blob: da42b2a137554cdfef9261a771b8268c81319eb3 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/video_stream_encoder.h"
#include <algorithm>
#include <array>
#include <limits>
#include <memory>
#include <numeric>
#include <optional>
#include <utility>
#include "absl/algorithm/container.h"
#include "absl/cleanup/cleanup.h"
#include "api/field_trials_view.h"
#include "api/sequence_checker.h"
#include "api/task_queue/task_queue_base.h"
#include "api/video/encoded_image.h"
#include "api/video/i420_buffer.h"
#include "api/video/render_resolution.h"
#include "api/video/video_adaptation_reason.h"
#include "api/video/video_bitrate_allocator_factory.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_layers_allocation.h"
#include "api/video_codecs/sdp_video_format.h"
#include "api/video_codecs/video_encoder.h"
#include "call/adaptation/resource_adaptation_processor.h"
#include "call/adaptation/video_source_restrictions.h"
#include "call/adaptation/video_stream_adapter.h"
#include "media/base/media_channel.h"
#include "modules/video_coding/include/video_codec_initializer.h"
#include "modules/video_coding/svc/scalability_mode_util.h"
#include "modules/video_coding/svc/svc_rate_allocator.h"
#include "modules/video_coding/utility/vp8_constants.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/event.h"
#include "rtc_base/experiments/encoder_info_settings.h"
#include "rtc_base/experiments/rate_control_settings.h"
#include "rtc_base/logging.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/system/no_unique_address.h"
#include "rtc_base/thread_annotations.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/metrics.h"
#include "video/adaptation/video_stream_encoder_resource_manager.h"
#include "video/alignment_adjuster.h"
#include "video/config/encoder_stream_factory.h"
#include "video/frame_cadence_adapter.h"
#include "video/frame_dumping_encoder.h"
namespace webrtc {
namespace {
// Time interval for logging frame counts.
const int64_t kFrameLogIntervalMs = 60000;
// Time to keep a single cached pending frame in paused state.
const int64_t kPendingFrameTimeoutMs = 1000;
constexpr char kFrameDropperFieldTrial[] = "WebRTC-FrameDropper";
// TODO(bugs.webrtc.org/13572): Remove this kill switch after deploying the
// feature.
constexpr char kSwitchEncoderOnInitializationFailuresFieldTrial[] =
"WebRTC-SwitchEncoderOnInitializationFailures";
const size_t kDefaultPayloadSize = 1440;
const int64_t kParameterUpdateIntervalMs = 1000;
constexpr int kDefaultMinScreenSharebps = 1200000;
int GetNumSpatialLayers(const VideoCodec& codec) {
if (codec.codecType == kVideoCodecVP9) {
return codec.VP9().numberOfSpatialLayers;
} else if (codec.codecType == kVideoCodecAV1 &&
codec.GetScalabilityMode().has_value()) {
return ScalabilityModeToNumSpatialLayers(*(codec.GetScalabilityMode()));
} else {
return 0;
}
}
std::optional<EncodedImageCallback::DropReason> MaybeConvertDropReason(
VideoStreamEncoderObserver::DropReason reason) {
switch (reason) {
case VideoStreamEncoderObserver::DropReason::kMediaOptimization:
return EncodedImageCallback::DropReason::kDroppedByMediaOptimizations;
case VideoStreamEncoderObserver::DropReason::kEncoder:
return EncodedImageCallback::DropReason::kDroppedByEncoder;
default:
return std::nullopt;
}
}
bool RequiresEncoderReset(const VideoCodec& prev_send_codec,
const VideoCodec& new_send_codec,
bool was_encode_called_since_last_initialization) {
// Does not check max/minBitrate or maxFramerate.
if (new_send_codec.codecType != prev_send_codec.codecType ||
new_send_codec.width != prev_send_codec.width ||
new_send_codec.height != prev_send_codec.height ||
new_send_codec.qpMax != prev_send_codec.qpMax ||
new_send_codec.numberOfSimulcastStreams !=
prev_send_codec.numberOfSimulcastStreams ||
new_send_codec.mode != prev_send_codec.mode ||
new_send_codec.GetFrameDropEnabled() !=
prev_send_codec.GetFrameDropEnabled()) {
return true;
}
if (!was_encode_called_since_last_initialization &&
(new_send_codec.startBitrate != prev_send_codec.startBitrate)) {
// If start bitrate has changed reconfigure encoder only if encoding had not
// yet started.
return true;
}
switch (new_send_codec.codecType) {
case kVideoCodecVP8:
if (new_send_codec.VP8() != prev_send_codec.VP8()) {
return true;
}
break;
case kVideoCodecVP9:
if (new_send_codec.VP9() != prev_send_codec.VP9()) {
return true;
}
break;
case kVideoCodecH264:
if (new_send_codec.H264() != prev_send_codec.H264()) {
return true;
}
break;
case kVideoCodecH265:
// TODO(bugs.webrtc.org/13485): Implement new send codec H265
[[fallthrough]];
default:
break;
}
for (unsigned char i = 0; i < new_send_codec.numberOfSimulcastStreams; ++i) {
if (!new_send_codec.simulcastStream[i].active) {
// No need to reset when stream is inactive.
continue;
}
if (!prev_send_codec.simulcastStream[i].active ||
new_send_codec.simulcastStream[i].width !=
prev_send_codec.simulcastStream[i].width ||
new_send_codec.simulcastStream[i].height !=
prev_send_codec.simulcastStream[i].height ||
new_send_codec.simulcastStream[i].numberOfTemporalLayers !=
prev_send_codec.simulcastStream[i].numberOfTemporalLayers ||
new_send_codec.simulcastStream[i].qpMax !=
prev_send_codec.simulcastStream[i].qpMax) {
return true;
}
}
if (new_send_codec.codecType == kVideoCodecVP9) {
size_t num_spatial_layers = new_send_codec.VP9().numberOfSpatialLayers;
for (unsigned char i = 0; i < num_spatial_layers; ++i) {
if (!new_send_codec.spatialLayers[i].active) {
// No need to reset when layer is inactive.
continue;
}
if (new_send_codec.spatialLayers[i].width !=
prev_send_codec.spatialLayers[i].width ||
new_send_codec.spatialLayers[i].height !=
prev_send_codec.spatialLayers[i].height ||
new_send_codec.spatialLayers[i].numberOfTemporalLayers !=
prev_send_codec.spatialLayers[i].numberOfTemporalLayers ||
new_send_codec.spatialLayers[i].qpMax !=
prev_send_codec.spatialLayers[i].qpMax ||
!prev_send_codec.spatialLayers[i].active) {
return true;
}
}
}
if (new_send_codec.GetScalabilityMode() !=
prev_send_codec.GetScalabilityMode()) {
return true;
}
return false;
}
// Limit allocation across TLs in bitrate allocation according to number of TLs
// in EncoderInfo.
VideoBitrateAllocation UpdateAllocationFromEncoderInfo(
const VideoBitrateAllocation& allocation,
const VideoEncoder::EncoderInfo& encoder_info) {
if (allocation.get_sum_bps() == 0) {
return allocation;
}
VideoBitrateAllocation new_allocation;
for (int si = 0; si < kMaxSpatialLayers; ++si) {
if (encoder_info.fps_allocation[si].size() == 1 &&
allocation.IsSpatialLayerUsed(si)) {
// One TL is signalled to be used by the encoder. Do not distribute
// bitrate allocation across TLs (use sum at ti:0).
new_allocation.SetBitrate(si, 0, allocation.GetSpatialLayerSum(si));
} else {
for (int ti = 0; ti < kMaxTemporalStreams; ++ti) {
if (allocation.HasBitrate(si, ti))
new_allocation.SetBitrate(si, ti, allocation.GetBitrate(si, ti));
}
}
}
new_allocation.set_bw_limited(allocation.is_bw_limited());
return new_allocation;
}
// Converts a VideoBitrateAllocation that contains allocated bitrate per layer,
// and an EncoderInfo that contains information about the actual encoder
// structure used by a codec. Stream structures can be Ksvc, Full SVC, Simulcast
// etc.
VideoLayersAllocation CreateVideoLayersAllocation(
const VideoCodec& encoder_config,
const VideoEncoder::RateControlParameters& current_rate,
const VideoEncoder::EncoderInfo& encoder_info) {
const VideoBitrateAllocation& target_bitrate = current_rate.target_bitrate;
VideoLayersAllocation layers_allocation;
if (target_bitrate.get_sum_bps() == 0) {
return layers_allocation;
}
if (encoder_config.numberOfSimulcastStreams > 1) {
layers_allocation.resolution_and_frame_rate_is_valid = true;
for (int si = 0; si < encoder_config.numberOfSimulcastStreams; ++si) {
if (!target_bitrate.IsSpatialLayerUsed(si) ||
target_bitrate.GetSpatialLayerSum(si) == 0) {
continue;
}
layers_allocation.active_spatial_layers.emplace_back();
VideoLayersAllocation::SpatialLayer& spatial_layer =
layers_allocation.active_spatial_layers.back();
spatial_layer.width = encoder_config.simulcastStream[si].width;
spatial_layer.height = encoder_config.simulcastStream[si].height;
spatial_layer.rtp_stream_index = si;
spatial_layer.spatial_id = 0;
auto frame_rate_fraction =
VideoEncoder::EncoderInfo::kMaxFramerateFraction;
if (encoder_info.fps_allocation[si].size() == 1) {
// One TL is signalled to be used by the encoder. Do not distribute
// bitrate allocation across TLs (use sum at tl:0).
spatial_layer.target_bitrate_per_temporal_layer.push_back(
DataRate::BitsPerSec(target_bitrate.GetSpatialLayerSum(si)));
frame_rate_fraction = encoder_info.fps_allocation[si][0];
} else { // Temporal layers are supported.
uint32_t temporal_layer_bitrate_bps = 0;
for (size_t ti = 0;
ti < encoder_config.simulcastStream[si].numberOfTemporalLayers;
++ti) {
if (!target_bitrate.HasBitrate(si, ti)) {
break;
}
if (ti < encoder_info.fps_allocation[si].size()) {
// Use frame rate of the top used temporal layer.
frame_rate_fraction = encoder_info.fps_allocation[si][ti];
}
temporal_layer_bitrate_bps += target_bitrate.GetBitrate(si, ti);
spatial_layer.target_bitrate_per_temporal_layer.push_back(
DataRate::BitsPerSec(temporal_layer_bitrate_bps));
}
}
// Encoder may drop frames internally if `maxFramerate` is set.
spatial_layer.frame_rate_fps = std::min<uint8_t>(
encoder_config.simulcastStream[si].maxFramerate,
rtc::saturated_cast<uint8_t>(
(current_rate.framerate_fps * frame_rate_fraction) /
VideoEncoder::EncoderInfo::kMaxFramerateFraction));
}
} else if (encoder_config.numberOfSimulcastStreams == 1) {
// TODO(bugs.webrtc.org/12000): Implement support for AV1 with
// scalability.
const bool higher_spatial_depend_on_lower =
encoder_config.codecType == kVideoCodecVP9 &&
encoder_config.VP9().interLayerPred == InterLayerPredMode::kOn;
layers_allocation.resolution_and_frame_rate_is_valid = true;
std::vector<DataRate> aggregated_spatial_bitrate(
webrtc::kMaxTemporalStreams, DataRate::Zero());
for (int si = 0; si < webrtc::kMaxSpatialLayers; ++si) {
layers_allocation.resolution_and_frame_rate_is_valid = true;
if (!target_bitrate.IsSpatialLayerUsed(si) ||
target_bitrate.GetSpatialLayerSum(si) == 0) {
break;
}
layers_allocation.active_spatial_layers.emplace_back();
VideoLayersAllocation::SpatialLayer& spatial_layer =
layers_allocation.active_spatial_layers.back();
spatial_layer.width = encoder_config.spatialLayers[si].width;
spatial_layer.height = encoder_config.spatialLayers[si].height;
spatial_layer.rtp_stream_index = 0;
spatial_layer.spatial_id = si;
auto frame_rate_fraction =
VideoEncoder::EncoderInfo::kMaxFramerateFraction;
if (encoder_info.fps_allocation[si].size() == 1) {
// One TL is signalled to be used by the encoder. Do not distribute
// bitrate allocation across TLs (use sum at tl:0).
DataRate aggregated_temporal_bitrate =
DataRate::BitsPerSec(target_bitrate.GetSpatialLayerSum(si));
aggregated_spatial_bitrate[0] += aggregated_temporal_bitrate;
if (higher_spatial_depend_on_lower) {
spatial_layer.target_bitrate_per_temporal_layer.push_back(
aggregated_spatial_bitrate[0]);
} else {
spatial_layer.target_bitrate_per_temporal_layer.push_back(
aggregated_temporal_bitrate);
}
frame_rate_fraction = encoder_info.fps_allocation[si][0];
} else { // Temporal layers are supported.
