| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "rtc_base/openssl_identity.h" |
| |
| #include <memory> |
| #include <utility> |
| #include <vector> |
| |
| #if defined(WEBRTC_WIN) |
| // Must be included first before openssl headers. |
| #include "rtc_base/win32.h" // NOLINT |
| #endif // WEBRTC_WIN |
| |
| #include <openssl/bio.h> |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/pem.h> |
| #include <openssl/rsa.h> |
| #include <stdint.h> |
| |
| #include "absl/memory/memory.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| #include "rtc_base/openssl.h" |
| #include "rtc_base/openssl_utility.h" |
| |
| namespace rtc { |
| |
| // We could have exposed a myriad of parameters for the crypto stuff, |
| // but keeping it simple seems best. |
| |
| // Generate a key pair. Caller is responsible for freeing the returned object. |
| static EVP_PKEY* MakeKey(const KeyParams& key_params) { |
| RTC_LOG(LS_INFO) << "Making key pair"; |
| EVP_PKEY* pkey = EVP_PKEY_new(); |
| if (key_params.type() == KT_RSA) { |
| int key_length = key_params.rsa_params().mod_size; |
| BIGNUM* exponent = BN_new(); |
| RSA* rsa = RSA_new(); |
| if (!pkey || !exponent || !rsa || |
| !BN_set_word(exponent, key_params.rsa_params().pub_exp) || |
| !RSA_generate_key_ex(rsa, key_length, exponent, nullptr) || |
| !EVP_PKEY_assign_RSA(pkey, rsa)) { |
| EVP_PKEY_free(pkey); |
| BN_free(exponent); |
| RSA_free(rsa); |
| RTC_LOG(LS_ERROR) << "Failed to make RSA key pair"; |
| return nullptr; |
| } |
| // ownership of rsa struct was assigned, don't free it. |
| BN_free(exponent); |
| } else if (key_params.type() == KT_ECDSA) { |
| if (key_params.ec_curve() == EC_NIST_P256) { |
| EC_KEY* ec_key = EC_KEY_new_by_curve_name(NID_X9_62_prime256v1); |
| |
| // Ensure curve name is included when EC key is serialized. |
| // Without this call, OpenSSL versions before 1.1.0 will create |
| // certificates that don't work for TLS. |
| // This is a no-op for BoringSSL and OpenSSL 1.1.0+ |
| EC_KEY_set_asn1_flag(ec_key, OPENSSL_EC_NAMED_CURVE); |
| |
| if (!pkey || !ec_key || !EC_KEY_generate_key(ec_key) || |
| !EVP_PKEY_assign_EC_KEY(pkey, ec_key)) { |
| EVP_PKEY_free(pkey); |
| EC_KEY_free(ec_key); |
| RTC_LOG(LS_ERROR) << "Failed to make EC key pair"; |
| return nullptr; |
| } |
| // ownership of ec_key struct was assigned, don't free it. |
| } else { |
| // Add generation of any other curves here. |
| EVP_PKEY_free(pkey); |
| RTC_LOG(LS_ERROR) << "ECDSA key requested for unknown curve"; |
| return nullptr; |
| } |
| } else { |
| EVP_PKEY_free(pkey); |
| RTC_LOG(LS_ERROR) << "Key type requested not understood"; |
| return nullptr; |
| } |
| |
| RTC_LOG(LS_INFO) << "Returning key pair"; |
| return pkey; |
| } |
| |
| OpenSSLKeyPair* OpenSSLKeyPair::Generate(const KeyParams& key_params) { |
| EVP_PKEY* pkey = MakeKey(key_params); |
| if (!pkey) { |
| openssl::LogSSLErrors("Generating key pair"); |
| return nullptr; |
| } |
| return new OpenSSLKeyPair(pkey); |
| } |
| |
| OpenSSLKeyPair* OpenSSLKeyPair::FromPrivateKeyPEMString( |
| const std::string& pem_string) { |
| BIO* bio = BIO_new_mem_buf(const_cast<char*>(pem_string.c_str()), -1); |
| if (!bio) { |
| RTC_LOG(LS_ERROR) << "Failed to create a new BIO buffer."; |
| return nullptr; |
| } |
| BIO_set_mem_eof_return(bio, 0); |
| EVP_PKEY* pkey = |
| PEM_read_bio_PrivateKey(bio, nullptr, nullptr, const_cast<char*>("\0")); |
| BIO_free(bio); // Frees the BIO, but not the pointed-to string. |
| if (!pkey) { |
| RTC_LOG(LS_ERROR) << "Failed to create the private key from PEM string."; |
| return nullptr; |
| } |
| if (EVP_PKEY_missing_parameters(pkey) != 0) { |
| RTC_LOG(LS_ERROR) |
| << "The resulting key pair is missing public key parameters."; |
| EVP_PKEY_free(pkey); |
| return nullptr; |
| } |
