=0, NRI=0, Type=28. |
| EXPECT_EQ(kFuIndicator, packet[0]) << "FUA index: " << fua_index; |
| bool should_be_last_fua = (fua_index == expected_sizes.size() - 1); |
| uint8_t fu_header = 0; |
| if (fua_index == 0) |
| fu_header = 0x85; // S=1, E=0, R=0, Type=5. |
| else if (should_be_last_fua) |
| fu_header = 0x45; // S=0, E=1, R=0, Type=5. |
| else |
| fu_header = 0x05; // S=0, E=0, R=0, Type=5. |
| EXPECT_EQ(fu_header, packet[1]) << "FUA index: " << fua_index; |
| std::vector<uint8_t> expected_packet_payload( |
| &expected_payload[offset], |
| &expected_payload[offset + expected_sizes[fua_index]]); |
| EXPECT_THAT(expected_packet_payload, |
| ElementsAreArray(&packet[2], expected_sizes[fua_index])) |
| << "FUA index: " << fua_index; |
| } |
| |
| void TestFua(size_t frame_size, |
| size_t max_payload_size, |
| size_t last_packet_reduction, |
| const std::vector<size_t>& expected_sizes) { |
| std::unique_ptr<uint8_t[]> frame; |
| frame.reset(new uint8_t[frame_size]); |
| frame[0] = 0x05; // F=0, NRI=0, Type=5. |
| for (size_t i = 0; i < frame_size - kNalHeaderSize; ++i) { |
| frame[i + kNalHeaderSize] = i; |
| } |
| RTPFragmentationHeader fragmentation; |
| fragmentation.VerifyAndAllocateFragmentationHeader(1); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = frame_size; |
| std::unique_ptr<RtpPacketizer> packetizer( |
| CreateH264Packetizer(H264PacketizationMode::NonInterleaved, |
| max_payload_size, last_packet_reduction)); |
| EXPECT_EQ( |
| expected_sizes.size(), |
| packetizer->SetPayloadData(frame.get(), frame_size, &fragmentation)); |
| |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_LE(max_payload_size, packet.FreeCapacity()); |
| size_t offset = kNalHeaderSize; |
| for (size_t i = 0; i < expected_sizes.size(); ++i) { |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| VerifyFua(i, frame.get(), offset, packet.payload(), expected_sizes); |
| offset += expected_sizes[i]; |
| } |
| |
| EXPECT_FALSE(packetizer->NextPacket(&packet)); |
| } |
| |
| size_t GetExpectedNaluOffset(const RTPFragmentationHeader& fragmentation, |
| size_t start_index, |
| size_t nalu_index) { |
| assert(nalu_index < fragmentation.fragmentationVectorSize); |
| size_t expected_nalu_offset = kNalHeaderSize; // STAP-A header. |
| for (size_t i = start_index; i < nalu_index; ++i) { |
| expected_nalu_offset += |
| kLengthFieldLength + fragmentation.fragmentationLength[i]; |
| } |
| return expected_nalu_offset; |
| } |
| |
| void VerifyStapAPayload(const RTPFragmentationHeader& fragmentation, |
| size_t first_stapa_index, |
| size_t nalu_index, |
| rtc::ArrayView<const uint8_t> frame, |
| rtc::ArrayView<const uint8_t> packet) { |
| size_t expected_payload_offset = |
| GetExpectedNaluOffset(fragmentation, first_stapa_index, nalu_index) + |
| kLengthFieldLength; |
| size_t offset = fragmentation.fragmentationOffset[nalu_index]; |
| const uint8_t* expected_payload = &frame[offset]; |
| size_t expected_payload_length = |
| fragmentation.fragmentationLength[nalu_index]; |
| ASSERT_LE(offset + expected_payload_length, frame.size()); |
| ASSERT_LE(expected_payload_offset + expected_payload_length, packet.size()); |
| std::vector<uint8_t> expected_payload_vector( |
| expected_payload, &expected_payload[expected_payload_length]); |
| EXPECT_THAT(expected_payload_vector, |
| ElementsAreArray(&packet[expected_payload_offset], |
| expected_payload_length)); |
| } |
| |
| void VerifySingleNaluPayload(const RTPFragmentationHeader& fragmentation, |
| size_t nalu_index, |
| rtc::ArrayView<const uint8_t> frame, |
| rtc::ArrayView<const uint8_t> packet) { |
| auto fragment = frame.subview(fragmentation.fragmentationOffset[nalu_index], |
| fragmentation.fragmentationLength[nalu_index]); |
| EXPECT_THAT(packet, ElementsAreArray(fragment.begin(), fragment.end())); |
| } |
| } // namespace |
| |
| // Tests that should work with both packetization mode 0 and |
| // packetization mode 1. |
| class RtpPacketizerH264ModeTest |
| : public ::testing::TestWithParam<H264PacketizationMode> {}; |
| |
| TEST_P(RtpPacketizerH264ModeTest, TestSingleNalu) { |
| const uint8_t frame[2] = {0x05, 0xFF}; // F=0, NRI=0, Type=5. |
| RTPFragmentationHeader fragmentation; |
| fragmentation.VerifyAndAllocateFragmentationHeader(1); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = sizeof(frame); |
| std::unique_ptr<RtpPacketizer> packetizer( |