DataRate aggregated_temporal_bitrate = DataRate::Zero();
for (size_t ti = 0;
ti < encoder_config.spatialLayers[si].numberOfTemporalLayers;
++ti) {
if (!target_bitrate.HasBitrate(si, ti)) {
break;
}
if (ti < encoder_info.fps_allocation[si].size()) {
// Use frame rate of the top used temporal layer.
frame_rate_fraction = encoder_info.fps_allocation[si][ti];
}
aggregated_temporal_bitrate +=
DataRate::BitsPerSec(target_bitrate.GetBitrate(si, ti));
if (higher_spatial_depend_on_lower) {
spatial_layer.target_bitrate_per_temporal_layer.push_back(
aggregated_temporal_bitrate + aggregated_spatial_bitrate[ti]);
aggregated_spatial_bitrate[ti] += aggregated_temporal_bitrate;
} else {
spatial_layer.target_bitrate_per_temporal_layer.push_back(
aggregated_temporal_bitrate);
}
}
}
// Encoder may drop frames internally if `maxFramerate` is set.
spatial_layer.frame_rate_fps = std::min<uint8_t>(
encoder_config.spatialLayers[si].maxFramerate,
rtc::saturated_cast<uint8_t>(
(current_rate.framerate_fps * frame_rate_fraction) /
VideoEncoder::EncoderInfo::kMaxFramerateFraction));
}
}
return layers_allocation;
}
VideoEncoder::EncoderInfo GetEncoderInfoWithBitrateLimitUpdate(
const VideoEncoder::EncoderInfo& info,
const VideoEncoderConfig& encoder_config,
bool default_limits_allowed) {
if (!default_limits_allowed || !info.resolution_bitrate_limits.empty() ||
encoder_config.simulcast_layers.size() <= 1) {
return info;
}
// Bitrate limits are not configured and more than one layer is used, use
// the default limits (bitrate limits are not used for simulcast).
VideoEncoder::EncoderInfo new_info = info;
new_info.resolution_bitrate_limits =
EncoderInfoSettings::GetDefaultSinglecastBitrateLimits(
encoder_config.codec_type);
return new_info;
}
int NumActiveStreams(const std::vector<VideoStream>& streams) {
int num_active = 0;
for (const auto& stream : streams) {
if (stream.active)
++num_active;
}
return num_active;
}
void ApplySpatialLayerBitrateLimits(
const VideoEncoder::EncoderInfo& encoder_info,
const VideoEncoderConfig& encoder_config,
VideoCodec* codec) {
if (!(GetNumSpatialLayers(*codec) > 0)) {
// ApplySpatialLayerBitrateLimits() supports VP9 and AV1 (the latter with
// scalability mode set) only.
return;
}
if (VideoStreamEncoderResourceManager::IsSimulcastOrMultipleSpatialLayers(
encoder_config, *codec) ||
encoder_config.simulcast_layers.size() <= 1) {
// Resolution bitrate limits usage is restricted to singlecast.
return;
}
// Get bitrate limits for active stream.
std::optional<uint32_t> pixels =
VideoStreamAdapter::GetSingleActiveLayerPixels(*codec);
if (!pixels.has_value()) {
return;
}
std::optional<VideoEncoder::ResolutionBitrateLimits> bitrate_limits =
encoder_info.GetEncoderBitrateLimitsForResolution(*pixels);
if (!bitrate_limits.has_value()) {
return;
}
// Index for the active stream.
std::optional<size_t> index;
for (size_t i = 0; i < encoder_config.simulcast_layers.size(); ++i) {
if (encoder_config.simulcast_layers[i].active)
index = i;
}
if (!index.has_value()) {
return;
}
int min_bitrate_bps;
if (encoder_config.simulcast_layers[*index].min_bitrate_bps <= 0) {
min_bitrate_bps = bitrate_limits->min_bitrate_bps;
} else {
min_bitrate_bps = encoder_config.simulcast_layers[*index].min_bitrate_bps;
}
int max_bitrate_bps;
if (encoder_config.simulcast_layers[*index].max_bitrate_bps <= 0) {
max_bitrate_bps = bitrate_limits->max_bitrate_bps;
} else {
max_bitrate_bps =
std::min(bitrate_limits->max_bitrate_bps,
encoder_config.simulcast_layers[*index].max_bitrate_bps);
}
if (min_bitrate_bps >= max_bitrate_bps) {
RTC_LOG(LS_WARNING) << "Bitrate limits not used, min_bitrate_bps "
<< min_bitrate_bps << " >= max_bitrate_bps "
<< max_bitrate_bps;
return;
}
for (int i = 0; i < GetNumSpatialLayers(*codec); ++i) {
if (codec->spatialLayers[i].active) {
codec->spatialLayers[i].minBitrate = min_bitrate_bps / 1000;
codec->spatialLayers[i].maxBitrate = max_bitrate_bps / 1000;
codec->spatialLayers[i].targetBitrate =
std::min(codec->spatialLayers[i].targetBitrate,
codec->spatialLayers[i].maxBitrate);
break;
}
}
}
void ApplyEncoderBitrateLimitsIfSingleActiveStream(
const VideoEncoder::EncoderInfo& encoder_info,
const std::vector<VideoStream>& encoder_config_layers,
std::vector<VideoStream>* streams) {
// Apply limits if simulcast with one active stream (expect lowest).
bool single_active_stream =
streams->size() > 1 && NumActiveStreams(*streams) == 1 &&
!streams->front().active && NumActiveStreams(encoder_config_layers) == 1;
if (!single_active_stream) {
return;
}
// Index for the active stream.
size_t index = 0;
for (size_t i = 0; i < encoder_config_layers.size(); ++i) {
if (encoder_config_layers[i].active)
index = i;
}
if (streams->size() < (index + 1) || !(*streams)[index].active) {
return;
}
// Get bitrate limits for active stream.
std::optional<VideoEncoder::ResolutionBitrateLimits> encoder_bitrate_limits =
encoder_info.GetEncoderBitrateLimitsForResolution(
(*streams)[index].width * (*streams)[index].height);
if (!encoder_bitrate_limits) {
return;
}
int min_bitrate_bps;
if (encoder_config_layers[index].min_bitrate_bps <= 0) {
min_bitrate_bps = encoder_bitrate_limits->min_bitrate_bps;
} else {
min_bitrate_bps = (*streams)[index].min_bitrate_bps;
}
int max_bitrate_bps;
if (encoder_config_layers[index].max_bitrate_bps <= 0) {
max_bitrate_bps = encoder_bitrate_limits->max_bitrate_bps;
} else {
max_bitrate_bps = std::min(encoder_bitrate_limits->max_bitrate_bps,
(*streams)[index].max_bitrate_bps);
}
if (min_bitrate_bps >= max_bitrate_bps) {
RTC_LOG(LS_WARNING) << "Encoder bitrate limits"
<< " (min=" << encoder_bitrate_limits->min_bitrate_bps
<< ", max=" << encoder_bitrate_limits->max_bitrate_bps
<< ") do not intersect with stream limits"
<< " (min=" << (*streams)[index].min_bitrate_bps
<< ", max=" << (*streams)[index].max_bitrate_bps
<< "). Encoder bitrate limits not used.";
return;
}
(*streams)[index].min_bitrate_bps = min_bitrate_bps;
(*streams)[index].max_bitrate_bps = max_bitrate_bps;
(*streams)[index].target_bitrate_bps =
std::min((*streams)[index].target_bitrate_bps,
encoder_bitrate_limits->max_bitrate_bps);
}
std::optional<int> ParseVp9LowTierCoreCountThreshold(
const FieldTrialsView& trials) {
FieldTrialFlag disable_low_tier("Disabled");
FieldTrialParameter<int> max_core_count("max_core_count", 2);
ParseFieldTrial({&disable_low_tier, &max_core_count},
trials.Lookup("WebRTC-VP9-LowTierOptimizations"));
if (disable_low_tier.Get()) {
return std::nullopt;
}
return max_core_count.Get();
}
std::optional<int> ParseEncoderThreadLimit(const FieldTrialsView& trials) {
FieldTrialOptional<int> encoder_thread_limit("encoder_thread_limit");
ParseFieldTrial({&encoder_thread_limit},
trials.Lookup("WebRTC-VideoEncoderSettings"));
return encoder_thread_limit.GetOptional();
}
} // namespace
VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings()
: rate_control(),
encoder_target(DataRate::Zero()),
stable_encoder_target(DataRate::Zero()) {}
VideoStreamEncoder::EncoderRateSettings::EncoderRateSettings(
const VideoBitrateAllocation& bitrate,
double framerate_fps,
DataRate bandwidth_allocation,
DataRate encoder_target,
DataRate stable_encoder_target)
: rate_control(bitrate, framerate_fps, bandwidth_allocation),
encoder_target(encoder_target),
stable_encoder_target(stable_encoder_target) {}
bool VideoStreamEncoder::EncoderRateSettings::operator==(
const EncoderRateSettings& rhs) const {
return rate_control == rhs.rate_control &&
encoder_target == rhs.encoder_target &&
stable_encoder_target == rhs.stable_encoder_target;
}
bool VideoStreamEncoder::EncoderRateSettings::operator!=(
const EncoderRateSettings& rhs) const {
return !(*this == rhs);
}
class VideoStreamEncoder::DegradationPreferenceManager
: public DegradationPreferenceProvider {
public:
explicit DegradationPreferenceManager(
VideoStreamAdapter* video_stream_adapter)
: degradation_preference_(DegradationPreference::DISABLED),
is_screenshare_(false),
effective_degradation_preference_(DegradationPreference::DISABLED),
video_stream_adapter_(video_stream_adapter) {
RTC_DCHECK(video_stream_adapter_);
sequence_checker_.Detach();
}
~DegradationPreferenceManager() override = default;
DegradationPreference degradation_preference() const override {
RTC_DCHECK_RUN_ON(&sequence_checker_);
return effective_degradation_preference_;
}
void SetDegradationPreference(DegradationPreference degradation_preference) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
degradation_preference_ = degradation_preference;
MaybeUpdateEffectiveDegradationPreference();
}
void SetIsScreenshare(bool is_screenshare) {
RTC_DCHECK_RUN_ON(&sequence_checker_);
is_screenshare_ = is_screenshare;
MaybeUpdateEffectiveDegradationPreference();
}
private:
void MaybeUpdateEffectiveDegradationPreference()
RTC_RUN_ON(&sequence_checker_) {
DegradationPreference effective_degradation_preference =
(is_screenshare_ &&
degradation_preference_ == DegradationPreference::BALANCED)
? DegradationPreference::MAINTAIN_RESOLUTION
: degradation_preference_;
if (effective_degradation_preference != effective_degradation_preference_) {
effective_degradation_preference_ = effective_degradation_preference;
video_stream_adapter_->SetDegradationPreference(
effective_degradation_preference);
}
}
RTC_NO_UNIQUE_ADDRESS SequenceChecker sequence_checker_;
DegradationPreference degradation_preference_
RTC_GUARDED_BY(&sequence_checker_);
bool is_screenshare_ RTC_GUARDED_BY(&sequence_checker_);
DegradationPreference effective_degradation_preference_
RTC_GUARDED_BY(&sequence_checker_);
VideoStreamAdapter* video_stream_adapter_ RTC_GUARDED_BY(&sequence_checker_);
};
VideoStreamEncoder::VideoStreamEncoder(
const Environment& env,
uint32_t number_of_cores,
VideoStreamEncoderObserver* encoder_stats_observer,
const VideoStreamEncoderSettings& settings,
std::unique_ptr<OveruseFrameDetector> overuse_detector,
std::unique_ptr<FrameCadenceAdapterInterface> frame_cadence_adapter,
std::unique_ptr<webrtc::TaskQueueBase, webrtc::TaskQueueDeleter>
encoder_queue,
BitrateAllocationCallbackType allocation_cb_type,
webrtc::VideoEncoderFactory::EncoderSelectorInterface* encoder_selector)
: env_(env),
worker_queue_(TaskQueueBase::Current()),
number_of_cores_(number_of_cores),
settings_(settings),
allocation_cb_type_(allocation_cb_type),
rate_control_settings_(env_.field_trials()),
encoder_selector_from_constructor_(encoder_selector),
encoder_selector_from_factory_(
encoder_selector_from_constructor_
? nullptr
: settings.encoder_factory->GetEncoderSelector()),
encoder_selector_(encoder_selector_from_constructor_
? encoder_selector_from_constructor_
: encoder_selector_from_factory_.get()),
encoder_stats_observer_(encoder_stats_observer),
frame_cadence_adapter_(std::move(frame_cadence_adapter)),
delta_ntp_internal_ms_(env_.clock().CurrentNtpInMilliseconds() -
env_.clock().TimeInMilliseconds()),
last_frame_log_ms_(env_.clock().TimeInMilliseconds()),
next_frame_types_(1, VideoFrameType::kVideoFrameDelta),
input_state_provider_(encoder_stats_observer),
video_stream_adapter_(
std::make_unique<VideoStreamAdapter>(&input_state_provider_,
encoder_stats_observer,
env_.field_trials())),
degradation_preference_manager_(
std::make_unique<DegradationPreferenceManager>(
video_stream_adapter_.get())),
stream_resource_manager_(&input_state_provider_,
encoder_stats_observer,
&env_.clock(),
settings_.experiment_cpu_load_estimator,
std::move(overuse_detector),
degradation_preference_manager_.get(),
env_.field_trials()),
video_source_sink_controller_(/*sink=*/frame_cadence_adapter_.get(),
/*source=*/nullptr),
default_limits_allowed_(!env_.field_trials().IsEnabled(
"WebRTC-DefaultBitrateLimitsKillSwitch")),
qp_parsing_allowed_(
!env_.field_trials().IsEnabled("WebRTC-QpParsingKillSwitch")),
switch_encoder_on_init_failures_(!env_.field_trials().IsDisabled(
kSwitchEncoderOnInitializationFailuresFieldTrial)),
vp9_low_tier_core_threshold_(
ParseVp9LowTierCoreCountThreshold(env_.field_trials())),
experimental_encoder_thread_limit_(
ParseEncoderThreadLimit(env_.field_trials())),
encoder_queue_(std::move(encoder_queue)) {
TRACE_EVENT0("webrtc", "VideoStreamEncoder::VideoStreamEncoder");
RTC_DCHECK_RUN_ON(worker_queue_);
RTC_DCHECK(encoder_stats_observer);
RTC_DCHECK_GE(number_of_cores, 1);
frame_cadence_adapter_->Initialize(&cadence_callback_);
stream_resource_manager_.Initialize(encoder_queue_.get());
encoder_queue_->PostTask([this] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
resource_adaptation_processor_ =
std::make_unique<ResourceAdaptationProcessor>(
video_stream_adapter_.get());
stream_resource_manager_.SetAdaptationProcessor(
resource_adaptation_processor_.get(), video_stream_adapter_.get());
resource_adaptation_processor_->AddResourceLimitationsListener(
&stream_resource_manager_);
video_stream_adapter_->AddRestrictionsListener(&stream_resource_manager_);
video_stream_adapter_->AddRestrictionsListener(this);
stream_resource_manager_.MaybeInitializePixelLimitResource();
// Add the stream resource manager's resources to the processor.
