| /* |
| * Copyright 2004 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/base/byteorder.h" |
| #include "webrtc/base/constructormagic.h" |
| #include "webrtc/base/gunit.h" |
| #include "webrtc/base/thread.h" |
| #include "webrtc/media/base/cryptoparams.h" |
| #include "webrtc/media/base/fakertp.h" |
| #include "webrtc/p2p/base/sessiondescription.h" |
| #include "webrtc/pc/srtpfilter.h" |
| extern "C" { |
| #ifdef SRTP_RELATIVE_PATH |
| #include "crypto/include/err.h" |
| #else |
| #include "third_party/libsrtp/srtp/crypto/include/err.h" |
| #endif |
| } |
| |
| using rtc::CS_AES_CM_128_HMAC_SHA1_80; |
| using rtc::CS_AES_CM_128_HMAC_SHA1_32; |
| using cricket::CryptoParams; |
| using cricket::CS_LOCAL; |
| using cricket::CS_REMOTE; |
| |
| static const uint8_t kTestKey1[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234"; |
| static const uint8_t kTestKey2[] = "4321ZYXWVUTSRQPONMLKJIHGFEDCBA"; |
| static const int kTestKeyLen = 30; |
| static const std::string kTestKeyParams1 = |
| "inline:WVNfX19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz"; |
| static const std::string kTestKeyParams2 = |
| "inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR"; |
| static const std::string kTestKeyParams3 = |
| "inline:1234X19zZW1jdGwgKCkgewkyMjA7fQp9CnVubGVz"; |
| static const std::string kTestKeyParams4 = |
| "inline:4567QCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR"; |
| static const cricket::CryptoParams kTestCryptoParams1( |
| 1, "AES_CM_128_HMAC_SHA1_80", kTestKeyParams1, ""); |
| static const cricket::CryptoParams kTestCryptoParams2( |
| 1, "AES_CM_128_HMAC_SHA1_80", kTestKeyParams2, ""); |
| |
| static int rtp_auth_tag_len(const std::string& cs) { |
| return (cs == CS_AES_CM_128_HMAC_SHA1_32) ? 4 : 10; |
| } |
| static int rtcp_auth_tag_len(const std::string& cs) { |
| return 10; |
| } |
| |
| class SrtpFilterTest : public testing::Test { |
| protected: |
| SrtpFilterTest() |
| // Need to initialize |sequence_number_|, the value does not matter. |
| : sequence_number_(1) { |
| } |
| static std::vector<CryptoParams> MakeVector(const CryptoParams& params) { |
| std::vector<CryptoParams> vec; |
| vec.push_back(params); |
| return vec; |
| } |
| void TestSetParams(const std::vector<CryptoParams>& params1, |
| const std::vector<CryptoParams>& params2) { |
| EXPECT_TRUE(f1_.SetOffer(params1, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(params1, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetAnswer(params2, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(params2, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| } |
| void TestProtectUnprotect(const std::string& cs1, const std::string& cs2) { |
| char rtp_packet[sizeof(kPcmuFrame) + 10]; |
| char original_rtp_packet[sizeof(kPcmuFrame)]; |
| char rtcp_packet[sizeof(kRtcpReport) + 4 + 10]; |
| int rtp_len = sizeof(kPcmuFrame), rtcp_len = sizeof(kRtcpReport), out_len; |
| memcpy(rtp_packet, kPcmuFrame, rtp_len); |
| // In order to be able to run this test function multiple times we can not |
| // use the same sequence number twice. Increase the sequence number by one. |
| rtc::SetBE16(reinterpret_cast<uint8_t*>(rtp_packet) + 2, |
| ++sequence_number_); |
| memcpy(original_rtp_packet, rtp_packet, rtp_len); |
| memcpy(rtcp_packet, kRtcpReport, rtcp_len); |
| |
| EXPECT_TRUE(f1_.ProtectRtp(rtp_packet, rtp_len, |
| sizeof(rtp_packet), &out_len)); |
| EXPECT_EQ(out_len, rtp_len + rtp_auth_tag_len(cs1)); |
| EXPECT_NE(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| EXPECT_TRUE(f2_.UnprotectRtp(rtp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| |
| EXPECT_TRUE(f2_.ProtectRtp(rtp_packet, rtp_len, |
| sizeof(rtp_packet), &out_len)); |
| EXPECT_EQ(out_len, rtp_len + rtp_auth_tag_len(cs2)); |
| EXPECT_NE(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| EXPECT_TRUE(f1_.UnprotectRtp(rtp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtp_packet, original_rtp_packet, rtp_len)); |