| CreateH264Packetizer(GetParam(), kMaxPayloadSize, 0)); |
| ASSERT_EQ(1u, |
| packetizer->SetPayloadData(frame, sizeof(frame), &fragmentation)); |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity()); |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| EXPECT_EQ(2u, packet.payload_size()); |
| VerifySingleNaluPayload(fragmentation, 0, frame, packet.payload()); |
| EXPECT_FALSE(packetizer->NextPacket(&packet)); |
| } |
| |
| TEST_P(RtpPacketizerH264ModeTest, TestSingleNaluTwoPackets) { |
| const size_t kFrameSize = kMaxPayloadSize + 100; |
| uint8_t frame[kFrameSize] = {0}; |
| for (size_t i = 0; i < kFrameSize; ++i) |
| frame[i] = i; |
| RTPFragmentationHeader fragmentation; |
| fragmentation.VerifyAndAllocateFragmentationHeader(2); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = kMaxPayloadSize; |
| fragmentation.fragmentationOffset[1] = kMaxPayloadSize; |
| fragmentation.fragmentationLength[1] = 100; |
| // Set NAL headers. |
| frame[fragmentation.fragmentationOffset[0]] = 0x01; |
| frame[fragmentation.fragmentationOffset[1]] = 0x01; |
| |
| std::unique_ptr<RtpPacketizer> packetizer( |
| CreateH264Packetizer(GetParam(), kMaxPayloadSize, 0)); |
| ASSERT_EQ(2u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation)); |
| |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| ASSERT_EQ(fragmentation.fragmentationOffset[1], packet.payload_size()); |
| VerifySingleNaluPayload(fragmentation, 0, frame, packet.payload()); |
| |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| ASSERT_EQ(fragmentation.fragmentationLength[1], packet.payload_size()); |
| VerifySingleNaluPayload(fragmentation, 1, frame, packet.payload()); |
| |
| EXPECT_FALSE(packetizer->NextPacket(&packet)); |
| } |
| |
| INSTANTIATE_TEST_CASE_P( |
| PacketMode, |
| RtpPacketizerH264ModeTest, |
| ::testing::Values(H264PacketizationMode::SingleNalUnit, |
| H264PacketizationMode::NonInterleaved)); |
| |
| TEST(RtpPacketizerH264Test, TestStapA) { |
| const size_t kFrameSize = |
| kMaxPayloadSize - 3 * kLengthFieldLength - kNalHeaderSize; |
| uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7 (SPS). |
| 0x08, 0xFF, // F=0, NRI=0, Type=8 (PPS). |
| 0x05}; // F=0, NRI=0, Type=5 (IDR). |
| const size_t kPayloadOffset = 5; |
| for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i) |
| frame[i + kPayloadOffset] = i; |
| RTPFragmentationHeader fragmentation; |
| CreateThreeFragments(&fragmentation, kFrameSize, kPayloadOffset); |
| std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer( |
| H264PacketizationMode::NonInterleaved, kMaxPayloadSize, 0)); |
| ASSERT_EQ(1u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation)); |
| |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity()); |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| size_t expected_packet_size = |
| kNalHeaderSize + 3 * kLengthFieldLength + kFrameSize; |
| ASSERT_EQ(expected_packet_size, packet.payload_size()); |
| |
| for (size_t i = 0; i < fragmentation.fragmentationVectorSize; ++i) |
| VerifyStapAPayload(fragmentation, 0, i, frame, packet.payload()); |
| |
| EXPECT_FALSE(packetizer->NextPacket(&packet)); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestStapARespectsPacketReduction) { |
| const size_t kLastPacketReduction = 100; |
| const size_t kFrameSize = kMaxPayloadSize - 1 - kLastPacketReduction; |
| uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7. |
| 0x08, 0xFF, // F=0, NRI=0, Type=8. |
| 0x05}; // F=0, NRI=0, Type=5. |
| const size_t kPayloadOffset = 5; |
| for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i) |
| frame[i + kPayloadOffset] = i; |
| RTPFragmentationHeader fragmentation; |
| fragmentation.VerifyAndAllocateFragmentationHeader(3); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = 2; |
| fragmentation.fragmentationOffset[1] = 2; |
| fragmentation.fragmentationLength[1] = 2; |
| fragmentation.fragmentationOffset[2] = 4; |
| fragmentation.fragmentationLength[2] = |
| kNalHeaderSize + kFrameSize - kPayloadOffset; |
| std::unique_ptr<RtpPacketizer> packetizer( |
| CreateH264Packetizer(H264PacketizationMode::NonInterleaved, |
| kMaxPayloadSize, kLastPacketReduction)); |
| ASSERT_EQ(2u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation)); |
| |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity()); |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| size_t expected_packet_size = kNalHeaderSize; |