| return new OpenSSLKeyPair(pkey); |
| } |
| |
| OpenSSLKeyPair::~OpenSSLKeyPair() { |
| EVP_PKEY_free(pkey_); |
| } |
| |
| OpenSSLKeyPair* OpenSSLKeyPair::GetReference() { |
| AddReference(); |
| return new OpenSSLKeyPair(pkey_); |
| } |
| |
| void OpenSSLKeyPair::AddReference() { |
| EVP_PKEY_up_ref(pkey_); |
| } |
| |
| std::string OpenSSLKeyPair::PrivateKeyToPEMString() const { |
| BIO* temp_memory_bio = BIO_new(BIO_s_mem()); |
| if (!temp_memory_bio) { |
| RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; |
| RTC_NOTREACHED(); |
| return ""; |
| } |
| if (!PEM_write_bio_PrivateKey(temp_memory_bio, pkey_, nullptr, nullptr, 0, |
| nullptr, nullptr)) { |
| RTC_LOG_F(LS_ERROR) << "Failed to write private key"; |
| BIO_free(temp_memory_bio); |
| RTC_NOTREACHED(); |
| return ""; |
| } |
| BIO_write(temp_memory_bio, "\0", 1); |
| char* buffer; |
| BIO_get_mem_data(temp_memory_bio, &buffer); |
| std::string priv_key_str = buffer; |
| BIO_free(temp_memory_bio); |
| return priv_key_str; |
| } |
| |
| std::string OpenSSLKeyPair::PublicKeyToPEMString() const { |
| BIO* temp_memory_bio = BIO_new(BIO_s_mem()); |
| if (!temp_memory_bio) { |
| RTC_LOG_F(LS_ERROR) << "Failed to allocate temporary memory bio"; |
| RTC_NOTREACHED(); |
| return ""; |
| } |
| if (!PEM_write_bio_PUBKEY(temp_memory_bio, pkey_)) { |
| RTC_LOG_F(LS_ERROR) << "Failed to write public key"; |
| BIO_free(temp_memory_bio); |
| RTC_NOTREACHED(); |
| return ""; |
| } |
| BIO_write(temp_memory_bio, "\0", 1); |
| char* buffer; |
| BIO_get_mem_data(temp_memory_bio, &buffer); |
| std::string pub_key_str = buffer; |
| BIO_free(temp_memory_bio); |
| return pub_key_str; |
| } |
| |
| bool OpenSSLKeyPair::operator==(const OpenSSLKeyPair& other) const { |
| return EVP_PKEY_cmp(this->pkey_, other.pkey_) == 1; |
| } |
| |
| bool OpenSSLKeyPair::operator!=(const OpenSSLKeyPair& other) const { |
| return !(*this == other); |
| } |
| |
| OpenSSLIdentity::OpenSSLIdentity( |
| std::unique_ptr<OpenSSLKeyPair> key_pair, |
| std::unique_ptr<OpenSSLCertificate> certificate) |
| : key_pair_(std::move(key_pair)) { |
| RTC_DCHECK(key_pair_ != nullptr); |
| RTC_DCHECK(certificate != nullptr); |
| std::vector<std::unique_ptr<SSLCertificate>> certs; |
| certs.push_back(std::move(certificate)); |
| cert_chain_.reset(new SSLCertChain(std::move(certs))); |
| } |
| |
| OpenSSLIdentity::OpenSSLIdentity(std::unique_ptr<OpenSSLKeyPair> key_pair, |
| std::unique_ptr<SSLCertChain> cert_chain) |
| : key_pair_(std::move(key_pair)), cert_chain_(std::move(cert_chain)) { |
| RTC_DCHECK(key_pair_ != nullptr); |
| RTC_DCHECK(cert_chain_ != nullptr); |
| } |
| |
| OpenSSLIdentity::~OpenSSLIdentity() = default; |
| |
| OpenSSLIdentity* OpenSSLIdentity::GenerateInternal( |
| const SSLIdentityParams& params) { |
| std::unique_ptr<OpenSSLKeyPair> key_pair( |
| OpenSSLKeyPair::Generate(params.key_params)); |
| if (key_pair) { |
| std::unique_ptr<OpenSSLCertificate> certificate( |
| OpenSSLCertificate::Generate(key_pair.get(), params)); |
| if (certificate != nullptr) |
| return new OpenSSLIdentity(std::move(key_pair), std::move(certificate)); |
| } |
| RTC_LOG(LS_INFO) << "Identity generation failed"; |
| return nullptr; |
| } |
| |
| OpenSSLIdentity* OpenSSLIdentity::GenerateWithExpiration( |
| const std::string& common_name, |
| const KeyParams& key_params, |
| time_t certificate_lifetime) { |
| SSLIdentityParams params; |
| params.key_params = key_params; |
| params.common_name = common_name; |
| time_t now = time(nullptr); |
| params.not_before = now + kCertificateWindowInSeconds; |
| params.not_after = now + certificate_lifetime; |
| if (params.not_before > params.not_after) |
| return nullptr; |
| return GenerateInternal(params); |
| } |
| |
| OpenSSLIdentity* OpenSSLIdentity::GenerateForTest( |