adaptation_constraints_ = stream_resource_manager_.AdaptationConstraints();
for (auto* constraint : adaptation_constraints_) {
video_stream_adapter_->AddAdaptationConstraint(constraint);
}
});
}
VideoStreamEncoder::~VideoStreamEncoder() {
RTC_DCHECK_RUN_ON(worker_queue_);
RTC_DCHECK(!video_source_sink_controller_.HasSource())
<< "Must call ::Stop() before destruction.";
// The queue must be destroyed before its pointer is invalidated to avoid race
// between destructor and running task that check if function is called on the
// encoder_queue_.
// std::unique_ptr destructor does the same two operations in reverse order as
// it doesn't expect member would be used after its destruction has started.
encoder_queue_.get_deleter()(encoder_queue_.get());
encoder_queue_.release();
}
void VideoStreamEncoder::Stop() {
RTC_DCHECK_RUN_ON(worker_queue_);
video_source_sink_controller_.SetSource(nullptr);
rtc::Event shutdown_event;
absl::Cleanup shutdown = [&shutdown_event] { shutdown_event.Set(); };
encoder_queue_->PostTask([this, shutdown = std::move(shutdown)] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
if (resource_adaptation_processor_) {
// We're no longer interested in restriction updates, which may get
// triggered as part of removing resources.
video_stream_adapter_->RemoveRestrictionsListener(this);
video_stream_adapter_->RemoveRestrictionsListener(
&stream_resource_manager_);
resource_adaptation_processor_->RemoveResourceLimitationsListener(
&stream_resource_manager_);
// Stop and remove resources and delete adaptation processor.
stream_resource_manager_.StopManagedResources();
for (auto* constraint : adaptation_constraints_) {
video_stream_adapter_->RemoveAdaptationConstraint(constraint);
}
for (auto& resource : additional_resources_) {
stream_resource_manager_.RemoveResource(resource);
}
additional_resources_.clear();
stream_resource_manager_.SetAdaptationProcessor(nullptr, nullptr);
resource_adaptation_processor_.reset();
}
rate_allocator_ = nullptr;
ReleaseEncoder();
encoder_ = nullptr;
frame_cadence_adapter_ = nullptr;
});
shutdown_event.Wait(rtc::Event::kForever);
}
void VideoStreamEncoder::SetFecControllerOverride(
FecControllerOverride* fec_controller_override) {
encoder_queue_->PostTask([this, fec_controller_override] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
RTC_DCHECK(!fec_controller_override_);
fec_controller_override_ = fec_controller_override;
if (encoder_) {
encoder_->SetFecControllerOverride(fec_controller_override_);
}
});
}
void VideoStreamEncoder::AddAdaptationResource(
rtc::scoped_refptr<Resource> resource) {
RTC_DCHECK_RUN_ON(worker_queue_);
TRACE_EVENT0("webrtc", "VideoStreamEncoder::AddAdaptationResource");
// Map any externally added resources as kCpu for the sake of stats reporting.
// TODO(hbos): Make the manager map any unknown resources to kCpu and get rid
// of this MapResourceToReason() call.
TRACE_EVENT_ASYNC_BEGIN0(
"webrtc", "VideoStreamEncoder::AddAdaptationResource(latency)", this);
encoder_queue_->PostTask([this, resource = std::move(resource)] {
TRACE_EVENT_ASYNC_END0(
"webrtc", "VideoStreamEncoder::AddAdaptationResource(latency)", this);
RTC_DCHECK_RUN_ON(encoder_queue_.get());
additional_resources_.push_back(resource);
stream_resource_manager_.AddResource(resource, VideoAdaptationReason::kCpu);
});
}
std::vector<rtc::scoped_refptr<Resource>>
VideoStreamEncoder::GetAdaptationResources() {
RTC_DCHECK_RUN_ON(worker_queue_);
// In practice, this method is only called by tests to verify operations that
// run on the encoder queue. So rather than force PostTask() operations to
// be accompanied by an event and a `Wait()`, we'll use PostTask + Wait()
// here.
rtc::Event event;
std::vector<rtc::scoped_refptr<Resource>> resources;
encoder_queue_->PostTask([&] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
resources = resource_adaptation_processor_->GetResources();
event.Set();
});
event.Wait(rtc::Event::kForever);
return resources;
}
void VideoStreamEncoder::SetSource(
rtc::VideoSourceInterface<VideoFrame>* source,
const DegradationPreference& degradation_preference) {
RTC_DCHECK_RUN_ON(worker_queue_);
video_source_sink_controller_.SetSource(source);
input_state_provider_.OnHasInputChanged(source);
// This may trigger reconfiguring the QualityScaler on the encoder queue.
encoder_queue_->PostTask([this, degradation_preference] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
degradation_preference_manager_->SetDegradationPreference(
degradation_preference);
stream_resource_manager_.SetDegradationPreferences(degradation_preference);
if (encoder_) {
stream_resource_manager_.ConfigureQualityScaler(
encoder_->GetEncoderInfo());
stream_resource_manager_.ConfigureBandwidthQualityScaler(
encoder_->GetEncoderInfo());
}
});
}
void VideoStreamEncoder::SetSink(EncoderSink* sink, bool rotation_applied) {
RTC_DCHECK_RUN_ON(worker_queue_);
video_source_sink_controller_.SetRotationApplied(rotation_applied);
video_source_sink_controller_.PushSourceSinkSettings();
encoder_queue_->PostTask([this, sink] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
sink_ = sink;
});
}
void VideoStreamEncoder::SetStartBitrate(int start_bitrate_bps) {
encoder_queue_->PostTask([this, start_bitrate_bps] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
RTC_LOG(LS_INFO) << "SetStartBitrate " << start_bitrate_bps;
encoder_target_bitrate_bps_ =
start_bitrate_bps != 0 ? std::optional<uint32_t>(start_bitrate_bps)
: std::nullopt;
stream_resource_manager_.SetStartBitrate(
DataRate::BitsPerSec(start_bitrate_bps));
});
}
void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config,
size_t max_data_payload_length) {
ConfigureEncoder(std::move(config), max_data_payload_length, nullptr);
}
void VideoStreamEncoder::ConfigureEncoder(VideoEncoderConfig config,
size_t max_data_payload_length,
SetParametersCallback callback) {
RTC_DCHECK_RUN_ON(worker_queue_);
// Inform source about max configured framerate,
// requested_resolution and which layers are active.
int max_framerate = -1;
// Is any layer active.
bool active = false;
// The max requested_resolution.
std::optional<rtc::VideoSinkWants::FrameSize> requested_resolution;
for (const auto& stream : config.simulcast_layers) {
active |= stream.active;
if (stream.active) {
max_framerate = std::max(stream.max_framerate, max_framerate);
}
// Note: we propagate the highest requested_resolution regardless
// if layer is active or not.
if (stream.requested_resolution) {
if (!requested_resolution) {
requested_resolution.emplace(stream.requested_resolution->width,
stream.requested_resolution->height);
} else {
requested_resolution.emplace(
std::max(stream.requested_resolution->width,
requested_resolution->width),
std::max(stream.requested_resolution->height,
requested_resolution->height));
}
}
}
if (requested_resolution !=
video_source_sink_controller_.requested_resolution() ||
active != video_source_sink_controller_.active() ||
max_framerate !=
video_source_sink_controller_.frame_rate_upper_limit().value_or(-1)) {
video_source_sink_controller_.SetRequestedResolution(requested_resolution);
if (max_framerate >= 0) {
video_source_sink_controller_.SetFrameRateUpperLimit(max_framerate);
} else {
video_source_sink_controller_.SetFrameRateUpperLimit(std::nullopt);
}
video_source_sink_controller_.SetActive(active);
video_source_sink_controller_.PushSourceSinkSettings();
}
encoder_queue_->PostTask([this, config = std::move(config),
max_data_payload_length,
callback = std::move(callback)]() mutable {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
RTC_DCHECK(sink_);
RTC_LOG(LS_INFO) << "ConfigureEncoder requested.";
// Set up the frame cadence adapter according to if we're going to do
// screencast. The final number of spatial layers is based on info
// in `send_codec_`, which is computed based on incoming frame
// dimensions which can only be determined later.
//
// Note: zero-hertz mode isn't enabled by this alone. Constraints also
// have to be set up with min_fps = 0 and max_fps > 0.
if (config.content_type == VideoEncoderConfig::ContentType::kScreen) {
frame_cadence_adapter_->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{});
} else {
frame_cadence_adapter_->SetZeroHertzModeEnabled(std::nullopt);
}
pending_encoder_creation_ =
(!encoder_ || encoder_config_.video_format != config.video_format ||
max_data_payload_length_ != max_data_payload_length);
encoder_config_ = std::move(config);
max_data_payload_length_ = max_data_payload_length;
pending_encoder_reconfiguration_ = true;
// Reconfigure the encoder now if the frame resolution is known.
// Otherwise, the reconfiguration is deferred until the next frame to
// minimize the number of reconfigurations. The codec configuration
// depends on incoming video frame size.
if (last_frame_info_) {
if (callback) {
encoder_configuration_callbacks_.push_back(std::move(callback));
}
ReconfigureEncoder();
} else {
webrtc::InvokeSetParametersCallback(callback, webrtc::RTCError::OK());
}
});
}
// We should reduce the number of 'full' ReconfigureEncoder(). If only need
// subset of it at runtime, consider handle it in
// VideoStreamEncoder::EncodeVideoFrame() when encoder_info_ != info.
void VideoStreamEncoder::ReconfigureEncoder() {
// Running on the encoder queue.
RTC_DCHECK(pending_encoder_reconfiguration_);
RTC_LOG(LS_INFO) << "[VSE] " << __func__
<< " [encoder_config=" << encoder_config_.ToString() << "]";
bool encoder_reset_required = false;
if (pending_encoder_creation_) {
// Destroy existing encoder instance before creating a new one. Otherwise
// attempt to create another instance will fail if encoder factory
// supports only single instance of encoder of given type.
encoder_.reset();
encoder_ = MaybeCreateFrameDumpingEncoderWrapper(
settings_.encoder_factory->Create(env_, encoder_config_.video_format),
env_.field_trials());
if (!encoder_) {
RTC_LOG(LS_ERROR) << "CreateVideoEncoder failed, failing encoder format: "
<< encoder_config_.video_format.ToString();
RequestEncoderSwitch();
return;
}
if (encoder_selector_) {
encoder_selector_->OnCurrentEncoder(encoder_config_.video_format);
}
encoder_->SetFecControllerOverride(fec_controller_override_);
encoder_reset_required = true;
}
// TODO(webrtc:14451) : Move AlignmentAdjuster into EncoderStreamFactory
// Possibly adjusts scale_resolution_down_by in `encoder_config_` to limit the
// alignment value.