| |
| EXPECT_TRUE(f1_.ProtectRtcp(rtcp_packet, rtcp_len, |
| sizeof(rtcp_packet), &out_len)); |
| EXPECT_EQ(out_len, rtcp_len + 4 + rtcp_auth_tag_len(cs1)); // NOLINT |
| EXPECT_NE(0, memcmp(rtcp_packet, kRtcpReport, rtcp_len)); |
| EXPECT_TRUE(f2_.UnprotectRtcp(rtcp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtcp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtcp_packet, kRtcpReport, rtcp_len)); |
| |
| EXPECT_TRUE(f2_.ProtectRtcp(rtcp_packet, rtcp_len, |
| sizeof(rtcp_packet), &out_len)); |
| EXPECT_EQ(out_len, rtcp_len + 4 + rtcp_auth_tag_len(cs2)); // NOLINT |
| EXPECT_NE(0, memcmp(rtcp_packet, kRtcpReport, rtcp_len)); |
| EXPECT_TRUE(f1_.UnprotectRtcp(rtcp_packet, out_len, &out_len)); |
| EXPECT_EQ(rtcp_len, out_len); |
| EXPECT_EQ(0, memcmp(rtcp_packet, kRtcpReport, rtcp_len)); |
| } |
| cricket::SrtpFilter f1_; |
| cricket::SrtpFilter f2_; |
| int sequence_number_; |
| }; |
| |
| // Test that we can set up the session and keys properly. |
| TEST_F(SrtpFilterTest, TestGoodSetupOneCipherSuite) { |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| } |
| |
| // Test that we can set up things with multiple params. |
| TEST_F(SrtpFilterTest, TestGoodSetupMultipleCipherSuites) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| offer.push_back(kTestCryptoParams1); |
| offer[1].tag = 2; |
| offer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| answer[0].tag = 2; |
| answer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| } |
| |
| // Test that we handle the cases where crypto is not desired. |
| TEST_F(SrtpFilterTest, TestGoodSetupNoCipherSuites) { |
| std::vector<CryptoParams> offer, answer; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we handle the cases where crypto is not desired by the remote side. |
| TEST_F(SrtpFilterTest, TestGoodSetupNoAnswerCipherSuites) { |
| std::vector<CryptoParams> answer; |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we call the functions the wrong way. |
| TEST_F(SrtpFilterTest, TestBadSetup) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we can set offer multiple times from the same source. |
| TEST_F(SrtpFilterTest, TestGoodSetupMultipleOffers) { |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams1), CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetAnswer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_TRUE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams1), CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetAnswer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| } |
| // Test that we can't set offer multiple times from different sources. |
| TEST_F(SrtpFilterTest, TestBadSetupMultipleOffers) { |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams1), CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_REMOTE)); |
| EXPECT_TRUE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f2_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetAnswer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| EXPECT_TRUE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetOffer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f2_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetAnswer(MakeVector(kTestCryptoParams2), CS_LOCAL)); |
| } |
| |
| // Test that we fail if we have params in the answer when none were offered. |
| TEST_F(SrtpFilterTest, TestNoAnswerCipherSuites) { |
| std::vector<CryptoParams> offer; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(MakeVector(kTestCryptoParams2), CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we have too many params in our answer. |
| TEST_F(SrtpFilterTest, TestMultipleAnswerCipherSuites) { |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer.push_back(kTestCryptoParams2); |
| answer[1].tag = 2; |