| for (size_t i = 0; i < 2; ++i) { |
| expected_packet_size += |
| kLengthFieldLength + fragmentation.fragmentationLength[i]; |
| } |
| ASSERT_EQ(expected_packet_size, packet.payload_size()); |
| for (size_t i = 0; i < 2; ++i) |
| VerifyStapAPayload(fragmentation, 0, i, frame, packet.payload()); |
| |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| expected_packet_size = fragmentation.fragmentationLength[2]; |
| ASSERT_EQ(expected_packet_size, packet.payload_size()); |
| VerifySingleNaluPayload(fragmentation, 2, frame, packet.payload()); |
| |
| EXPECT_FALSE(packetizer->NextPacket(&packet)); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestSingleNalUnitModeHasNoStapA) { |
| // This is the same setup as for the TestStapA test. |
| const size_t kFrameSize = |
| kMaxPayloadSize - 3 * kLengthFieldLength - kNalHeaderSize; |
| uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7 (SPS). |
| 0x08, 0xFF, // F=0, NRI=0, Type=8 (PPS). |
| 0x05}; // F=0, NRI=0, Type=5 (IDR). |
| const size_t kPayloadOffset = 5; |
| for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i) |
| frame[i + kPayloadOffset] = i; |
| RTPFragmentationHeader fragmentation; |
| CreateThreeFragments(&fragmentation, kFrameSize, kPayloadOffset); |
| std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer( |
| H264PacketizationMode::SingleNalUnit, kMaxPayloadSize, 0)); |
| packetizer->SetPayloadData(frame, kFrameSize, &fragmentation); |
| |
| RtpPacketToSend packet(kNoExtensions); |
| // The three fragments should be returned as three packets. |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| EXPECT_FALSE(packetizer->NextPacket(&packet)); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestTooSmallForStapAHeaders) { |
| const size_t kFrameSize = kMaxPayloadSize - 1; |
| uint8_t frame[kFrameSize] = {0x07, 0xFF, // F=0, NRI=0, Type=7. |
| 0x08, 0xFF, // F=0, NRI=0, Type=8. |
| 0x05}; // F=0, NRI=0, Type=5. |
| const size_t kPayloadOffset = 5; |
| for (size_t i = 0; i < kFrameSize - kPayloadOffset; ++i) |
| frame[i + kPayloadOffset] = i; |
| RTPFragmentationHeader fragmentation; |
| fragmentation.VerifyAndAllocateFragmentationHeader(3); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = 2; |
| fragmentation.fragmentationOffset[1] = 2; |
| fragmentation.fragmentationLength[1] = 2; |
| fragmentation.fragmentationOffset[2] = 4; |
| fragmentation.fragmentationLength[2] = |
| kNalHeaderSize + kFrameSize - kPayloadOffset; |
| std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer( |
| H264PacketizationMode::NonInterleaved, kMaxPayloadSize, 0)); |
| ASSERT_EQ(2u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation)); |
| |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity()); |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| size_t expected_packet_size = kNalHeaderSize; |
| for (size_t i = 0; i < 2; ++i) { |
| expected_packet_size += |
| kLengthFieldLength + fragmentation.fragmentationLength[i]; |
| } |
| ASSERT_EQ(expected_packet_size, packet.payload_size()); |
| for (size_t i = 0; i < 2; ++i) |
| VerifyStapAPayload(fragmentation, 0, i, frame, packet.payload()); |
| |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| expected_packet_size = fragmentation.fragmentationLength[2]; |
| ASSERT_EQ(expected_packet_size, packet.payload_size()); |
| VerifySingleNaluPayload(fragmentation, 2, frame, packet.payload()); |
| |
| EXPECT_FALSE(packetizer->NextPacket(&packet)); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestMixedStapA_FUA) { |
| const size_t kFuaNaluSize = 2 * (kMaxPayloadSize - 100); |
| const size_t kStapANaluSize = 100; |
| RTPFragmentationHeader fragmentation; |
| fragmentation.VerifyAndAllocateFragmentationHeader(3); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = kFuaNaluSize; |
| fragmentation.fragmentationOffset[1] = kFuaNaluSize; |
| fragmentation.fragmentationLength[1] = kStapANaluSize; |
| fragmentation.fragmentationOffset[2] = kFuaNaluSize + kStapANaluSize; |
| fragmentation.fragmentationLength[2] = kStapANaluSize; |
| const size_t kFrameSize = kFuaNaluSize + 2 * kStapANaluSize; |
| uint8_t frame[kFrameSize]; |
| size_t nalu_offset = 0; |
| for (size_t i = 0; i < fragmentation.fragmentationVectorSize; ++i) { |
| nalu_offset = fragmentation.fragmentationOffset[i]; |
| frame[nalu_offset] = 0x05; // F=0, NRI=0, Type=5. |
| for (size_t j = 1; j < fragmentation.fragmentationLength[i]; ++j) { |