AlignmentAdjuster::GetAlignmentAndMaybeAdjustScaleFactors(
encoder_->GetEncoderInfo(), &encoder_config_, std::nullopt);
std::vector<VideoStream> streams;
if (encoder_config_.video_stream_factory) {
// Note: only tests set their own EncoderStreamFactory...
streams = encoder_config_.video_stream_factory->CreateEncoderStreams(
env_.field_trials(), last_frame_info_->width, last_frame_info_->height,
encoder_config_);
} else {
auto factory = rtc::make_ref_counted<cricket::EncoderStreamFactory>(
encoder_->GetEncoderInfo(), latest_restrictions_);
streams = factory->CreateEncoderStreams(
env_.field_trials(), last_frame_info_->width, last_frame_info_->height,
encoder_config_);
}
// TODO(webrtc:14451) : Move AlignmentAdjuster into EncoderStreamFactory
// Get alignment when actual number of layers are known.
int alignment = AlignmentAdjuster::GetAlignmentAndMaybeAdjustScaleFactors(
encoder_->GetEncoderInfo(), &encoder_config_, streams.size());
// Check that the higher layers do not try to set number of temporal layers
// to less than 1.
// TODO(brandtr): Get rid of the wrapping optional as it serves no purpose
// at this layer.
#if RTC_DCHECK_IS_ON
for (const auto& stream : streams) {
RTC_DCHECK_GE(stream.num_temporal_layers.value_or(1), 1);
}
#endif
// TODO(ilnik): If configured resolution is significantly less than provided,
// e.g. because there are not enough SSRCs for all simulcast streams,
// signal new resolutions via SinkWants to video source.
// Stream dimensions may be not equal to given because of a simulcast
// restrictions.
auto highest_stream = absl::c_max_element(
streams, [](const webrtc::VideoStream& a, const webrtc::VideoStream& b) {
return std::tie(a.width, a.height) < std::tie(b.width, b.height);
});
int highest_stream_width = static_cast<int>(highest_stream->width);
int highest_stream_height = static_cast<int>(highest_stream->height);
// Dimension may be reduced to be, e.g. divisible by 4.
RTC_CHECK_GE(last_frame_info_->width, highest_stream_width);
RTC_CHECK_GE(last_frame_info_->height, highest_stream_height);
crop_width_ = last_frame_info_->width - highest_stream_width;
crop_height_ = last_frame_info_->height - highest_stream_height;
if (!encoder_->GetEncoderInfo().is_qp_trusted.value_or(true)) {
// when qp is not trusted, we priorities to using the
// |resolution_bitrate_limits| provided by the decoder.
const std::vector<VideoEncoder::ResolutionBitrateLimits>& bitrate_limits =
encoder_->GetEncoderInfo().resolution_bitrate_limits.empty()
? EncoderInfoSettings::
GetDefaultSinglecastBitrateLimitsWhenQpIsUntrusted()
: encoder_->GetEncoderInfo().resolution_bitrate_limits;
// For BandwidthQualityScaler, its implement based on a certain pixel_count
// correspond a certain bps interval. In fact, WebRTC default max_bps is
// 2500Kbps when width * height > 960 * 540. For example, we assume:
// 1.the camera support 1080p.
// 2.ResolutionBitrateLimits set 720p bps interval is [1500Kbps,2000Kbps].
// 3.ResolutionBitrateLimits set 1080p bps interval is [2000Kbps,2500Kbps].
// We will never be stable at 720p due to actual encoding bps of 720p and
// 1080p are both 2500Kbps. So it is necessary to do a linear interpolation
// to get a certain bitrate for certain pixel_count. It also doesn't work
// for 960*540 and 640*520, we will nerver be stable at 640*520 due to their
// |target_bitrate_bps| are both 2000Kbps.
std::optional<VideoEncoder::ResolutionBitrateLimits>
qp_untrusted_bitrate_limit = EncoderInfoSettings::
GetSinglecastBitrateLimitForResolutionWhenQpIsUntrusted(
last_frame_info_->width * last_frame_info_->height,
bitrate_limits);
if (qp_untrusted_bitrate_limit) {
// bandwidth_quality_scaler is only used for singlecast.
if (streams.size() == 1 && encoder_config_.simulcast_layers.size() == 1) {
VideoStream& stream = streams.back();
stream.max_bitrate_bps =
std::min(stream.max_bitrate_bps,
qp_untrusted_bitrate_limit->max_bitrate_bps);
stream.min_bitrate_bps =
std::min(stream.max_bitrate_bps,
qp_untrusted_bitrate_limit->min_bitrate_bps);
// If it is screen share mode, the minimum value of max_bitrate should
// be greater than/equal to 1200kbps.
if (encoder_config_.content_type ==
VideoEncoderConfig::ContentType::kScreen) {
stream.max_bitrate_bps =
std::max(stream.max_bitrate_bps, kDefaultMinScreenSharebps);
}
stream.target_bitrate_bps = stream.max_bitrate_bps;
}
}
} else {
std::optional<VideoEncoder::ResolutionBitrateLimits>
encoder_bitrate_limits =
encoder_->GetEncoderInfo().GetEncoderBitrateLimitsForResolution(
last_frame_info_->width * last_frame_info_->height);
if (encoder_bitrate_limits) {
if (streams.size() == 1 && encoder_config_.simulcast_layers.size() == 1) {
// Bitrate limits can be set by app (in SDP or RtpEncodingParameters)
// or/and can be provided by encoder. In presence of both set of
// limits, the final set is derived as their intersection.
int min_bitrate_bps;
if (encoder_config_.simulcast_layers[0].min_bitrate_bps <= 0) {
min_bitrate_bps = encoder_bitrate_limits->min_bitrate_bps;
} else {
min_bitrate_bps = std::max(encoder_bitrate_limits->min_bitrate_bps,
streams.back().min_bitrate_bps);
}
int max_bitrate_bps;
// The API max bitrate comes from both `encoder_config_.max_bitrate_bps`
// and `encoder_config_.simulcast_layers[0].max_bitrate_bps`.
std::optional<int> api_max_bitrate_bps;
if (encoder_config_.simulcast_layers[0].max_bitrate_bps > 0) {
api_max_bitrate_bps =
encoder_config_.simulcast_layers[0].max_bitrate_bps;
}
if (encoder_config_.max_bitrate_bps > 0) {
api_max_bitrate_bps = api_max_bitrate_bps.has_value()
? std::min(encoder_config_.max_bitrate_bps,
*api_max_bitrate_bps)
: encoder_config_.max_bitrate_bps;
}
if (!api_max_bitrate_bps.has_value()) {
max_bitrate_bps = encoder_bitrate_limits->max_bitrate_bps;
} else {
max_bitrate_bps = std::min(encoder_bitrate_limits->max_bitrate_bps,
streams.back().max_bitrate_bps);
}
if (min_bitrate_bps < max_bitrate_bps) {
streams.back().min_bitrate_bps = min_bitrate_bps;
streams.back().max_bitrate_bps = max_bitrate_bps;
streams.back().target_bitrate_bps =
std::min(streams.back().target_bitrate_bps,
encoder_bitrate_limits->max_bitrate_bps);
} else {
RTC_LOG(LS_WARNING)
<< "Bitrate limits provided by encoder"
<< " (min=" << encoder_bitrate_limits->min_bitrate_bps
<< ", max=" << encoder_bitrate_limits->max_bitrate_bps
<< ") do not intersect with limits set by app"
<< " (min=" << streams.back().min_bitrate_bps
<< ", max=" << api_max_bitrate_bps.value_or(-1)
<< "). The app bitrate limits will be used.";
}
}
}
}
ApplyEncoderBitrateLimitsIfSingleActiveStream(
GetEncoderInfoWithBitrateLimitUpdate(
encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_),
encoder_config_.simulcast_layers, &streams);
VideoCodec codec = VideoCodecInitializer::SetupCodec(
env_.field_trials(), encoder_config_, streams);
if (encoder_config_.codec_type == kVideoCodecVP9 ||
encoder_config_.codec_type == kVideoCodecAV1) {
// Spatial layers configuration might impose some parity restrictions,
// thus some cropping might be needed.
RTC_CHECK_GE(last_frame_info_->width, codec.width);
RTC_CHECK_GE(last_frame_info_->height, codec.height);
crop_width_ = last_frame_info_->width - codec.width;
crop_height_ = last_frame_info_->height - codec.height;
ApplySpatialLayerBitrateLimits(
GetEncoderInfoWithBitrateLimitUpdate(encoder_->GetEncoderInfo(),
encoder_config_,
default_limits_allowed_),
encoder_config_, &codec);
}
char log_stream_buf[4 * 1024];
rtc::SimpleStringBuilder log_stream(log_stream_buf);
log_stream << "ReconfigureEncoder: simulcast streams: ";
for (size_t i = 0; i < codec.numberOfSimulcastStreams; ++i) {
std::optional<ScalabilityMode> scalability_mode =
codec.simulcastStream[i].GetScalabilityMode();
if (scalability_mode) {
log_stream << "{" << i << ": " << codec.simulcastStream[i].width << "x"
<< codec.simulcastStream[i].height << " "
<< ScalabilityModeToString(*scalability_mode)
<< ", min_kbps: " << codec.simulcastStream[i].minBitrate
<< ", target_kbps: " << codec.simulcastStream[i].targetBitrate
<< ", max_kbps: " << codec.simulcastStream[i].maxBitrate
<< ", max_fps: " << codec.simulcastStream[i].maxFramerate
<< ", max_qp: " << codec.simulcastStream[i].qpMax
<< ", num_tl: "
<< codec.simulcastStream[i].numberOfTemporalLayers
<< ", active: "
<< (codec.simulcastStream[i].active ? "true" : "false") << "}";
}
}
if (encoder_config_.codec_type == kVideoCodecVP9 ||
encoder_config_.codec_type == kVideoCodecAV1) {
log_stream << ", spatial layers: ";
for (int i = 0; i < GetNumSpatialLayers(codec); ++i) {
log_stream << "{" << i << ": " << codec.spatialLayers[i].width << "x"
<< codec.spatialLayers[i].height
<< ", min_kbps: " << codec.spatialLayers[i].minBitrate
<< ", target_kbps: " << codec.spatialLayers[i].targetBitrate
<< ", max_kbps: " << codec.spatialLayers[i].maxBitrate
<< ", max_fps: " << codec.spatialLayers[i].maxFramerate
<< ", max_qp: " << codec.spatialLayers[i].qpMax << ", num_tl: "
<< codec.spatialLayers[i].numberOfTemporalLayers
<< ", active: "
<< (codec.spatialLayers[i].active ? "true" : "false") << "}";
}
}
RTC_LOG(LS_INFO) << "[VSE] " << log_stream.str();
codec.startBitrate = std::max(encoder_target_bitrate_bps_.value_or(0) / 1000,
codec.minBitrate);
codec.startBitrate = std::min(codec.startBitrate, codec.maxBitrate);
codec.expect_encode_from_texture = last_frame_info_->is_texture;
// Make sure the start bit rate is sane...
RTC_DCHECK_LE(codec.startBitrate, 1000000);
max_framerate_ = codec.maxFramerate;
// The resolutions that we're actually encoding with.
std::vector<rtc::VideoSinkWants::FrameSize> encoder_resolutions;
// TODO(hbos): For the case of SVC, also make use of `codec.spatialLayers`.
// For now, SVC layers are handled by the VP9 encoder.
for (const auto& simulcastStream : codec.simulcastStream) {
if (!simulcastStream.active)
continue;
encoder_resolutions.emplace_back(simulcastStream.width,
simulcastStream.height);
}
worker_queue_->PostTask(SafeTask(
task_safety_.flag(),
[this, alignment,
encoder_resolutions = std::move(encoder_resolutions)]() {
RTC_DCHECK_RUN_ON(worker_queue_);
if (alignment != video_source_sink_controller_.resolution_alignment() ||
encoder_resolutions !=
video_source_sink_controller_.resolutions()) {
video_source_sink_controller_.SetResolutionAlignment(alignment);
video_source_sink_controller_.SetResolutions(
std::move(encoder_resolutions));
video_source_sink_controller_.PushSourceSinkSettings();
}
}));
rate_allocator_ = settings_.bitrate_allocator_factory->Create(env_, codec);
rate_allocator_->SetLegacyConferenceMode(
encoder_config_.legacy_conference_mode);
// Reset (release existing encoder) if one exists and anything except
// start bitrate or max framerate has changed.
if (!encoder_reset_required) {
encoder_reset_required = RequiresEncoderReset(
send_codec_, codec, was_encode_called_since_last_initialization_);
}
if (codec.codecType == VideoCodecType::kVideoCodecVP9 &&
number_of_cores_ <= vp9_low_tier_core_threshold_.value_or(0)) {
codec.SetVideoEncoderComplexity(VideoCodecComplexity::kComplexityLow);
}
quality_convergence_controller_.Initialize(
codec.numberOfSimulcastStreams, encoder_->GetEncoderInfo().min_qp,
codec.codecType, env_.field_trials());
send_codec_ = codec;
// Keep the same encoder, as long as the video_format is unchanged.