| answer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| EXPECT_TRUE(f1_.SetOffer(MakeVector(kTestCryptoParams1), CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we don't support the cipher-suite. |
| TEST_F(SrtpFilterTest, TestInvalidCipherSuite) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| offer[0].cipher_suite = answer[0].cipher_suite = "FOO"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we can't agree on a tag. |
| TEST_F(SrtpFilterTest, TestNoMatchingTag) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].tag = 99; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail if we can't agree on a cipher-suite. |
| TEST_F(SrtpFilterTest, TestNoMatchingCipherSuite) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].tag = 2; |
| answer[0].cipher_suite = "FOO"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys with bad base64 content. |
| TEST_F(SrtpFilterTest, TestInvalidKeyData) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = "inline:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys with the wrong key-method. |
| TEST_F(SrtpFilterTest, TestWrongKeyMethod) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = "outline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys of the wrong length. |
| TEST_F(SrtpFilterTest, TestKeyTooShort) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = "inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtx"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys of the wrong length. |
| TEST_F(SrtpFilterTest, TestKeyTooLong) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = "inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBRABCD"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we fail keys with lifetime or MKI set (since we don't support) |
| TEST_F(SrtpFilterTest, TestUnsupportedOptions) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| answer[0].key_params = |
| "inline:PS1uQCVeeCFCanVmcjkpPywjNWhcYD0mXXtxaVBR|2^20|1:4"; |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| } |
| |
| // Test that we can encrypt/decrypt after setting the same CryptoParams again on |
| // one side. |
| TEST_F(SrtpFilterTest, TestSettingSameKeyOnOneSide) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| TestSetParams(offer, answer); |
| |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, |
| CS_AES_CM_128_HMAC_SHA1_80); |
| |
| // Re-applying the same keys on one end and it should not reset the ROC. |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that we can encrypt/decrypt after negotiating AES_CM_128_HMAC_SHA1_80. |
| TEST_F(SrtpFilterTest, TestProtect_AES_CM_128_HMAC_SHA1_80) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| offer.push_back(kTestCryptoParams1); |
| offer[1].tag = 2; |
| offer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| TestSetParams(offer, answer); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that we can encrypt/decrypt after negotiating AES_CM_128_HMAC_SHA1_32. |
| TEST_F(SrtpFilterTest, TestProtect_AES_CM_128_HMAC_SHA1_32) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| offer.push_back(kTestCryptoParams1); |
| offer[1].tag = 2; |
| offer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| answer[0].tag = 2; |
| answer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| TestSetParams(offer, answer); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_32, CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| // Test that we can change encryption parameters. |
| TEST_F(SrtpFilterTest, TestChangeParameters) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| |
| TestSetParams(offer, answer); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| // Change the key parameters and cipher_suite. |
| offer[0].key_params = kTestKeyParams3; |
| offer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| answer[0].key_params = kTestKeyParams4; |
| answer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f1_.IsActive()); |