| frame[nalu_offset + j] = i + j; |
| } |
| } |
| std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer( |
| H264PacketizationMode::NonInterleaved, kMaxPayloadSize, 0)); |
| ASSERT_EQ(3u, packetizer->SetPayloadData(frame, kFrameSize, &fragmentation)); |
| |
| // First expecting two FU-A packets. |
| std::vector<size_t> fua_sizes; |
| fua_sizes.push_back(1099); |
| fua_sizes.push_back(1100); |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_LE(kMaxPayloadSize, packet.FreeCapacity()); |
| int fua_offset = kNalHeaderSize; |
| for (size_t i = 0; i < 2; ++i) { |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| VerifyFua(i, frame, fua_offset, packet.payload(), fua_sizes); |
| fua_offset += fua_sizes[i]; |
| } |
| // Then expecting one STAP-A packet with two nal units. |
| ASSERT_TRUE(packetizer->NextPacket(&packet)); |
| size_t expected_packet_size = |
| kNalHeaderSize + 2 * kLengthFieldLength + 2 * kStapANaluSize; |
| ASSERT_EQ(expected_packet_size, packet.payload_size()); |
| for (size_t i = 1; i < fragmentation.fragmentationVectorSize; ++i) |
| VerifyStapAPayload(fragmentation, 1, i, frame, packet.payload()); |
| |
| EXPECT_FALSE(packetizer->NextPacket(&packet)); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestFUAOddSize) { |
| const size_t kExpectedPayloadSizes[2] = {600, 600}; |
| TestFua( |
| kMaxPayloadSize + 1, kMaxPayloadSize, 0, |
| std::vector<size_t>(kExpectedPayloadSizes, |
| kExpectedPayloadSizes + |
| sizeof(kExpectedPayloadSizes) / sizeof(size_t))); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestFUAWithLastPacketReduction) { |
| const size_t kExpectedPayloadSizes[2] = {601, 597}; |
| TestFua( |
| kMaxPayloadSize - 1, kMaxPayloadSize, 4, |
| std::vector<size_t>(kExpectedPayloadSizes, |
| kExpectedPayloadSizes + |
| sizeof(kExpectedPayloadSizes) / sizeof(size_t))); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestFUAEvenSize) { |
| const size_t kExpectedPayloadSizes[2] = {600, 601}; |
| TestFua( |
| kMaxPayloadSize + 2, kMaxPayloadSize, 0, |
| std::vector<size_t>(kExpectedPayloadSizes, |
| kExpectedPayloadSizes + |
| sizeof(kExpectedPayloadSizes) / sizeof(size_t))); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestFUARounding) { |
| const size_t kExpectedPayloadSizes[8] = {1265, 1265, 1265, 1265, |
| 1265, 1266, 1266, 1266}; |
| TestFua( |
| 10124, 1448, 0, |
| std::vector<size_t>(kExpectedPayloadSizes, |
| kExpectedPayloadSizes + |
| sizeof(kExpectedPayloadSizes) / sizeof(size_t))); |
| } |
| |
| TEST(RtpPacketizerH264Test, TestFUABig) { |
| const size_t kExpectedPayloadSizes[10] = {1198, 1198, 1198, 1198, 1198, |
| 1198, 1198, 1198, 1198, 1198}; |
| // Generate 10 full sized packets, leave room for FU-A headers minus the NALU |
| // header. |
| TestFua( |
| 10 * (kMaxPayloadSize - kFuAHeaderSize) + kNalHeaderSize, kMaxPayloadSize, |
| 0, |
| std::vector<size_t>(kExpectedPayloadSizes, |
| kExpectedPayloadSizes + |
| sizeof(kExpectedPayloadSizes) / sizeof(size_t))); |
| } |
| |
| #if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| |
| TEST(RtpPacketizerH264DeathTest, SendOverlongDataInPacketizationMode0) { |
| const size_t kFrameSize = kMaxPayloadSize + 1; |
| uint8_t frame[kFrameSize] = {0}; |
| for (size_t i = 0; i < kFrameSize; ++i) |
| frame[i] = i; |
| RTPFragmentationHeader fragmentation; |
| fragmentation.VerifyAndAllocateFragmentationHeader(1); |
| fragmentation.fragmentationOffset[0] = 0; |
| fragmentation.fragmentationLength[0] = kFrameSize; |
| // Set NAL headers. |
| frame[fragmentation.fragmentationOffset[0]] = 0x01; |
| |
| std::unique_ptr<RtpPacketizer> packetizer(CreateH264Packetizer( |
| H264PacketizationMode::SingleNalUnit, kMaxPayloadSize, 0)); |
| EXPECT_DEATH(packetizer->SetPayloadData(frame, kFrameSize, &fragmentation), |
| "payload_size"); |
| } |
| |
| #endif // RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID) |
| |
| namespace { |
| const uint8_t kStartSequence[] = {0x00, 0x00, 0x00, 0x01}; |
| const uint8_t kOriginalSps[] = {kSps, 0x00, 0x00, 0x03, 0x03, |
| 0xF4, 0x05, 0x03, 0xC7, 0xC0}; |
| const uint8_t kRewrittenSps[] = {kSps, 0x00, 0x00, 0x03, 0x03, 0xF4, 0x05, 0x03, |
| 0xC7, 0xE0, 0x1B, 0x41, 0x10, 0x8D, 0x00}; |
| const uint8_t kIdrOne[] = {kIdr, 0xFF, 0x00, 0x00, 0x04}; |
| const uint8_t kIdrTwo[] = {kIdr, 0xFF, 0x00, 0x11}; |
| } |
| |
| class RtpPacketizerH264TestSpsRewriting : public ::testing::Test { |