// Encoder creation block is split in two since EncoderInfo needed to start
// CPU adaptation with the correct settings should be polled after
// encoder_->InitEncode().
if (encoder_reset_required) {
ReleaseEncoder();
const size_t max_data_payload_length = max_data_payload_length_ > 0
? max_data_payload_length_
: kDefaultPayloadSize;
VideoEncoder::Settings settings = VideoEncoder::Settings(
settings_.capabilities, number_of_cores_, max_data_payload_length);
settings.encoder_thread_limit = experimental_encoder_thread_limit_;
int error = encoder_->InitEncode(&send_codec_, settings);
if (error != 0) {
RTC_LOG(LS_ERROR) << "Failed to initialize the encoder associated with "
"codec type: "
<< CodecTypeToPayloadString(send_codec_.codecType)
<< " (" << send_codec_.codecType
<< "). Error: " << error;
ReleaseEncoder();
} else {
encoder_initialized_ = true;
encoder_->RegisterEncodeCompleteCallback(this);
frame_encode_metadata_writer_.OnEncoderInit(send_codec_);
next_frame_types_.clear();
next_frame_types_.resize(
std::max(static_cast<int>(codec.numberOfSimulcastStreams), 1),
VideoFrameType::kVideoFrameKey);
}
frame_encode_metadata_writer_.Reset();
last_encode_info_ms_ = std::nullopt;
was_encode_called_since_last_initialization_ = false;
}
// Inform dependents of updated encoder settings.
OnEncoderSettingsChanged();
if (encoder_initialized_) {
RTC_LOG(LS_VERBOSE) << " max bitrate " << codec.maxBitrate
<< " start bitrate " << codec.startBitrate
<< " max frame rate " << codec.maxFramerate
<< " max payload size " << max_data_payload_length_;
} else {
RTC_LOG(LS_ERROR) << "[VSE] Failed to configure encoder.";
rate_allocator_ = nullptr;
}
if (pending_encoder_creation_) {
stream_resource_manager_.ConfigureEncodeUsageResource();
pending_encoder_creation_ = false;
}
int num_layers;
if (codec.codecType == kVideoCodecVP8) {
num_layers = codec.VP8()->numberOfTemporalLayers;
} else if (codec.codecType == kVideoCodecVP9) {
num_layers = codec.VP9()->numberOfTemporalLayers;
} else if (codec.codecType == kVideoCodecAV1 &&
codec.GetScalabilityMode().has_value()) {
num_layers =
ScalabilityModeToNumTemporalLayers(*(codec.GetScalabilityMode()));
} else if (codec.codecType == kVideoCodecH264) {
num_layers = codec.H264()->numberOfTemporalLayers;
} else if (codec.codecType == kVideoCodecGeneric &&
codec.numberOfSimulcastStreams > 0) {
// This is mainly for unit testing, disabling frame dropping.
// TODO(sprang): Add a better way to disable frame dropping.
num_layers = codec.simulcastStream[0].numberOfTemporalLayers;
} else {
// TODO(bugs.webrtc.org/13485): Implement H265 temporal layer
num_layers = 1;
}
frame_dropper_.Reset();
frame_dropper_.SetRates(codec.startBitrate, max_framerate_);
// Force-disable frame dropper if either:
// * We have screensharing with layers.
// * "WebRTC-FrameDropper" field trial is "Disabled".
force_disable_frame_dropper_ =
env_.field_trials().IsDisabled(kFrameDropperFieldTrial) ||
(num_layers > 1 && codec.mode == VideoCodecMode::kScreensharing);
const VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo();
if (rate_control_settings_.UseEncoderBitrateAdjuster()) {
bitrate_adjuster_ = std::make_unique<EncoderBitrateAdjuster>(
codec, env_.field_trials(), env_.clock());
bitrate_adjuster_->OnEncoderInfo(info);
}
if (rate_allocator_ && last_encoder_rate_settings_) {
// We have a new rate allocator instance and already configured target
// bitrate. Update the rate allocation and notify observers.
// We must invalidate the last_encoder_rate_settings_ to ensure
// the changes get propagated to all listeners.
EncoderRateSettings rate_settings = *last_encoder_rate_settings_;
last_encoder_rate_settings_.reset();
rate_settings.rate_control.framerate_fps = GetInputFramerateFps();
SetEncoderRates(UpdateBitrateAllocation(rate_settings));
}
encoder_stats_observer_->OnEncoderReconfigured(encoder_config_, streams);
pending_encoder_reconfiguration_ = false;
bool is_svc = false;
bool single_stream_or_non_first_inactive = true;
for (size_t i = 1; i < encoder_config_.number_of_streams; ++i) {
if (encoder_config_.simulcast_layers[i].active) {
single_stream_or_non_first_inactive = false;
break;
}
}
// Set min_bitrate_bps, max_bitrate_bps, and max padding bit rate for VP9
// and AV1 and leave only one stream containing all necessary information.
if ((encoder_config_.codec_type == kVideoCodecVP9 ||
encoder_config_.codec_type == kVideoCodecAV1) &&
single_stream_or_non_first_inactive) {
// Lower max bitrate to the level codec actually can produce.
streams[0].max_bitrate_bps =
std::min(streams[0].max_bitrate_bps,
SvcRateAllocator::GetMaxBitrate(codec).bps<int>());
streams[0].min_bitrate_bps = codec.spatialLayers[0].minBitrate * 1000;
// target_bitrate_bps specifies the maximum padding bitrate.
streams[0].target_bitrate_bps =
SvcRateAllocator::GetPaddingBitrate(codec).bps<int>();
streams[0].width = streams.back().width;
streams[0].height = streams.back().height;
is_svc = GetNumSpatialLayers(codec) > 1;
streams.resize(1);
}
sink_->OnEncoderConfigurationChanged(
std::move(streams), is_svc, encoder_config_.content_type,
encoder_config_.min_transmit_bitrate_bps);
stream_resource_manager_.ConfigureQualityScaler(info);
stream_resource_manager_.ConfigureBandwidthQualityScaler(info);
webrtc::RTCError encoder_configuration_result = webrtc::RTCError::OK();
if (!encoder_initialized_) {
RTC_LOG(LS_WARNING) << "Failed to initialize "
<< CodecTypeToPayloadString(codec.codecType)
<< " encoder."
<< "switch_encoder_on_init_failures: "
<< switch_encoder_on_init_failures_;
if (switch_encoder_on_init_failures_) {
RequestEncoderSwitch();
} else {
encoder_configuration_result =
webrtc::RTCError(RTCErrorType::UNSUPPORTED_OPERATION);
}
}
if (!encoder_configuration_callbacks_.empty()) {
for (auto& callback : encoder_configuration_callbacks_) {
webrtc::InvokeSetParametersCallback(callback,
encoder_configuration_result);
}
encoder_configuration_callbacks_.clear();
}
}
void VideoStreamEncoder::RequestEncoderSwitch() {
bool is_encoder_switching_supported =
settings_.encoder_switch_request_callback != nullptr;
bool is_encoder_selector_available = encoder_selector_ != nullptr;
RTC_LOG(LS_INFO) << "RequestEncoderSwitch."
<< " is_encoder_selector_available: "
<< is_encoder_selector_available
<< " is_encoder_switching_supported: "
<< is_encoder_switching_supported;
if (!is_encoder_switching_supported) {
return;
}
// If encoder selector is available, switch to the encoder it prefers.
// Otherwise try switching to VP8 (default WebRTC codec).
std::optional<SdpVideoFormat> preferred_fallback_encoder;
if (is_encoder_selector_available) {
preferred_fallback_encoder = encoder_selector_->OnEncoderBroken();
}
if (!preferred_fallback_encoder) {
preferred_fallback_encoder =
SdpVideoFormat(CodecTypeToPayloadString(kVideoCodecVP8));
}
settings_.encoder_switch_request_callback->RequestEncoderSwitch(
*preferred_fallback_encoder, /*allow_default_fallback=*/true);
}
void VideoStreamEncoder::OnEncoderSettingsChanged() {
EncoderSettings encoder_settings(
GetEncoderInfoWithBitrateLimitUpdate(
encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_),
encoder_config_.Copy(), send_codec_);
stream_resource_manager_.SetEncoderSettings(encoder_settings);
input_state_provider_.OnEncoderSettingsChanged(encoder_settings);
bool is_screenshare = encoder_settings.encoder_config().content_type ==
VideoEncoderConfig::ContentType::kScreen;
degradation_preference_manager_->SetIsScreenshare(is_screenshare);
if (is_screenshare) {
frame_cadence_adapter_->SetZeroHertzModeEnabled(
FrameCadenceAdapterInterface::ZeroHertzModeParams{
send_codec_.numberOfSimulcastStreams});
}
}
void VideoStreamEncoder::OnFrame(Timestamp post_time,
bool queue_overload,
const VideoFrame& video_frame) {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
VideoFrame incoming_frame = video_frame;
// In some cases, e.g., when the frame from decoder is fed to encoder,
// the timestamp may be set to the future. As the encoding pipeline assumes
// capture time to be less than present time, we should reset the capture
// timestamps here. Otherwise there may be issues with RTP send stream.
if (incoming_frame.timestamp_us() > post_time.us())
incoming_frame.set_timestamp_us(post_time.us());
// Capture time may come from clock with an offset and drift from clock_.
int64_t capture_ntp_time_ms;
if (video_frame.ntp_time_ms() > 0) {
capture_ntp_time_ms = video_frame.ntp_time_ms();
} else if (video_frame.render_time_ms() != 0) {
capture_ntp_time_ms = video_frame.render_time_ms() + delta_ntp_internal_ms_;
} else {
capture_ntp_time_ms = post_time.ms() + delta_ntp_internal_ms_;
}
incoming_frame.set_ntp_time_ms(capture_ntp_time_ms);
// Convert NTP time, in ms, to RTP timestamp.
const int kMsToRtpTimestamp = 90;
incoming_frame.set_rtp_timestamp(
kMsToRtpTimestamp * static_cast<uint32_t>(incoming_frame.ntp_time_ms()));
// Identifier should remain the same for newly produced incoming frame and the
// received |video_frame|.
incoming_frame.set_capture_time_identifier(
video_frame.capture_time_identifier());
if (incoming_frame.ntp_time_ms() <= last_captured_timestamp_) {
// We don't allow the same capture time for two frames, drop this one.
RTC_LOG(LS_WARNING) << "Same/old NTP timestamp ("
<< incoming_frame.ntp_time_ms()
<< " <= " << last_captured_timestamp_
<< ") for incoming frame. Dropping.";
ProcessDroppedFrame(incoming_frame,
VideoStreamEncoderObserver::DropReason::kBadTimestamp);
return;
}
bool log_stats = false;
if (post_time.ms() - last_frame_log_ms_ > kFrameLogIntervalMs) {
last_frame_log_ms_ = post_time.ms();
log_stats = true;
}
last_captured_timestamp_ = incoming_frame.ntp_time_ms();
encoder_stats_observer_->OnIncomingFrame(incoming_frame.width(),
incoming_frame.height());
++captured_frame_count_;
bool cwnd_frame_drop =
cwnd_frame_drop_interval_ &&
(cwnd_frame_counter_++ % cwnd_frame_drop_interval_.value() == 0);
if (!queue_overload && !cwnd_frame_drop) {
MaybeEncodeVideoFrame(incoming_frame, post_time.us());
} else {
if (cwnd_frame_drop) {
// Frame drop by congestion window pushback. Do not encode this
// frame.
++dropped_frame_cwnd_pushback_count_;
} else {
// There is a newer frame in flight. Do not encode this frame.
RTC_LOG(LS_VERBOSE)
<< "Incoming frame dropped due to that the encoder is blocked.";
++dropped_frame_encoder_block_count_;
}
ProcessDroppedFrame(
incoming_frame,
cwnd_frame_drop
? VideoStreamEncoderObserver::DropReason::kCongestionWindow
: VideoStreamEncoderObserver::DropReason::kEncoderQueue);
}
if (log_stats) {
RTC_LOG(LS_INFO) << "Number of frames: captured " << captured_frame_count_
<< ", dropped (due to congestion window pushback) "
<< dropped_frame_cwnd_pushback_count_
<< ", dropped (due to encoder blocked) "
<< dropped_frame_encoder_block_count_ << ", interval_ms "
<< kFrameLogIntervalMs;
captured_frame_count_ = 0;
dropped_frame_cwnd_pushback_count_ = 0;
dropped_frame_encoder_block_count_ = 0;
}
}
void VideoStreamEncoder::OnDiscardedFrame() {
encoder_stats_observer_->OnFrameDropped(
VideoStreamEncoderObserver::DropReason::kSource);
}
bool VideoStreamEncoder::EncoderPaused() const {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
// Pause video if paused by caller or as long as the network is down or the
// pacer queue has grown too large in buffered mode.