| |
| // Test that the old keys are valid until the negotiation is complete. |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| // Complete the negotiation and test that we can still understand each other. |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_32, CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| // Test that we can send and receive provisional answers with crypto enabled. |
| // Also test that we can change the crypto. |
| TEST_F(SrtpFilterTest, TestProvisionalAnswer) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| offer.push_back(kTestCryptoParams1); |
| offer[1].tag = 2; |
| offer[1].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetProvisionalAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetProvisionalAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| answer[0].key_params = kTestKeyParams4; |
| answer[0].tag = 2; |
| answer[0].cipher_suite = CS_AES_CM_128_HMAC_SHA1_32; |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_32, CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| // Test that a provisional answer doesn't need to contain a crypto. |
| TEST_F(SrtpFilterTest, TestProvisionalAnswerWithoutCrypto) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer; |
| |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| EXPECT_TRUE(f2_.SetProvisionalAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetProvisionalAnswer(answer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| |
| answer.push_back(kTestCryptoParams2); |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that if we get a new local offer after a provisional answer |
| // with no crypto, that we are in an inactive state. |
| TEST_F(SrtpFilterTest, TestLocalOfferAfterProvisionalAnswerWithoutCrypto) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer; |
| |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.SetProvisionalAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f2_.SetProvisionalAnswer(answer, CS_LOCAL)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| // The calls to set an offer after a provisional answer fail, so the |
| // state doesn't change. |
| EXPECT_FALSE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_FALSE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| |
| answer.push_back(kTestCryptoParams2); |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that we can disable encryption. |
| TEST_F(SrtpFilterTest, TestDisableEncryption) { |
| std::vector<CryptoParams> offer(MakeVector(kTestCryptoParams1)); |
| std::vector<CryptoParams> answer(MakeVector(kTestCryptoParams2)); |
| |
| TestSetParams(offer, answer); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| offer.clear(); |
| answer.clear(); |
| EXPECT_TRUE(f1_.SetOffer(offer, CS_LOCAL)); |
| EXPECT_TRUE(f2_.SetOffer(offer, CS_REMOTE)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| |
| // Test that the old keys are valid until the negotiation is complete. |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| |
| // Complete the negotiation. |
| EXPECT_TRUE(f2_.SetAnswer(answer, CS_LOCAL)); |
| EXPECT_TRUE(f1_.SetAnswer(answer, CS_REMOTE)); |
| |
| EXPECT_FALSE(f1_.IsActive()); |
| EXPECT_FALSE(f2_.IsActive()); |
| } |
| |
| // Test directly setting the params with AES_CM_128_HMAC_SHA1_80 |
| TEST_F(SrtpFilterTest, TestProtect_SetParamsDirect_AES_CM_128_HMAC_SHA1_80) { |
| EXPECT_TRUE(f1_.SetRtpParams(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_80, |
| kTestKey2, kTestKeyLen)); |
| EXPECT_TRUE(f2_.SetRtpParams(rtc::SRTP_AES128_CM_SHA1_80, kTestKey2, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_80, |
| kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(f1_.SetRtcpParams(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_80, |
| kTestKey2, kTestKeyLen)); |
| EXPECT_TRUE(f2_.SetRtcpParams(rtc::SRTP_AES128_CM_SHA1_80, kTestKey2, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_80, |
| kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_80, CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test directly setting the params with AES_CM_128_HMAC_SHA1_32 |
| TEST_F(SrtpFilterTest, TestProtect_SetParamsDirect_AES_CM_128_HMAC_SHA1_32) { |
| EXPECT_TRUE(f1_.SetRtpParams(rtc::SRTP_AES128_CM_SHA1_32, kTestKey1, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_32, |
| kTestKey2, kTestKeyLen)); |
| EXPECT_TRUE(f2_.SetRtpParams(rtc::SRTP_AES128_CM_SHA1_32, kTestKey2, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_32, |
| kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(f1_.SetRtcpParams(rtc::SRTP_AES128_CM_SHA1_32, kTestKey1, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_32, |
| kTestKey2, kTestKeyLen)); |
| EXPECT_TRUE(f2_.SetRtcpParams(rtc::SRTP_AES128_CM_SHA1_32, kTestKey2, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_32, |
| kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(f1_.IsActive()); |
| EXPECT_TRUE(f2_.IsActive()); |
| TestProtectUnprotect(CS_AES_CM_128_HMAC_SHA1_32, CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| // Test directly setting the params with bogus keys |
| TEST_F(SrtpFilterTest, TestSetParamsKeyTooShort) { |
| EXPECT_FALSE(f1_.SetRtpParams(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, |
| kTestKeyLen - 1, rtc::SRTP_AES128_CM_SHA1_80, |
| kTestKey1, kTestKeyLen - 1)); |
| EXPECT_FALSE(f1_.SetRtcpParams(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, |
| kTestKeyLen - 1, rtc::SRTP_AES128_CM_SHA1_80, |
| kTestKey1, kTestKeyLen - 1)); |
| } |
| |
| #if defined(ENABLE_EXTERNAL_AUTH) |
| TEST_F(SrtpFilterTest, TestGetSendAuthParams) { |
| EXPECT_TRUE(f1_.SetRtpParams(rtc::SRTP_AES128_CM_SHA1_32, kTestKey1, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_32, |
| kTestKey2, kTestKeyLen)); |
| EXPECT_TRUE(f1_.SetRtcpParams(rtc::SRTP_AES128_CM_SHA1_32, kTestKey1, |
| kTestKeyLen, rtc::SRTP_AES128_CM_SHA1_32, |
| kTestKey2, kTestKeyLen)); |
| uint8_t* auth_key = NULL; |
| int auth_key_len = 0, auth_tag_len = 0; |
| EXPECT_TRUE(f1_.GetRtpAuthParams(&auth_key, &auth_key_len, &auth_tag_len)); |
| EXPECT_TRUE(auth_key != NULL); |
| EXPECT_EQ(20, auth_key_len); |
| EXPECT_EQ(4, auth_tag_len); |
| } |
| #endif |
| |
| class SrtpSessionTest : public testing::Test { |
| protected: |
| virtual void SetUp() { |
| rtp_len_ = sizeof(kPcmuFrame); |
| rtcp_len_ = sizeof(kRtcpReport); |
| memcpy(rtp_packet_, kPcmuFrame, rtp_len_); |
| memcpy(rtcp_packet_, kRtcpReport, rtcp_len_); |
| } |
| void TestProtectRtp(const std::string& cs) { |
| int out_len = 0; |
| EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, rtp_len_, |
| sizeof(rtp_packet_), &out_len)); |
| EXPECT_EQ(out_len, rtp_len_ + rtp_auth_tag_len(cs)); |
| EXPECT_NE(0, memcmp(rtp_packet_, kPcmuFrame, rtp_len_)); |
| rtp_len_ = out_len; |
| } |
| void TestProtectRtcp(const std::string& cs) { |
| int out_len = 0; |
| EXPECT_TRUE(s1_.ProtectRtcp(rtcp_packet_, rtcp_len_, |
| sizeof(rtcp_packet_), &out_len)); |
| EXPECT_EQ(out_len, rtcp_len_ + 4 + rtcp_auth_tag_len(cs)); // NOLINT |
| EXPECT_NE(0, memcmp(rtcp_packet_, kRtcpReport, rtcp_len_)); |
| rtcp_len_ = out_len; |
| } |
| void TestUnprotectRtp(const std::string& cs) { |
| int out_len = 0, expected_len = sizeof(kPcmuFrame); |
| EXPECT_TRUE(s2_.UnprotectRtp(rtp_packet_, rtp_len_, &out_len)); |
| EXPECT_EQ(expected_len, out_len); |
| EXPECT_EQ(0, memcmp(rtp_packet_, kPcmuFrame, out_len)); |
| } |
| void TestUnprotectRtcp(const std::string& cs) { |
| int out_len = 0, expected_len = sizeof(kRtcpReport); |
| EXPECT_TRUE(s2_.UnprotectRtcp(rtcp_packet_, rtcp_len_, &out_len)); |
| EXPECT_EQ(expected_len, out_len); |
| EXPECT_EQ(0, memcmp(rtcp_packet_, kRtcpReport, out_len)); |
| } |
| cricket::SrtpSession s1_; |
| cricket::SrtpSession s2_; |
| char rtp_packet_[sizeof(kPcmuFrame) + 10]; |