| public: |
| void SetUp() override { |
| fragmentation_header_.VerifyAndAllocateFragmentationHeader(3); |
| fragmentation_header_.fragmentationVectorSize = 3; |
| in_buffer_.AppendData(kStartSequence); |
| |
| fragmentation_header_.fragmentationOffset[0] = in_buffer_.size(); |
| fragmentation_header_.fragmentationLength[0] = sizeof(kOriginalSps); |
| in_buffer_.AppendData(kOriginalSps); |
| |
| fragmentation_header_.fragmentationOffset[1] = in_buffer_.size(); |
| fragmentation_header_.fragmentationLength[1] = sizeof(kIdrOne); |
| in_buffer_.AppendData(kIdrOne); |
| |
| fragmentation_header_.fragmentationOffset[2] = in_buffer_.size(); |
| fragmentation_header_.fragmentationLength[2] = sizeof(kIdrTwo); |
| in_buffer_.AppendData(kIdrTwo); |
| } |
| |
| protected: |
| rtc::Buffer in_buffer_; |
| RTPFragmentationHeader fragmentation_header_; |
| std::unique_ptr<RtpPacketizer> packetizer_; |
| }; |
| |
| TEST_F(RtpPacketizerH264TestSpsRewriting, FuASps) { |
| const size_t kHeaderOverhead = kFuAHeaderSize + 1; |
| |
| // Set size to fragment SPS into two FU-A packets. |
| packetizer_.reset( |
| CreateH264Packetizer(H264PacketizationMode::NonInterleaved, |
| sizeof(kOriginalSps) - 2 + kHeaderOverhead, 0)); |
| |
| packetizer_->SetPayloadData(in_buffer_.data(), in_buffer_.size(), |
| &fragmentation_header_); |
| |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_LE(sizeof(kOriginalSps) + kHeaderOverhead, packet.FreeCapacity()); |
| |
| EXPECT_TRUE(packetizer_->NextPacket(&packet)); |
| size_t offset = H264::kNaluTypeSize; |
| size_t length = packet.payload_size() - kFuAHeaderSize; |
| EXPECT_THAT(packet.payload().subview(kFuAHeaderSize), |
| ElementsAreArray(&kRewrittenSps[offset], length)); |
| offset += length; |
| |
| EXPECT_TRUE(packetizer_->NextPacket(&packet)); |
| length = packet.payload_size() - kFuAHeaderSize; |
| EXPECT_THAT(packet.payload().subview(kFuAHeaderSize), |
| ElementsAreArray(&kRewrittenSps[offset], length)); |
| offset += length; |
| |
| EXPECT_EQ(offset, sizeof(kRewrittenSps)); |
| } |
| |
| TEST_F(RtpPacketizerH264TestSpsRewriting, StapASps) { |
| const size_t kHeaderOverhead = kFuAHeaderSize + 1; |
| const size_t kExpectedTotalSize = H264::kNaluTypeSize + // Stap-A type. |
| sizeof(kRewrittenSps) + sizeof(kIdrOne) + |
| sizeof(kIdrTwo) + (kLengthFieldLength * 3); |
| |
| // Set size to include SPS and the rest of the packets in a Stap-A package. |
| packetizer_.reset(CreateH264Packetizer(H264PacketizationMode::NonInterleaved, |
| kExpectedTotalSize + kHeaderOverhead, |
| 0)); |
| |
| packetizer_->SetPayloadData(in_buffer_.data(), in_buffer_.size(), |
| &fragmentation_header_); |
| |
| RtpPacketToSend packet(kNoExtensions); |
| ASSERT_LE(kExpectedTotalSize + kHeaderOverhead, packet.FreeCapacity()); |
| |
| EXPECT_TRUE(packetizer_->NextPacket(&packet)); |
| EXPECT_EQ(kExpectedTotalSize, packet.payload_size()); |
| EXPECT_THAT(packet.payload().subview(H264::kNaluTypeSize + kLengthFieldLength, |
| sizeof(kRewrittenSps)), |
| ElementsAreArray(kRewrittenSps)); |
| } |
| |
| class RtpDepacketizerH264Test : public ::testing::Test { |
| protected: |
| RtpDepacketizerH264Test() |
| : depacketizer_(RtpDepacketizer::Create(kRtpVideoH264)) {} |
| |
| void ExpectPacket(RtpDepacketizer::ParsedPayload* parsed_payload, |
| const uint8_t* data, |
| size_t length) { |
| ASSERT_TRUE(parsed_payload != NULL); |
| EXPECT_THAT(std::vector<uint8_t>( |
| parsed_payload->payload, |
| parsed_payload->payload + parsed_payload->payload_length), |
| ::testing::ElementsAreArray(data, length)); |
| } |
| |
| std::unique_ptr<RtpDepacketizer> depacketizer_; |
| }; |
| |
| TEST_F(RtpDepacketizerH264Test, TestSingleNalu) { |
| uint8_t packet[2] = {0x05, 0xFF}; // F=0, NRI=0, Type=5 (IDR). |
| RtpDepacketizer::ParsedPayload payload; |
| |
| ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); |
| ExpectPacket(&payload, packet, sizeof(packet)); |
| EXPECT_EQ(kVideoFrameKey, payload.frame_type); |
| EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec); |
| EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame); |
| EXPECT_EQ(kH264SingleNalu, |
| payload.type.Video.codecHeader.H264.packetization_type); |
| EXPECT_EQ(kIdr, payload.type.Video.codecHeader.H264.nalu_type); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestSingleNaluSpsWithResolution) { |
| uint8_t packet[] = {kSps, 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, |
| 0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, |
| 0x00, 0x00, 0x03, 0x2A, 0xE0, 0xF1, 0x83, 0x25}; |
| RtpDepacketizer::ParsedPayload payload; |
| |
| ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); |
| ExpectPacket(&payload, packet, sizeof(packet)); |
| EXPECT_EQ(kVideoFrameKey, payload.frame_type); |
| EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec); |
| EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame); |
| EXPECT_EQ(kH264SingleNalu, |
| payload.type.Video.codecHeader.H264.packetization_type); |
| EXPECT_EQ(1280u, payload.type.Video.width); |
| EXPECT_EQ(720u, payload.type.Video.height); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestStapAKey) { |
| // clang-format off |
| const NaluInfo kExpectedNalus[] = { {H264::kSps, 0, -1}, |
| {H264::kPps, 1, 2}, |
| {H264::kIdr, -1, 0} }; |
| uint8_t packet[] = {kStapA, // F=0, NRI=0, Type=24. |
| // Length, nal header, payload. |
| 0, 0x18, kExpectedNalus[0].type, |
| 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05, 0xBA, |
| 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00, 0x00, 0x03, |
| 0x2A, 0xE0, 0xF1, 0x83, 0x25, |
| 0, 0xD, kExpectedNalus[1].type, |
| 0x69, 0xFC, 0x0, 0x0, 0x3, 0x0, 0x7, 0xFF, 0xFF, 0xFF, |
| 0xF6, 0x40, |
| 0, 0xB, kExpectedNalus[2].type, |
| 0x85, 0xB8, 0x0, 0x4, 0x0, 0x0, 0x13, 0x93, 0x12, 0x0}; |
| // clang-format on |
| |
| RtpDepacketizer::ParsedPayload payload; |
| ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); |
| ExpectPacket(&payload, packet, sizeof(packet)); |
| EXPECT_EQ(kVideoFrameKey, payload.frame_type); |
| EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec); |
| EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame); |
| const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264; |
| EXPECT_EQ(kH264StapA, h264.packetization_type); |
| // NALU type for aggregated packets is the type of the first packet only. |
| EXPECT_EQ(kSps, h264.nalu_type); |
| ASSERT_EQ(3u, h264.nalus_length); |
| for (size_t i = 0; i < h264.nalus_length; ++i) { |
| EXPECT_EQ(kExpectedNalus[i].type, h264.nalus[i].type) |
| << "Failed parsing nalu " << i; |
| EXPECT_EQ(kExpectedNalus[i].sps_id, h264.nalus[i].sps_id) |
| << "Failed parsing nalu " << i; |
| EXPECT_EQ(kExpectedNalus[i].pps_id, h264.nalus[i].pps_id) |
| << "Failed parsing nalu " << i; |
| } |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestStapANaluSpsWithResolution) { |
| uint8_t packet[] = {kStapA, // F=0, NRI=0, Type=24. |
| // Length (2 bytes), nal header, payload. |
| 0x00, 0x19, kSps, 0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, |
| 0x50, 0x05, 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, |
| 0x00, 0x00, 0x03, 0x2A, 0xE0, 0xF1, 0x83, 0x25, 0x80, |
| 0x00, 0x03, kIdr, 0xFF, 0x00, 0x00, 0x04, kIdr, 0xFF, |
| 0x00, 0x11}; |
| |
| RtpDepacketizer::ParsedPayload payload; |
| |
| ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); |
| ExpectPacket(&payload, packet, sizeof(packet)); |
| EXPECT_EQ(kVideoFrameKey, payload.frame_type); |
| EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec); |
| EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame); |
| EXPECT_EQ(kH264StapA, payload.type.Video.codecHeader.H264.packetization_type); |
| EXPECT_EQ(1280u, payload.type.Video.width); |
| EXPECT_EQ(720u, payload.type.Video.height); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestEmptyStapARejected) { |
| uint8_t lone_empty_packet[] = {kStapA, 0x00, 0x00}; |
| |
| uint8_t leading_empty_packet[] = {kStapA, 0x00, 0x00, 0x00, 0x04, |
| kIdr, 0xFF, 0x00, 0x11}; |
| |
| uint8_t middle_empty_packet[] = {kStapA, 0x00, 0x03, kIdr, 0xFF, 0x00, 0x00, |
| 0x00, 0x00, 0x04, kIdr, 0xFF, 0x00, 0x11}; |
| |
| uint8_t trailing_empty_packet[] = {kStapA, 0x00, 0x03, kIdr, |
| 0xFF, 0x00, 0x00, 0x00}; |
| |
| RtpDepacketizer::ParsedPayload payload; |
| |
| EXPECT_FALSE(depacketizer_->Parse(&payload, lone_empty_packet, |
| sizeof(lone_empty_packet))); |
| EXPECT_FALSE(depacketizer_->Parse(&payload, leading_empty_packet, |
| sizeof(leading_empty_packet))); |
| EXPECT_FALSE(depacketizer_->Parse(&payload, middle_empty_packet, |
| sizeof(middle_empty_packet))); |
| EXPECT_FALSE(depacketizer_->Parse(&payload, trailing_empty_packet, |
| sizeof(trailing_empty_packet))); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, DepacketizeWithRewriting) { |