// If the pacer queue has grown too large or the network is down,
// `last_encoder_rate_settings_->encoder_target` will be 0.
return !last_encoder_rate_settings_ ||
last_encoder_rate_settings_->encoder_target == DataRate::Zero();
}
void VideoStreamEncoder::TraceFrameDropStart() {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
// Start trace event only on the first frame after encoder is paused.
if (!encoder_paused_and_dropped_frame_) {
TRACE_EVENT_ASYNC_BEGIN0("webrtc", "EncoderPaused", this);
}
encoder_paused_and_dropped_frame_ = true;
}
void VideoStreamEncoder::TraceFrameDropEnd() {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
// End trace event on first frame after encoder resumes, if frame was dropped.
if (encoder_paused_and_dropped_frame_) {
TRACE_EVENT_ASYNC_END0("webrtc", "EncoderPaused", this);
}
encoder_paused_and_dropped_frame_ = false;
}
VideoStreamEncoder::EncoderRateSettings
VideoStreamEncoder::UpdateBitrateAllocation(
const EncoderRateSettings& rate_settings) {
VideoBitrateAllocation new_allocation;
// Only call allocators if bitrate > 0 (ie, not suspended), otherwise they
// might cap the bitrate to the min bitrate configured.
if (rate_allocator_ && rate_settings.encoder_target > DataRate::Zero()) {
new_allocation = rate_allocator_->Allocate(VideoBitrateAllocationParameters(
rate_settings.encoder_target, rate_settings.stable_encoder_target,
rate_settings.rate_control.framerate_fps));
}
EncoderRateSettings new_rate_settings = rate_settings;
new_rate_settings.rate_control.target_bitrate = new_allocation;
new_rate_settings.rate_control.bitrate = new_allocation;
// VideoBitrateAllocator subclasses may allocate a bitrate higher than the
// target in order to sustain the min bitrate of the video codec. In this
// case, make sure the bandwidth allocation is at least equal the allocation
// as that is part of the document contract for that field.
new_rate_settings.rate_control.bandwidth_allocation =
std::max(new_rate_settings.rate_control.bandwidth_allocation,
DataRate::BitsPerSec(
new_rate_settings.rate_control.bitrate.get_sum_bps()));
if (bitrate_adjuster_) {
VideoBitrateAllocation adjusted_allocation =
bitrate_adjuster_->AdjustRateAllocation(new_rate_settings.rate_control);
RTC_LOG(LS_VERBOSE) << "Adjusting allocation, fps = "
<< rate_settings.rate_control.framerate_fps << ", from "
<< new_allocation.ToString() << ", to "
<< adjusted_allocation.ToString();
new_rate_settings.rate_control.bitrate = adjusted_allocation;
}
return new_rate_settings;
}
uint32_t VideoStreamEncoder::GetInputFramerateFps() {
const uint32_t default_fps = max_framerate_ != -1 ? max_framerate_ : 30;
// This method may be called after we cleared out the frame_cadence_adapter_
// reference in Stop(). In such a situation it's probably not important with a
// decent estimate.
std::optional<uint32_t> input_fps =
frame_cadence_adapter_ ? frame_cadence_adapter_->GetInputFrameRateFps()
: std::nullopt;
if (!input_fps || *input_fps == 0) {
return default_fps;
}
return *input_fps;
}
void VideoStreamEncoder::SetEncoderRates(
const EncoderRateSettings& rate_settings) {
RTC_DCHECK_GT(rate_settings.rate_control.framerate_fps, 0.0);
bool rate_control_changed =
(!last_encoder_rate_settings_.has_value() ||
last_encoder_rate_settings_->rate_control != rate_settings.rate_control);
// For layer allocation signal we care only about the target bitrate (not the
// adjusted one) and the target fps.
bool layer_allocation_changed =
!last_encoder_rate_settings_.has_value() ||
last_encoder_rate_settings_->rate_control.target_bitrate !=
rate_settings.rate_control.target_bitrate ||
last_encoder_rate_settings_->rate_control.framerate_fps !=
rate_settings.rate_control.framerate_fps;
if (last_encoder_rate_settings_ != rate_settings) {
last_encoder_rate_settings_ = rate_settings;
}
if (!encoder_)
return;
// Make the cadence adapter know if streams were disabled.
for (int spatial_index = 0;
spatial_index != send_codec_.numberOfSimulcastStreams; ++spatial_index) {
frame_cadence_adapter_->UpdateLayerStatus(
spatial_index,
/*enabled=*/rate_settings.rate_control.target_bitrate
.GetSpatialLayerSum(spatial_index) > 0);
}
// `bitrate_allocation` is 0 it means that the network is down or the send
// pacer is full. We currently don't pass this on to the encoder since it is
// unclear how current encoder implementations behave when given a zero target
// bitrate.
// TODO(perkj): Make sure all known encoder implementations handle zero
// target bitrate and remove this check.
if (rate_settings.rate_control.bitrate.get_sum_bps() == 0)
return;
if (rate_control_changed) {
encoder_->SetRates(rate_settings.rate_control);
encoder_stats_observer_->OnBitrateAllocationUpdated(
send_codec_, rate_settings.rate_control.bitrate);
frame_encode_metadata_writer_.OnSetRates(
rate_settings.rate_control.bitrate,
static_cast<uint32_t>(rate_settings.rate_control.framerate_fps + 0.5));
stream_resource_manager_.SetEncoderRates(rate_settings.rate_control);
if (layer_allocation_changed &&
allocation_cb_type_ ==
BitrateAllocationCallbackType::kVideoLayersAllocation) {
sink_->OnVideoLayersAllocationUpdated(CreateVideoLayersAllocation(
send_codec_, rate_settings.rate_control, encoder_->GetEncoderInfo()));
}
}
if ((allocation_cb_type_ ==
BitrateAllocationCallbackType::kVideoBitrateAllocation) ||
(encoder_config_.content_type ==
VideoEncoderConfig::ContentType::kScreen &&
allocation_cb_type_ == BitrateAllocationCallbackType::
kVideoBitrateAllocationWhenScreenSharing)) {
sink_->OnBitrateAllocationUpdated(
// Update allocation according to info from encoder. An encoder may
// choose to not use all layers due to for example HW.
UpdateAllocationFromEncoderInfo(
rate_settings.rate_control.target_bitrate,
encoder_->GetEncoderInfo()));
}
}
void VideoStreamEncoder::MaybeEncodeVideoFrame(const VideoFrame& video_frame,
int64_t time_when_posted_us) {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
input_state_provider_.OnFrameSizeObserved(video_frame.size());
if (!last_frame_info_ || video_frame.width() != last_frame_info_->width ||
video_frame.height() != last_frame_info_->height ||
video_frame.is_texture() != last_frame_info_->is_texture) {
if ((!last_frame_info_ || video_frame.width() != last_frame_info_->width ||
video_frame.height() != last_frame_info_->height) &&
settings_.encoder_switch_request_callback && encoder_selector_) {
if (auto encoder = encoder_selector_->OnResolutionChange(
{video_frame.width(), video_frame.height()})) {
settings_.encoder_switch_request_callback->RequestEncoderSwitch(
*encoder, /*allow_default_fallback=*/false);
}
}
pending_encoder_reconfiguration_ = true;
last_frame_info_ = VideoFrameInfo(video_frame.width(), video_frame.height(),
video_frame.is_texture());
RTC_LOG(LS_INFO) << "Video frame parameters changed: dimensions="
<< last_frame_info_->width << "x"
<< last_frame_info_->height
<< ", texture=" << last_frame_info_->is_texture << ".";
// Force full frame update, since resolution has changed.
accumulated_update_rect_ =
VideoFrame::UpdateRect{0, 0, video_frame.width(), video_frame.height()};
}
// We have to create the encoder before the frame drop logic,
// because the latter depends on encoder_->GetScalingSettings.
// According to the testcase
// InitialFrameDropOffWhenEncoderDisabledScaling, the return value
// from GetScalingSettings should enable or disable the frame drop.
uint32_t framerate_fps = GetInputFramerateFps();
int64_t now_ms = env_.clock().TimeInMilliseconds();
if (pending_encoder_reconfiguration_) {
ReconfigureEncoder();
last_parameters_update_ms_.emplace(now_ms);
} else if (!last_parameters_update_ms_ ||
now_ms - *last_parameters_update_ms_ >=
kParameterUpdateIntervalMs) {
if (last_encoder_rate_settings_) {
// Clone rate settings before update, so that SetEncoderRates() will
// actually detect the change between the input and
// `last_encoder_rate_setings_`, triggering the call to SetRate() on the
// encoder.
EncoderRateSettings new_rate_settings = *last_encoder_rate_settings_;
new_rate_settings.rate_control.framerate_fps =
static_cast<double>(framerate_fps);
SetEncoderRates(UpdateBitrateAllocation(new_rate_settings));
}
last_parameters_update_ms_.emplace(now_ms);
}
// Because pending frame will be dropped in any case, we need to
// remember its updated region.
if (pending_frame_) {
ProcessDroppedFrame(*pending_frame_,
VideoStreamEncoderObserver::DropReason::kEncoderQueue);
}
if (DropDueToSize(video_frame.size())) {
RTC_LOG(LS_INFO) << "Dropping frame. Too large for target bitrate.";
stream_resource_manager_.OnFrameDroppedDueToSize();
// Storing references to a native buffer risks blocking frame capture.
if (video_frame.video_frame_buffer()->type() !=
VideoFrameBuffer::Type::kNative) {
pending_frame_ = video_frame;
pending_frame_post_time_us_ = time_when_posted_us;
} else {
// Ensure that any previously stored frame is dropped.
pending_frame_.reset();
ProcessDroppedFrame(
video_frame, VideoStreamEncoderObserver::DropReason::kEncoderQueue);
}
return;
}
stream_resource_manager_.OnMaybeEncodeFrame();
if (EncoderPaused()) {
// Storing references to a native buffer risks blocking frame capture.
if (video_frame.video_frame_buffer()->type() !=
VideoFrameBuffer::Type::kNative) {
if (pending_frame_)
TraceFrameDropStart();
pending_frame_ = video_frame;
pending_frame_post_time_us_ = time_when_posted_us;
} else {
// Ensure that any previously stored frame is dropped.
pending_frame_.reset();
TraceFrameDropStart();
ProcessDroppedFrame(
video_frame, VideoStreamEncoderObserver::DropReason::kEncoderQueue);
}
return;
}
pending_frame_.reset();
frame_dropper_.Leak(framerate_fps);
// Frame dropping is enabled iff frame dropping is not force-disabled, and
// rate controller is not trusted.
const bool frame_dropping_enabled =
!force_disable_frame_dropper_ &&
!encoder_info_.has_trusted_rate_controller;
frame_dropper_.Enable(frame_dropping_enabled);
if (frame_dropping_enabled && frame_dropper_.DropFrame()) {
RTC_LOG(LS_VERBOSE)
<< "Drop Frame: "
"target bitrate "
<< (last_encoder_rate_settings_
? last_encoder_rate_settings_->encoder_target.bps()
: 0)
<< ", input frame rate " << framerate_fps;
ProcessDroppedFrame(
video_frame,
VideoStreamEncoderObserver::DropReason::kMediaOptimization);
return;
}
EncodeVideoFrame(video_frame, time_when_posted_us);
}
void VideoStreamEncoder::EncodeVideoFrame(const VideoFrame& video_frame,
int64_t time_when_posted_us) {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
RTC_LOG(LS_VERBOSE) << __func__ << " posted " << time_when_posted_us
<< " ntp time " << video_frame.ntp_time_ms();
// If the encoder fail we can't continue to encode frames. When this happens
// the WebrtcVideoSender is notified and the whole VideoSendStream is
// recreated.
if (encoder_failed_ || !encoder_initialized_)
return;
// It's possible that EncodeVideoFrame can be called after we've completed
// a Stop() operation. Check if the encoder_ is set before continuing.