| char rtcp_packet_[sizeof(kRtcpReport) + 4 + 10]; |
| int rtp_len_; |
| int rtcp_len_; |
| }; |
| |
| // Test that we can set up the session and keys properly. |
| TEST_F(SrtpSessionTest, TestGoodSetup) { |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| } |
| |
| // Test that we can't change the keys once set. |
| TEST_F(SrtpSessionTest, TestBadSetup) { |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_FALSE( |
| s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey2, kTestKeyLen)); |
| EXPECT_FALSE( |
| s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_80, kTestKey2, kTestKeyLen)); |
| } |
| |
| // Test that we fail keys of the wrong length. |
| TEST_F(SrtpSessionTest, TestKeysTooShort) { |
| EXPECT_FALSE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, 1)); |
| EXPECT_FALSE(s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, 1)); |
| } |
| |
| // Test that we can encrypt and decrypt RTP/RTCP using AES_CM_128_HMAC_SHA1_80. |
| TEST_F(SrtpSessionTest, TestProtect_AES_CM_128_HMAC_SHA1_80) { |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| TestProtectRtp(CS_AES_CM_128_HMAC_SHA1_80); |
| TestProtectRtcp(CS_AES_CM_128_HMAC_SHA1_80); |
| TestUnprotectRtp(CS_AES_CM_128_HMAC_SHA1_80); |
| TestUnprotectRtcp(CS_AES_CM_128_HMAC_SHA1_80); |
| } |
| |
| // Test that we can encrypt and decrypt RTP/RTCP using AES_CM_128_HMAC_SHA1_32. |
| TEST_F(SrtpSessionTest, TestProtect_AES_CM_128_HMAC_SHA1_32) { |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_32, kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_32, kTestKey1, kTestKeyLen)); |
| TestProtectRtp(CS_AES_CM_128_HMAC_SHA1_32); |
| TestProtectRtcp(CS_AES_CM_128_HMAC_SHA1_32); |
| TestUnprotectRtp(CS_AES_CM_128_HMAC_SHA1_32); |
| TestUnprotectRtcp(CS_AES_CM_128_HMAC_SHA1_32); |
| } |
| |
| TEST_F(SrtpSessionTest, TestGetSendStreamPacketIndex) { |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_32, kTestKey1, kTestKeyLen)); |
| int64_t index; |
| int out_len = 0; |
| EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, rtp_len_, |
| sizeof(rtp_packet_), &out_len, &index)); |
| // |index| will be shifted by 16. |
| int64_t be64_index = static_cast<int64_t>(rtc::NetworkToHost64(1 << 16)); |
| EXPECT_EQ(be64_index, index); |
| } |
| |
| // Test that we fail to unprotect if someone tampers with the RTP/RTCP paylaods. |
| TEST_F(SrtpSessionTest, TestTamperReject) { |
| int out_len; |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| TestProtectRtp(CS_AES_CM_128_HMAC_SHA1_80); |
| TestProtectRtcp(CS_AES_CM_128_HMAC_SHA1_80); |
| rtp_packet_[0] = 0x12; |
| rtcp_packet_[1] = 0x34; |
| EXPECT_FALSE(s2_.UnprotectRtp(rtp_packet_, rtp_len_, &out_len)); |
| EXPECT_FALSE(s2_.UnprotectRtcp(rtcp_packet_, rtcp_len_, &out_len)); |
| } |
| |
| // Test that we fail to unprotect if the payloads are not authenticated. |
| TEST_F(SrtpSessionTest, TestUnencryptReject) { |
| int out_len; |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_FALSE(s2_.UnprotectRtp(rtp_packet_, rtp_len_, &out_len)); |
| EXPECT_FALSE(s2_.UnprotectRtcp(rtcp_packet_, rtcp_len_, &out_len)); |
| } |
| |
| // Test that we fail when using buffers that are too small. |
| TEST_F(SrtpSessionTest, TestBuffersTooSmall) { |
| int out_len; |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_FALSE(s1_.ProtectRtp(rtp_packet_, rtp_len_, |
| sizeof(rtp_packet_) - 10, &out_len)); |
| EXPECT_FALSE(s1_.ProtectRtcp(rtcp_packet_, rtcp_len_, |
| sizeof(rtcp_packet_) - 14, &out_len)); |
| } |
| |
| TEST_F(SrtpSessionTest, TestReplay) { |
| static const uint16_t kMaxSeqnum = static_cast<uint16_t>(-1); |
| static const uint16_t seqnum_big = 62275; |
| static const uint16_t seqnum_small = 10; |
| static const uint16_t replay_window = 1024; |
| int out_len; |
| |
| EXPECT_TRUE(s1_.SetSend(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| EXPECT_TRUE(s2_.SetRecv(rtc::SRTP_AES128_CM_SHA1_80, kTestKey1, kTestKeyLen)); |