| rtc::Buffer in_buffer; |
| rtc::Buffer out_buffer; |
| |
| uint8_t kHeader[2] = {kStapA}; |
| in_buffer.AppendData(kHeader, 1); |
| out_buffer.AppendData(kHeader, 1); |
| |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps)); |
| in_buffer.AppendData(kHeader, 2); |
| in_buffer.AppendData(kOriginalSps); |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kRewrittenSps)); |
| out_buffer.AppendData(kHeader, 2); |
| out_buffer.AppendData(kRewrittenSps); |
| |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrOne)); |
| in_buffer.AppendData(kHeader, 2); |
| in_buffer.AppendData(kIdrOne); |
| out_buffer.AppendData(kHeader, 2); |
| out_buffer.AppendData(kIdrOne); |
| |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrTwo)); |
| in_buffer.AppendData(kHeader, 2); |
| in_buffer.AppendData(kIdrTwo); |
| out_buffer.AppendData(kHeader, 2); |
| out_buffer.AppendData(kIdrTwo); |
| |
| RtpDepacketizer::ParsedPayload payload; |
| EXPECT_TRUE( |
| depacketizer_->Parse(&payload, in_buffer.data(), in_buffer.size())); |
| |
| std::vector<uint8_t> expected_packet_payload( |
| out_buffer.data(), &out_buffer.data()[out_buffer.size()]); |
| |
| EXPECT_THAT( |
| expected_packet_payload, |
| ::testing::ElementsAreArray(payload.payload, payload.payload_length)); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, DepacketizeWithDoubleRewriting) { |
| rtc::Buffer in_buffer; |
| rtc::Buffer out_buffer; |
| |
| uint8_t kHeader[2] = {kStapA}; |
| in_buffer.AppendData(kHeader, 1); |
| out_buffer.AppendData(kHeader, 1); |
| |
| // First SPS will be kept... |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps)); |
| in_buffer.AppendData(kHeader, 2); |
| in_buffer.AppendData(kOriginalSps); |
| out_buffer.AppendData(kHeader, 2); |
| out_buffer.AppendData(kOriginalSps); |
| |
| // ...only the second one will be rewritten. |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kOriginalSps)); |
| in_buffer.AppendData(kHeader, 2); |
| in_buffer.AppendData(kOriginalSps); |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kRewrittenSps)); |
| out_buffer.AppendData(kHeader, 2); |
| out_buffer.AppendData(kRewrittenSps); |
| |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrOne)); |
| in_buffer.AppendData(kHeader, 2); |
| in_buffer.AppendData(kIdrOne); |
| out_buffer.AppendData(kHeader, 2); |
| out_buffer.AppendData(kIdrOne); |
| |
| ByteWriter<uint16_t>::WriteBigEndian(kHeader, sizeof(kIdrTwo)); |
| in_buffer.AppendData(kHeader, 2); |
| in_buffer.AppendData(kIdrTwo); |
| out_buffer.AppendData(kHeader, 2); |
| out_buffer.AppendData(kIdrTwo); |
| |
| RtpDepacketizer::ParsedPayload payload; |
| EXPECT_TRUE( |
| depacketizer_->Parse(&payload, in_buffer.data(), in_buffer.size())); |
| |
| std::vector<uint8_t> expected_packet_payload( |
| out_buffer.data(), &out_buffer.data()[out_buffer.size()]); |
| |
| EXPECT_THAT( |
| expected_packet_payload, |
| ::testing::ElementsAreArray(payload.payload, payload.payload_length)); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestStapADelta) { |
| uint8_t packet[16] = {kStapA, // F=0, NRI=0, Type=24. |
| // Length, nal header, payload. |
| 0, 0x02, kSlice, 0xFF, 0, 0x03, kSlice, 0xFF, |
| 0x00, 0, 0x04, kSlice, 0xFF, 0x00, 0x11}; |
| RtpDepacketizer::ParsedPayload payload; |
| |
| ASSERT_TRUE(depacketizer_->Parse(&payload, packet, sizeof(packet))); |
| ExpectPacket(&payload, packet, sizeof(packet)); |
| EXPECT_EQ(kVideoFrameDelta, payload.frame_type); |
| EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec); |
| EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame); |
| EXPECT_EQ(kH264StapA, payload.type.Video.codecHeader.H264.packetization_type); |
| // NALU type for aggregated packets is the type of the first packet only. |
| EXPECT_EQ(kSlice, payload.type.Video.codecHeader.H264.nalu_type); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestFuA) { |
| // clang-format off |
| uint8_t packet1[] = { |
| kFuA, // F=0, NRI=0, Type=28. |
| kSBit | kIdr, // FU header. |
| 0x85, 0xB8, 0x0, 0x4, 0x0, 0x0, 0x13, 0x93, 0x12, 0x0 // Payload. |
| }; |
| // clang-format on |
| const uint8_t kExpected1[] = {kIdr, 0x85, 0xB8, 0x0, 0x4, 0x0, |
| 0x0, 0x13, 0x93, 0x12, 0x0}; |
| |
| uint8_t packet2[] = { |
| kFuA, // F=0, NRI=0, Type=28. |
| kIdr, // FU header. |
| 0x02 // Payload. |
| }; |
| const uint8_t kExpected2[] = {0x02}; |
| |
| uint8_t packet3[] = { |