| const SSLIdentityParams& params) { |
| return GenerateInternal(params); |
| } |
| |
| SSLIdentity* OpenSSLIdentity::FromPEMStrings(const std::string& private_key, |
| const std::string& certificate) { |
| std::unique_ptr<OpenSSLCertificate> cert( |
| OpenSSLCertificate::FromPEMString(certificate)); |
| if (!cert) { |
| RTC_LOG(LS_ERROR) << "Failed to create OpenSSLCertificate from PEM string."; |
| return nullptr; |
| } |
| |
| std::unique_ptr<OpenSSLKeyPair> key_pair( |
| OpenSSLKeyPair::FromPrivateKeyPEMString(private_key)); |
| if (!key_pair) { |
| RTC_LOG(LS_ERROR) << "Failed to create key pair from PEM string."; |
| return nullptr; |
| } |
| |
| return new OpenSSLIdentity(std::move(key_pair), std::move(cert)); |
| } |
| |
| SSLIdentity* OpenSSLIdentity::FromPEMChainStrings( |
| const std::string& private_key, |
| const std::string& certificate_chain) { |
| BIO* bio = BIO_new_mem_buf(certificate_chain.data(), |
| rtc::dchecked_cast<int>(certificate_chain.size())); |
| if (!bio) |
| return nullptr; |
| BIO_set_mem_eof_return(bio, 0); |
| std::vector<std::unique_ptr<SSLCertificate>> certs; |
| while (true) { |
| X509* x509 = |
| PEM_read_bio_X509(bio, nullptr, nullptr, const_cast<char*>("\0")); |
| if (x509 == nullptr) { |
| uint32_t err = ERR_peek_error(); |
| if (ERR_GET_LIB(err) == ERR_LIB_PEM && |
| ERR_GET_REASON(err) == PEM_R_NO_START_LINE) { |
| break; |
| } |
| RTC_LOG(LS_ERROR) << "Failed to parse certificate from PEM string."; |
| BIO_free(bio); |
| return nullptr; |
| } |
| certs.emplace_back(new OpenSSLCertificate(x509)); |
| X509_free(x509); |
| } |
| BIO_free(bio); |
| if (certs.empty()) { |
| RTC_LOG(LS_ERROR) << "Found no certificates in PEM string."; |
| return nullptr; |
| } |
| |
| std::unique_ptr<OpenSSLKeyPair> key_pair( |
| OpenSSLKeyPair::FromPrivateKeyPEMString(private_key)); |
| if (!key_pair) { |
| RTC_LOG(LS_ERROR) << "Failed to create key pair from PEM string."; |
| return nullptr; |
| } |
| |
| return new OpenSSLIdentity(std::move(key_pair), |
| absl::make_unique<SSLCertChain>(std::move(certs))); |
| } |
| |
| const OpenSSLCertificate& OpenSSLIdentity::certificate() const { |
| return *static_cast<const OpenSSLCertificate*>(&cert_chain_->Get(0)); |
| } |
| |
| const SSLCertChain& OpenSSLIdentity::cert_chain() const { |
| return *cert_chain_.get(); |
| } |
| |
| OpenSSLIdentity* OpenSSLIdentity::GetReference() const { |
| return new OpenSSLIdentity(absl::WrapUnique(key_pair_->GetReference()), |
| cert_chain_->Clone()); |
| } |
| |
| bool OpenSSLIdentity::ConfigureIdentity(SSL_CTX* ctx) { |
| // 1 is the documented success return code. |
| const OpenSSLCertificate* cert = &certificate(); |
| if (SSL_CTX_use_certificate(ctx, cert->x509()) != 1 || |
| SSL_CTX_use_PrivateKey(ctx, key_pair_->pkey()) != 1) { |
| openssl::LogSSLErrors("Configuring key and certificate"); |
| return false; |
| } |
| // If a chain is available, use it. |
| for (size_t i = 1; i < cert_chain_->GetSize(); ++i) { |
| cert = static_cast<const OpenSSLCertificate*>(&cert_chain_->Get(i)); |
| if (SSL_CTX_add1_chain_cert(ctx, cert->x509()) != 1) { |
| openssl::LogSSLErrors("Configuring intermediate certificate"); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| std::string OpenSSLIdentity::PrivateKeyToPEMString() const { |
| return key_pair_->PrivateKeyToPEMString(); |
| } |
| |
| std::string OpenSSLIdentity::PublicKeyToPEMString() const { |
| return key_pair_->PublicKeyToPEMString(); |
| } |
| |
| bool OpenSSLIdentity::operator==(const OpenSSLIdentity& other) const { |
| return *this->key_pair_ == *other.key_pair_ && |
| this->certificate() == other.certificate(); |
| } |
| |
| bool OpenSSLIdentity::operator!=(const OpenSSLIdentity& other) const { |
| return !(*this == other); |
| } |
| |
| } // namespace rtc |