// See: bugs.webrtc.org/12857
if (!encoder_)
return;
TraceFrameDropEnd();
// Encoder metadata needs to be updated before encode complete callback.
const VideoEncoder::EncoderInfo info = encoder_->GetEncoderInfo();
if (info.implementation_name != encoder_info_.implementation_name ||
info.is_hardware_accelerated != encoder_info_.is_hardware_accelerated) {
encoder_stats_observer_->OnEncoderImplementationChanged({
.name = info.implementation_name,
.is_hardware_accelerated = info.is_hardware_accelerated,
});
if (bitrate_adjuster_) {
// Encoder implementation changed, reset overshoot detector states.
bitrate_adjuster_->Reset();
}
}
if (encoder_info_ != info) {
OnEncoderSettingsChanged();
stream_resource_manager_.ConfigureEncodeUsageResource();
// Re-configure scalers when encoder info changed. Consider two cases:
// 1. When the status of the scaler changes from enabled to disabled, if we
// don't do this CL, scaler will adapt up/down to trigger an unnecessary
// full ReconfigureEncoder() when the scaler should be banned.
// 2. When the status of the scaler changes from disabled to enabled, if we
// don't do this CL, scaler will not work until some code trigger
// ReconfigureEncoder(). In extreme cases, the scaler doesn't even work for
// a long time when we expect that the scaler should work.
stream_resource_manager_.ConfigureQualityScaler(info);
stream_resource_manager_.ConfigureBandwidthQualityScaler(info);
RTC_LOG(LS_INFO) << "[VSE] Encoder info changed to " << info.ToString();
}
if (bitrate_adjuster_) {
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
if (info.fps_allocation[si] != encoder_info_.fps_allocation[si]) {
bitrate_adjuster_->OnEncoderInfo(info);
break;
}
}
}
encoder_info_ = info;
last_encode_info_ms_ = env_.clock().TimeInMilliseconds();
VideoFrame out_frame(video_frame);
// Crop or scale the frame if needed. Dimension may be reduced to fit encoder
// requirements, e.g. some encoders may require them to be divisible by 4.
if ((crop_width_ > 0 || crop_height_ > 0) &&
(out_frame.video_frame_buffer()->type() !=
VideoFrameBuffer::Type::kNative ||
!info.supports_native_handle)) {
int cropped_width = video_frame.width() - crop_width_;
int cropped_height = video_frame.height() - crop_height_;
rtc::scoped_refptr<VideoFrameBuffer> cropped_buffer;
// TODO(ilnik): Remove scaling if cropping is too big, as it should never
// happen after SinkWants signaled correctly from ReconfigureEncoder.
VideoFrame::UpdateRect update_rect = video_frame.update_rect();
if (crop_width_ < 4 && crop_height_ < 4) {
// The difference is small, crop without scaling.
int offset_x = (crop_width_ + 1) / 2;
int offset_y = (crop_height_ + 1) / 2;
// Make sure offset is even so that u/v plane becomes aligned if u/v plane
// is subsampled.
offset_x -= offset_x % 2;
offset_y -= offset_y % 2;
cropped_buffer = video_frame.video_frame_buffer()->CropAndScale(
offset_x, offset_y, cropped_width, cropped_height, cropped_width,
cropped_height);
update_rect.offset_x -= offset_x;
update_rect.offset_y -= offset_y;
update_rect.Intersect(
VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height});
} else {
// The difference is large, scale it.
cropped_buffer = video_frame.video_frame_buffer()->Scale(cropped_width,
cropped_height);
if (!update_rect.IsEmpty()) {
// Since we can't reason about pixels after scaling, we invalidate whole
// picture, if anything changed.
update_rect =
VideoFrame::UpdateRect{0, 0, cropped_width, cropped_height};
}
}
if (!cropped_buffer) {
RTC_LOG(LS_ERROR) << "Cropping and scaling frame failed, dropping frame.";
return;
}
out_frame.set_video_frame_buffer(cropped_buffer);
out_frame.set_update_rect(update_rect);
out_frame.set_ntp_time_ms(video_frame.ntp_time_ms());
out_frame.set_capture_time_identifier(
video_frame.capture_time_identifier());
// Since accumulated_update_rect_ is constructed before cropping,
// we can't trust it. If any changes were pending, we invalidate whole
// frame here.
if (!accumulated_update_rect_.IsEmpty()) {
accumulated_update_rect_ =
VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()};
accumulated_update_rect_is_valid_ = false;
}
}
if (!accumulated_update_rect_is_valid_) {
out_frame.clear_update_rect();
} else if (!accumulated_update_rect_.IsEmpty() &&
out_frame.has_update_rect()) {
accumulated_update_rect_.Union(out_frame.update_rect());
accumulated_update_rect_.Intersect(
VideoFrame::UpdateRect{0, 0, out_frame.width(), out_frame.height()});
out_frame.set_update_rect(accumulated_update_rect_);
accumulated_update_rect_.MakeEmptyUpdate();
}
accumulated_update_rect_is_valid_ = true;
TRACE_EVENT_ASYNC_STEP_INTO0("webrtc", "Video", video_frame.render_time_ms(),
"Encode");
stream_resource_manager_.OnEncodeStarted(out_frame, time_when_posted_us);
// The encoder should get the size that it expects.
RTC_DCHECK(send_codec_.width <= out_frame.width() &&
send_codec_.height <= out_frame.height())
<< "Encoder configured to " << send_codec_.width << "x"
<< send_codec_.height << " received a too small frame "
<< out_frame.width() << "x" << out_frame.height();
TRACE_EVENT2("webrtc", "webrtc::VideoEncoder::Encode", "rtp_timestamp",
out_frame.rtp_timestamp(), "storage_representation",
out_frame.video_frame_buffer()->storage_representation());
frame_encode_metadata_writer_.OnEncodeStarted(out_frame);
const int32_t encode_status = encoder_->Encode(out_frame, &next_frame_types_);
was_encode_called_since_last_initialization_ = true;
if (encode_status < 0) {
RTC_LOG(LS_ERROR) << "Encoder failed, failing encoder format: "
<< encoder_config_.video_format.ToString();
RequestEncoderSwitch();
return;
}
for (auto& it : next_frame_types_) {
it = VideoFrameType::kVideoFrameDelta;
}
}
void VideoStreamEncoder::RequestRefreshFrame() {
worker_queue_->PostTask(SafeTask(task_safety_.flag(), [this] {
RTC_DCHECK_RUN_ON(worker_queue_);
video_source_sink_controller_.RequestRefreshFrame();
}));
}
void VideoStreamEncoder::SendKeyFrame(
const std::vector<VideoFrameType>& layers) {
if (!encoder_queue_->IsCurrent()) {
encoder_queue_->PostTask([this, layers] { SendKeyFrame(layers); });
return;
}
RTC_DCHECK_RUN_ON(encoder_queue_.get());
TRACE_EVENT0("webrtc", "OnKeyFrameRequest");
RTC_DCHECK(!next_frame_types_.empty());
if (frame_cadence_adapter_)
frame_cadence_adapter_->ProcessKeyFrameRequest();
if (!encoder_) {
RTC_DLOG(LS_INFO) << __func__ << " no encoder.";
return; // Shutting down, or not configured yet.
}
if (!layers.empty()) {
RTC_DCHECK_EQ(layers.size(), next_frame_types_.size());
for (size_t i = 0; i < layers.size() && i < next_frame_types_.size(); i++) {
next_frame_types_[i] = layers[i];
}
} else {
std::fill(next_frame_types_.begin(), next_frame_types_.end(),
VideoFrameType::kVideoFrameKey);
}
}
void VideoStreamEncoder::OnLossNotification(
const VideoEncoder::LossNotification& loss_notification) {
if (!encoder_queue_->IsCurrent()) {
encoder_queue_->PostTask(
[this, loss_notification] { OnLossNotification(loss_notification); });
return;
}
RTC_DCHECK_RUN_ON(encoder_queue_.get());
if (encoder_) {
encoder_->OnLossNotification(loss_notification);
}
}
EncodedImage VideoStreamEncoder::AugmentEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info) {
EncodedImage image_copy(encoded_image);
// We could either have simulcast layers or spatial layers.
// TODO(https://crbug.com/webrtc/14891): If we want to support a mix of
// simulcast and SVC we'll also need to consider the case where we have both
// simulcast and spatial indices.
int stream_idx = encoded_image.SpatialIndex().value_or(
encoded_image.SimulcastIndex().value_or(0));
frame_encode_metadata_writer_.FillMetadataAndTimingInfo(stream_idx,
&image_copy);
frame_encode_metadata_writer_.UpdateBitstream(codec_specific_info,
&image_copy);
VideoCodecType codec_type = codec_specific_info
? codec_specific_info->codecType
: VideoCodecType::kVideoCodecGeneric;
if (image_copy.qp_ < 0 && qp_parsing_allowed_) {
// Parse encoded frame QP if that was not provided by encoder.
image_copy.qp_ =
qp_parser_
.Parse(codec_type, stream_idx, image_copy.data(), image_copy.size())
.value_or(-1);
}
TRACE_EVENT2("webrtc", "VideoStreamEncoder::AugmentEncodedImage",
"stream_idx", stream_idx, "qp", image_copy.qp_);
RTC_LOG(LS_VERBOSE) << __func__ << " ntp time " << encoded_image.NtpTimeMs()
<< " stream_idx " << stream_idx << " qp "
<< image_copy.qp_;
return image_copy;
}
EncodedImageCallback::Result VideoStreamEncoder::OnEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info) {
TRACE_EVENT_INSTANT1("webrtc", "VCMEncodedFrameCallback::Encoded",
TRACE_EVENT_SCOPE_GLOBAL, "timestamp",
encoded_image.RtpTimestamp());
const size_t simulcast_index = encoded_image.SimulcastIndex().value_or(0);
const VideoCodecType codec_type = codec_specific_info
? codec_specific_info->codecType
: VideoCodecType::kVideoCodecGeneric;
EncodedImage image_copy =
AugmentEncodedImage(encoded_image, codec_specific_info);
// Post a task because `send_codec_` requires `encoder_queue_` lock and we
// need to update on quality convergence.
unsigned int image_width = image_copy._encodedWidth;
unsigned int image_height = image_copy._encodedHeight;
encoder_queue_->PostTask([this, codec_type, image_width, image_height,
simulcast_index, qp = image_copy.qp_,
is_steady_state_refresh_frame =
image_copy.IsSteadyStateRefreshFrame()] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
// Check if the encoded image has reached target quality.
bool at_target_quality =
quality_convergence_controller_.AddSampleAndCheckTargetQuality(
simulcast_index, qp, is_steady_state_refresh_frame);
// Let the frame cadence adapter know about quality convergence.
if (frame_cadence_adapter_)
frame_cadence_adapter_->UpdateLayerQualityConvergence(simulcast_index,
at_target_quality);
// Currently, the internal quality scaler is used for VP9 instead of the
// webrtc qp scaler (in the no-svc case or if only a single spatial layer is
// encoded). It has to be explicitly detected and reported to adaptation
// metrics.
if (codec_type == VideoCodecType::kVideoCodecVP9 &&
send_codec_.VP9()->automaticResizeOn) {
unsigned int expected_width = send_codec_.width;
unsigned int expected_height = send_codec_.height;
int num_active_layers = 0;
for (int i = 0; i < send_codec_.VP9()->numberOfSpatialLayers; ++i) {
if (send_codec_.spatialLayers[i].active) {
++num_active_layers;
expected_width = send_codec_.spatialLayers[i].width;
expected_height = send_codec_.spatialLayers[i].height;
}
}
RTC_DCHECK_LE(num_active_layers, 1)
<< "VP9 quality scaling is enabled for "
"SVC with several active layers.";
encoder_stats_observer_->OnEncoderInternalScalerUpdate(
image_width < expected_width || image_height < expected_height);
}
});
// Encoded is called on whatever thread the real encoder implementation run
// on. In the case of hardware encoders, there might be several encoders
// running in parallel on different threads.
encoder_stats_observer_->OnSendEncodedImage(image_copy, codec_specific_info);
EncodedImageCallback::Result result =
sink_->OnEncodedImage(image_copy, codec_specific_info);
// We are only interested in propagating the meta-data about the image, not
// encoded data itself, to the post encode function. Since we cannot be sure
// the pointer will still be valid when run on the task queue, set it to null.