| kFuA, // F=0, NRI=0, Type=28. |
| kEBit | kIdr, // FU header. |
| 0x03 // Payload. |
| }; |
| const uint8_t kExpected3[] = {0x03}; |
| |
| RtpDepacketizer::ParsedPayload payload; |
| |
| // We expect that the first packet is one byte shorter since the FU-A header |
| // has been replaced by the original nal header. |
| ASSERT_TRUE(depacketizer_->Parse(&payload, packet1, sizeof(packet1))); |
| ExpectPacket(&payload, kExpected1, sizeof(kExpected1)); |
| EXPECT_EQ(kVideoFrameKey, payload.frame_type); |
| EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec); |
| EXPECT_TRUE(payload.type.Video.is_first_packet_in_frame); |
| const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264; |
| EXPECT_EQ(kH264FuA, h264.packetization_type); |
| EXPECT_EQ(kIdr, h264.nalu_type); |
| ASSERT_EQ(1u, h264.nalus_length); |
| EXPECT_EQ(static_cast<H264::NaluType>(kIdr), h264.nalus[0].type); |
| EXPECT_EQ(-1, h264.nalus[0].sps_id); |
| EXPECT_EQ(0, h264.nalus[0].pps_id); |
| |
| // Following packets will be 2 bytes shorter since they will only be appended |
| // onto the first packet. |
| payload = RtpDepacketizer::ParsedPayload(); |
| ASSERT_TRUE(depacketizer_->Parse(&payload, packet2, sizeof(packet2))); |
| ExpectPacket(&payload, kExpected2, sizeof(kExpected2)); |
| EXPECT_EQ(kVideoFrameKey, payload.frame_type); |
| EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec); |
| EXPECT_FALSE(payload.type.Video.is_first_packet_in_frame); |
| { |
| const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264; |
| EXPECT_EQ(kH264FuA, h264.packetization_type); |
| EXPECT_EQ(kIdr, h264.nalu_type); |
| // NALU info is only expected for the first FU-A packet. |
| EXPECT_EQ(0u, h264.nalus_length); |
| } |
| |
| payload = RtpDepacketizer::ParsedPayload(); |
| ASSERT_TRUE(depacketizer_->Parse(&payload, packet3, sizeof(packet3))); |
| ExpectPacket(&payload, kExpected3, sizeof(kExpected3)); |
| EXPECT_EQ(kVideoFrameKey, payload.frame_type); |
| EXPECT_EQ(kRtpVideoH264, payload.type.Video.codec); |
| EXPECT_FALSE(payload.type.Video.is_first_packet_in_frame); |
| { |
| const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264; |
| EXPECT_EQ(kH264FuA, h264.packetization_type); |
| EXPECT_EQ(kIdr, h264.nalu_type); |
| // NALU info is only expected for the first FU-A packet. |
| ASSERT_EQ(0u, h264.nalus_length); |
| } |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestEmptyPayload) { |
| // Using a wild pointer to crash on accesses from inside the depacketizer. |
| uint8_t* garbage_ptr = reinterpret_cast<uint8_t*>(0x4711); |
| RtpDepacketizer::ParsedPayload payload; |
| EXPECT_FALSE(depacketizer_->Parse(&payload, garbage_ptr, 0)); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestTruncatedFuaNalu) { |
| const uint8_t kPayload[] = {0x9c}; |
| RtpDepacketizer::ParsedPayload payload; |
| EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestTruncatedSingleStapANalu) { |
| const uint8_t kPayload[] = {0xd8, 0x27}; |
| RtpDepacketizer::ParsedPayload payload; |
| EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestStapAPacketWithTruncatedNalUnits) { |
| const uint8_t kPayload[] = { 0x58, 0xCB, 0xED, 0xDF}; |
| RtpDepacketizer::ParsedPayload payload; |
| EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestTruncationJustAfterSingleStapANalu) { |
| const uint8_t kPayload[] = {0x38, 0x27, 0x27}; |
| RtpDepacketizer::ParsedPayload payload; |
| EXPECT_FALSE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestShortSpsPacket) { |
| const uint8_t kPayload[] = {0x27, 0x80, 0x00}; |
| RtpDepacketizer::ParsedPayload payload; |
| EXPECT_TRUE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); |
| } |
| |
| TEST_F(RtpDepacketizerH264Test, TestSeiPacket) { |
| const uint8_t kPayload[] = { |
| kSei, // F=0, NRI=0, Type=6. |
| 0x03, 0x03, 0x03, 0x03 // Payload. |
| }; |
| RtpDepacketizer::ParsedPayload payload; |
| ASSERT_TRUE(depacketizer_->Parse(&payload, kPayload, sizeof(kPayload))); |
| const RTPVideoHeaderH264& h264 = payload.type.Video.codecHeader.H264; |
| EXPECT_EQ(kVideoFrameDelta, payload.frame_type); |
| EXPECT_EQ(kH264SingleNalu, h264.packetization_type); |
| EXPECT_EQ(kSei, h264.nalu_type); |
| ASSERT_EQ(1u, h264.nalus_length); |
| EXPECT_EQ(static_cast<H264::NaluType>(kSei), h264.nalus[0].type); |
| EXPECT_EQ(-1, h264.nalus[0].sps_id); |
| EXPECT_EQ(-1, h264.nalus[0].pps_id); |
| } |
| |
| } // namespace webrtc |