| |
| // Initial sequence number. |
| rtc::SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, seqnum_big); |
| EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), |
| &out_len)); |
| |
| // Replay within the 1024 window should succeed. |
| rtc::SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, |
| seqnum_big - replay_window + 1); |
| EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), |
| &out_len)); |
| |
| // Replay out side of the 1024 window should fail. |
| rtc::SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, |
| seqnum_big - replay_window - 1); |
| EXPECT_FALSE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), |
| &out_len)); |
| |
| // Increment sequence number to a small number. |
| rtc::SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, seqnum_small); |
| EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), |
| &out_len)); |
| |
| // Replay around 0 but out side of the 1024 window should fail. |
| rtc::SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, |
| kMaxSeqnum + seqnum_small - replay_window - 1); |
| EXPECT_FALSE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), |
| &out_len)); |
| |
| // Replay around 0 but within the 1024 window should succeed. |
| for (uint16_t seqnum = 65000; seqnum < 65003; ++seqnum) { |
| rtc::SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, seqnum); |
| EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), |
| &out_len)); |
| } |
| |
| // Go back to normal sequence nubmer. |
| // NOTE: without the fix in libsrtp, this would fail. This is because |
| // without the fix, the loop above would keep incrementing local sequence |
| // number in libsrtp, eventually the new sequence number would go out side |
| // of the window. |
| rtc::SetBE16(reinterpret_cast<uint8_t*>(rtp_packet_) + 2, seqnum_small + 1); |
| EXPECT_TRUE(s1_.ProtectRtp(rtp_packet_, rtp_len_, sizeof(rtp_packet_), |
| &out_len)); |
| } |
| |
| class SrtpStatTest |
| : public testing::Test, |
| public sigslot::has_slots<> { |
| public: |
| SrtpStatTest() |
| : ssrc_(0U), |
| mode_(-1), |
| error_(cricket::SrtpFilter::ERROR_NONE) { |
| srtp_stat_.SignalSrtpError.connect(this, &SrtpStatTest::OnSrtpError); |
| srtp_stat_.set_signal_silent_time(200); |
| } |
| |
| protected: |
| void OnSrtpError(uint32_t ssrc, |
| cricket::SrtpFilter::Mode mode, |
| cricket::SrtpFilter::Error error) { |
| ssrc_ = ssrc; |
| mode_ = mode; |
| error_ = error; |
| } |
| void Reset() { |
| ssrc_ = 0U; |
| mode_ = -1; |
| error_ = cricket::SrtpFilter::ERROR_NONE; |
| } |
| |
| cricket::SrtpStat srtp_stat_; |
| uint32_t ssrc_; |
| int mode_; |
| cricket::SrtpFilter::Error error_; |
| |
| private: |
| RTC_DISALLOW_COPY_AND_ASSIGN(SrtpStatTest); |
| }; |
| |
| TEST_F(SrtpStatTest, TestProtectRtpError) { |
| Reset(); |
| srtp_stat_.AddProtectRtpResult(1, err_status_ok); |
| EXPECT_EQ(0U, ssrc_); |
| EXPECT_EQ(-1, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_NONE, error_); |
| Reset(); |
| srtp_stat_.AddProtectRtpResult(1, err_status_auth_fail); |
| EXPECT_EQ(1U, ssrc_); |
| EXPECT_EQ(cricket::SrtpFilter::PROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_AUTH, error_); |
| Reset(); |
| srtp_stat_.AddProtectRtpResult(1, err_status_fail); |
| EXPECT_EQ(1U, ssrc_); |
| EXPECT_EQ(cricket::SrtpFilter::PROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_FAIL, error_); |
| // Within 200ms, the error will not be triggered. |
| Reset(); |
| srtp_stat_.AddProtectRtpResult(1, err_status_fail); |
| EXPECT_EQ(0U, ssrc_); |
| EXPECT_EQ(-1, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_NONE, error_); |
| // Now the error will be triggered again. |
| Reset(); |
| rtc::Thread::Current()->SleepMs(210); |
| srtp_stat_.AddProtectRtpResult(1, err_status_fail); |
| EXPECT_EQ(1U, ssrc_); |