DataSize frame_size = DataSize::Bytes(image_copy.size());
image_copy.ClearEncodedData();
int temporal_index = 0;
if (encoded_image.TemporalIndex()) {
// Give precedence to the metadata on EncodedImage, if available.
temporal_index = *encoded_image.TemporalIndex();
} else if (codec_specific_info) {
if (codec_specific_info->codecType == kVideoCodecVP9) {
temporal_index = codec_specific_info->codecSpecific.VP9.temporal_idx;
} else if (codec_specific_info->codecType == kVideoCodecVP8) {
temporal_index = codec_specific_info->codecSpecific.VP8.temporalIdx;
}
}
if (temporal_index == kNoTemporalIdx) {
temporal_index = 0;
}
RunPostEncode(image_copy, env_.clock().CurrentTime().us(), temporal_index,
frame_size);
if (result.error == Result::OK) {
// In case of an internal encoder running on a separate thread, the
// decision to drop a frame might be a frame late and signaled via
// atomic flag. This is because we can't easily wait for the worker thread
// without risking deadlocks, eg during shutdown when the worker thread
// might be waiting for the internal encoder threads to stop.
if (pending_frame_drops_.load() > 0) {
int pending_drops = pending_frame_drops_.fetch_sub(1);
RTC_DCHECK_GT(pending_drops, 0);
result.drop_next_frame = true;
}
}
return result;
}
void VideoStreamEncoder::OnDroppedFrame(DropReason reason) {
sink_->OnDroppedFrame(reason);
encoder_queue_->PostTask([this, reason] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
stream_resource_manager_.OnFrameDropped(reason);
});
}
DataRate VideoStreamEncoder::UpdateTargetBitrate(DataRate target_bitrate,
double cwnd_reduce_ratio) {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
DataRate updated_target_bitrate = target_bitrate;
// Drop frames when congestion window pushback ratio is larger than 1
// percent and target bitrate is larger than codec min bitrate.
// When target_bitrate is 0 means codec is paused, skip frame dropping.
if (cwnd_reduce_ratio > 0.01 && target_bitrate.bps() > 0 &&
target_bitrate.bps() > send_codec_.minBitrate * 1000) {
int reduce_bitrate_bps = std::min(
static_cast<int>(target_bitrate.bps() * cwnd_reduce_ratio),
static_cast<int>(target_bitrate.bps() - send_codec_.minBitrate * 1000));
if (reduce_bitrate_bps > 0) {
// At maximum the congestion window can drop 1/2 frames.
cwnd_frame_drop_interval_ = std::max(
2, static_cast<int>(target_bitrate.bps() / reduce_bitrate_bps));
// Reduce target bitrate accordingly.
updated_target_bitrate =
target_bitrate - (target_bitrate / cwnd_frame_drop_interval_.value());
return updated_target_bitrate;
}
}
cwnd_frame_drop_interval_.reset();
return updated_target_bitrate;
}
void VideoStreamEncoder::OnBitrateUpdated(DataRate target_bitrate,
DataRate stable_target_bitrate,
DataRate link_allocation,
uint8_t fraction_lost,
int64_t round_trip_time_ms,
double cwnd_reduce_ratio) {
RTC_DCHECK_GE(link_allocation, target_bitrate);
if (!encoder_queue_->IsCurrent()) {
encoder_queue_->PostTask([this, target_bitrate, stable_target_bitrate,
link_allocation, fraction_lost,
round_trip_time_ms, cwnd_reduce_ratio] {
DataRate updated_target_bitrate =
UpdateTargetBitrate(target_bitrate, cwnd_reduce_ratio);
OnBitrateUpdated(updated_target_bitrate, stable_target_bitrate,
link_allocation, fraction_lost, round_trip_time_ms,
cwnd_reduce_ratio);
});
return;
}
RTC_DCHECK_RUN_ON(encoder_queue_.get());
const bool video_is_suspended = target_bitrate == DataRate::Zero();
const bool video_suspension_changed = video_is_suspended != EncoderPaused();
if (!video_is_suspended && settings_.encoder_switch_request_callback &&
encoder_selector_) {
if (auto encoder = encoder_selector_->OnAvailableBitrate(link_allocation)) {
settings_.encoder_switch_request_callback->RequestEncoderSwitch(
*encoder, /*allow_default_fallback=*/false);
}
}
RTC_DCHECK(sink_) << "sink_ must be set before the encoder is active.";
RTC_LOG(LS_VERBOSE) << "OnBitrateUpdated, bitrate " << target_bitrate.bps()
<< " stable bitrate = " << stable_target_bitrate.bps()
<< " link allocation bitrate = " << link_allocation.bps()
<< " packet loss " << static_cast<int>(fraction_lost)
<< " rtt " << round_trip_time_ms;
if (encoder_) {
encoder_->OnPacketLossRateUpdate(static_cast<float>(fraction_lost) / 256.f);
encoder_->OnRttUpdate(round_trip_time_ms);
}
uint32_t framerate_fps = GetInputFramerateFps();
frame_dropper_.SetRates((target_bitrate.bps() + 500) / 1000, framerate_fps);
EncoderRateSettings new_rate_settings{
VideoBitrateAllocation(), static_cast<double>(framerate_fps),
link_allocation, target_bitrate, stable_target_bitrate};
SetEncoderRates(UpdateBitrateAllocation(new_rate_settings));
if (target_bitrate.bps() != 0)
encoder_target_bitrate_bps_ = target_bitrate.bps();
stream_resource_manager_.SetTargetBitrate(target_bitrate);
if (video_suspension_changed) {
RTC_LOG(LS_INFO) << "Video suspend state changed to: "
<< (video_is_suspended ? "suspended" : "not suspended");
encoder_stats_observer_->OnSuspendChange(video_is_suspended);
if (!video_is_suspended && pending_frame_ &&
!DropDueToSize(pending_frame_->size())) {
// A pending stored frame can be processed.
int64_t pending_time_us =
env_.clock().CurrentTime().us() - pending_frame_post_time_us_;
if (pending_time_us < kPendingFrameTimeoutMs * 1000)
EncodeVideoFrame(*pending_frame_, pending_frame_post_time_us_);
pending_frame_.reset();
} else if (!video_is_suspended && !pending_frame_ &&
encoder_paused_and_dropped_frame_) {
// A frame was enqueued during pause-state, but since it was a native
// frame we could not store it in `pending_frame_` so request a
// refresh-frame instead.
RequestRefreshFrame();
}
}
}
bool VideoStreamEncoder::DropDueToSize(uint32_t source_pixel_count) const {
if (!encoder_ || !stream_resource_manager_.DropInitialFrames() ||
!encoder_target_bitrate_bps_ ||
!stream_resource_manager_.SingleActiveStreamPixels()) {
return false;
}
int pixel_count = std::min(
source_pixel_count, *stream_resource_manager_.SingleActiveStreamPixels());
uint32_t bitrate_bps =
stream_resource_manager_.UseBandwidthAllocationBps().value_or(
encoder_target_bitrate_bps_.value());
std::optional<VideoEncoder::ResolutionBitrateLimits> encoder_bitrate_limits =
GetEncoderInfoWithBitrateLimitUpdate(
encoder_->GetEncoderInfo(), encoder_config_, default_limits_allowed_)
.GetEncoderBitrateLimitsForResolution(pixel_count);
if (encoder_bitrate_limits.has_value()) {
// Use bitrate limits provided by encoder.
return bitrate_bps <
static_cast<uint32_t>(encoder_bitrate_limits->min_start_bitrate_bps);
}
if (bitrate_bps < 300000 /* qvga */) {
return pixel_count > 320 * 240;
} else if (bitrate_bps < 500000 /* vga */) {
return pixel_count > 640 * 480;
}
return false;
}
void VideoStreamEncoder::OnVideoSourceRestrictionsUpdated(
VideoSourceRestrictions restrictions,
const VideoAdaptationCounters& adaptation_counters,
rtc::scoped_refptr<Resource> reason,
const VideoSourceRestrictions& unfiltered_restrictions) {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
RTC_LOG(LS_INFO) << "Updating sink restrictions from "
<< (reason ? reason->Name() : std::string("<null>"))
<< " to " << restrictions.ToString();
if (frame_cadence_adapter_) {
frame_cadence_adapter_->UpdateVideoSourceRestrictions(
restrictions.max_frame_rate());
}
bool max_pixels_updated =
(latest_restrictions_.has_value()
? latest_restrictions_->max_pixels_per_frame()
: std::nullopt) != restrictions.max_pixels_per_frame();
// TODO(webrtc:14451) Split video_source_sink_controller_
// so that ownership on restrictions/wants is kept on &encoder_queue_
latest_restrictions_ = restrictions;
// When the `requested_resolution` API is used, we need to reconfigure any
// time the restricted resolution is updated. When that API isn't used, the
// encoder settings are relative to the frame size and reconfiguration happens
// automatically on new frame size and we don't need to reconfigure here.
if (encoder_ && max_pixels_updated &&
encoder_config_.HasRequestedResolution()) {
// The encoder will be reconfigured on the next frame.
pending_encoder_reconfiguration_ = true;
}
worker_queue_->PostTask(SafeTask(
task_safety_.flag(), [this, restrictions = std::move(restrictions)]() {
RTC_DCHECK_RUN_ON(worker_queue_);
video_source_sink_controller_.SetRestrictions(std::move(restrictions));
video_source_sink_controller_.PushSourceSinkSettings();
}));
}
void VideoStreamEncoder::RunPostEncode(const EncodedImage& encoded_image,
int64_t time_sent_us,
int temporal_index,
DataSize frame_size) {
if (!encoder_queue_->IsCurrent()) {
encoder_queue_->PostTask([this, encoded_image, time_sent_us, temporal_index,
frame_size] {
RunPostEncode(encoded_image, time_sent_us, temporal_index, frame_size);
});
return;
}
RTC_DCHECK_RUN_ON(encoder_queue_.get());
std::optional<int> encode_duration_us;
if (encoded_image.timing_.flags != VideoSendTiming::kInvalid) {
encode_duration_us =
TimeDelta::Millis(encoded_image.timing_.encode_finish_ms -
encoded_image.timing_.encode_start_ms)
.us();
}
// Run post encode tasks, such as overuse detection and frame rate/drop
// stats for internal encoders.
const bool keyframe =
encoded_image._frameType == VideoFrameType::kVideoFrameKey;
if (!frame_size.IsZero()) {
frame_dropper_.Fill(frame_size.bytes(), !keyframe);
}
stream_resource_manager_.OnEncodeCompleted(encoded_image, time_sent_us,
encode_duration_us, frame_size);
if (bitrate_adjuster_) {
// We could either have simulcast layers or spatial layers.
// TODO(https://crbug.com/webrtc/14891): If we want to support a mix of
// simulcast and SVC we'll also need to consider the case where we have both
// simulcast and spatial indices.
int stream_index = std::max(encoded_image.SimulcastIndex().value_or(0),
encoded_image.SpatialIndex().value_or(0));
bitrate_adjuster_->OnEncodedFrame(frame_size, stream_index, temporal_index);
}
}
void VideoStreamEncoder::ReleaseEncoder() {
if (!encoder_ || !encoder_initialized_) {
return;
}
encoder_->Release();
encoder_initialized_ = false;
TRACE_EVENT0("webrtc", "VCMGenericEncoder::Release");
}
void VideoStreamEncoder::InjectAdaptationResource(
rtc::scoped_refptr<Resource> resource,
VideoAdaptationReason reason) {
encoder_queue_->PostTask([this, resource = std::move(resource), reason] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
additional_resources_.push_back(resource);
stream_resource_manager_.AddResource(resource, reason);
});
}
void VideoStreamEncoder::InjectAdaptationConstraint(
AdaptationConstraint* adaptation_constraint) {
rtc::Event event;
encoder_queue_->PostTask([this, adaptation_constraint, &event] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
if (!resource_adaptation_processor_) {
// The VideoStreamEncoder was stopped and the processor destroyed before
// this task had a chance to execute. No action needed.
return;
}
adaptation_constraints_.push_back(adaptation_constraint);
video_stream_adapter_->AddAdaptationConstraint(adaptation_constraint);
event.Set();
});
event.Wait(rtc::Event::kForever);
}
void VideoStreamEncoder::AddRestrictionsListenerForTesting(
VideoSourceRestrictionsListener* restrictions_listener) {
rtc::Event event;
encoder_queue_->PostTask([this, restrictions_listener, &event] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
RTC_DCHECK(resource_adaptation_processor_);
video_stream_adapter_->AddRestrictionsListener(restrictions_listener);
event.Set();
});
event.Wait(rtc::Event::kForever);
}
void VideoStreamEncoder::RemoveRestrictionsListenerForTesting(
VideoSourceRestrictionsListener* restrictions_listener) {
rtc::Event event;
encoder_queue_->PostTask([this, restrictions_listener, &event] {
RTC_DCHECK_RUN_ON(encoder_queue_.get());
RTC_DCHECK(resource_adaptation_processor_);
video_stream_adapter_->RemoveRestrictionsListener(restrictions_listener);
event.Set();
});
event.Wait(rtc::Event::kForever);
}
// RTC_RUN_ON(&encoder_queue_)
void VideoStreamEncoder::ProcessDroppedFrame(
const VideoFrame& frame,
VideoStreamEncoderObserver::DropReason reason) {
accumulated_update_rect_.Union(frame.update_rect());
accumulated_update_rect_is_valid_ &= frame.has_update_rect();
if (auto converted_reason = MaybeConvertDropReason(reason)) {
OnDroppedFrame(*converted_reason);
}
encoder_stats_observer_->OnFrameDropped(reason);
}
} // namespace webrtc