| EXPECT_EQ(cricket::SrtpFilter::PROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_FAIL, error_); |
| } |
| |
| TEST_F(SrtpStatTest, TestUnprotectRtpError) { |
| Reset(); |
| srtp_stat_.AddUnprotectRtpResult(1, err_status_ok); |
| EXPECT_EQ(0U, ssrc_); |
| EXPECT_EQ(-1, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_NONE, error_); |
| Reset(); |
| srtp_stat_.AddUnprotectRtpResult(1, err_status_auth_fail); |
| EXPECT_EQ(1U, ssrc_); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_AUTH, error_); |
| Reset(); |
| srtp_stat_.AddUnprotectRtpResult(1, err_status_replay_fail); |
| EXPECT_EQ(1U, ssrc_); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_REPLAY, error_); |
| Reset(); |
| rtc::Thread::Current()->SleepMs(210); |
| srtp_stat_.AddUnprotectRtpResult(1, err_status_replay_old); |
| EXPECT_EQ(1U, ssrc_); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_REPLAY, error_); |
| Reset(); |
| srtp_stat_.AddUnprotectRtpResult(1, err_status_fail); |
| EXPECT_EQ(1U, ssrc_); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_FAIL, error_); |
| // Within 200ms, the error will not be triggered. |
| Reset(); |
| srtp_stat_.AddUnprotectRtpResult(1, err_status_fail); |
| EXPECT_EQ(0U, ssrc_); |
| EXPECT_EQ(-1, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_NONE, error_); |
| // Now the error will be triggered again. |
| Reset(); |
| rtc::Thread::Current()->SleepMs(210); |
| srtp_stat_.AddUnprotectRtpResult(1, err_status_fail); |
| EXPECT_EQ(1U, ssrc_); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_FAIL, error_); |
| } |
| |
| TEST_F(SrtpStatTest, TestProtectRtcpError) { |
| Reset(); |
| srtp_stat_.AddProtectRtcpResult(err_status_ok); |
| EXPECT_EQ(-1, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_NONE, error_); |
| Reset(); |
| srtp_stat_.AddProtectRtcpResult(err_status_auth_fail); |
| EXPECT_EQ(cricket::SrtpFilter::PROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_AUTH, error_); |
| Reset(); |
| srtp_stat_.AddProtectRtcpResult(err_status_fail); |
| EXPECT_EQ(cricket::SrtpFilter::PROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_FAIL, error_); |
| // Within 200ms, the error will not be triggered. |
| Reset(); |
| srtp_stat_.AddProtectRtcpResult(err_status_fail); |
| EXPECT_EQ(-1, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_NONE, error_); |
| // Now the error will be triggered again. |
| Reset(); |
| rtc::Thread::Current()->SleepMs(210); |
| srtp_stat_.AddProtectRtcpResult(err_status_fail); |
| EXPECT_EQ(cricket::SrtpFilter::PROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_FAIL, error_); |
| } |
| |
| TEST_F(SrtpStatTest, TestUnprotectRtcpError) { |
| Reset(); |
| srtp_stat_.AddUnprotectRtcpResult(err_status_ok); |
| EXPECT_EQ(-1, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_NONE, error_); |
| Reset(); |
| srtp_stat_.AddUnprotectRtcpResult(err_status_auth_fail); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_AUTH, error_); |
| Reset(); |
| srtp_stat_.AddUnprotectRtcpResult(err_status_replay_fail); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_REPLAY, error_); |
| Reset(); |
| rtc::Thread::Current()->SleepMs(210); |
| srtp_stat_.AddUnprotectRtcpResult(err_status_replay_fail); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_REPLAY, error_); |
| Reset(); |
| srtp_stat_.AddUnprotectRtcpResult(err_status_fail); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_FAIL, error_); |
| // Within 200ms, the error will not be triggered. |
| Reset(); |
| srtp_stat_.AddUnprotectRtcpResult(err_status_fail); |
| EXPECT_EQ(-1, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_NONE, error_); |
| // Now the error will be triggered again. |
| Reset(); |
| rtc::Thread::Current()->SleepMs(210); |
| srtp_stat_.AddUnprotectRtcpResult(err_status_fail); |
| EXPECT_EQ(cricket::SrtpFilter::UNPROTECT, mode_); |
| EXPECT_EQ(cricket::SrtpFilter::ERROR_FAIL, error_); |
| } |