blob: 406d9c7d4aa599d0d69cbcd51e85f206fb4cec8c [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/base/common.h"
#include "webrtc/base/gunit.h"
#include "webrtc/base/stringencode.h"
#include "webrtc/base/stringutils.h"
namespace rtc {
TEST(Utf8EncodeTest, EncodeDecode) {
const struct Utf8Test {
const char* encoded;
size_t encsize, enclen;
unsigned long decoded;
} kTests[] = {
{ "a ", 5, 1, 'a' },
{ "\x7F ", 5, 1, 0x7F },
{ "\xC2\x80 ", 5, 2, 0x80 },
{ "\xDF\xBF ", 5, 2, 0x7FF },
{ "\xE0\xA0\x80 ", 5, 3, 0x800 },
{ "\xEF\xBF\xBF ", 5, 3, 0xFFFF },
{ "\xF0\x90\x80\x80 ", 5, 4, 0x10000 },
{ "\xF0\x90\x80\x80 ", 3, 0, 0x10000 },
{ "\xF0\xF0\x80\x80 ", 5, 0, 0 },
{ "\xF0\x90\x80 ", 5, 0, 0 },
{ "\x90\x80\x80 ", 5, 0, 0 },
{ NULL, 0, 0 },
};
for (size_t i = 0; kTests[i].encoded; ++i) {
unsigned long val = 0;
ASSERT_EQ(kTests[i].enclen, utf8_decode(kTests[i].encoded,
kTests[i].encsize,
&val));
unsigned long result = (kTests[i].enclen == 0) ? 0 : kTests[i].decoded;
ASSERT_EQ(result, val);
if (kTests[i].decoded == 0) {
// Not an interesting encoding test case
continue;
}
char buffer[5];
memset(buffer, 0x01, ARRAY_SIZE(buffer));
ASSERT_EQ(kTests[i].enclen, utf8_encode(buffer,
kTests[i].encsize,
kTests[i].decoded));
ASSERT_TRUE(memcmp(buffer, kTests[i].encoded, kTests[i].enclen) == 0);
// Make sure remainder of buffer is unchanged
ASSERT_TRUE(memory_check(buffer + kTests[i].enclen,
0x1,
ARRAY_SIZE(buffer) - kTests[i].enclen));
}
}
class HexEncodeTest : public testing::Test {
public:
HexEncodeTest() : enc_res_(0), dec_res_(0) {
for (size_t i = 0; i < sizeof(data_); ++i) {
data_[i] = (i + 128) & 0xff;
}
memset(decoded_, 0x7f, sizeof(decoded_));
}
char data_[10];
char encoded_[31];
char decoded_[11];
size_t enc_res_;
size_t dec_res_;
};
// Test that we can convert to/from hex with no delimiter.
TEST_F(HexEncodeTest, TestWithNoDelimiter) {
enc_res_ = hex_encode(encoded_, sizeof(encoded_), data_, sizeof(data_));
ASSERT_EQ(sizeof(data_) * 2, enc_res_);
ASSERT_STREQ("80818283848586878889", encoded_);
dec_res_ = hex_decode(decoded_, sizeof(decoded_), encoded_, enc_res_);
ASSERT_EQ(sizeof(data_), dec_res_);
ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_));
}
// Test that we can convert to/from hex with a colon delimiter.
TEST_F(HexEncodeTest, TestWithDelimiter) {
enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(encoded_),
data_, sizeof(data_), ':');
ASSERT_EQ(sizeof(data_) * 3 - 1, enc_res_);
ASSERT_STREQ("80:81:82:83:84:85:86:87:88:89", encoded_);
dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_),
encoded_, enc_res_, ':');
ASSERT_EQ(sizeof(data_), dec_res_);
ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_));
}
// Test that encoding with one delimiter and decoding with another fails.
TEST_F(HexEncodeTest, TestWithWrongDelimiter) {
enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(encoded_),
data_, sizeof(data_), ':');
ASSERT_EQ(sizeof(data_) * 3 - 1, enc_res_);
dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_),
encoded_, enc_res_, '/');
ASSERT_EQ(0U, dec_res_);
}
// Test that encoding without a delimiter and decoding with one fails.
TEST_F(HexEncodeTest, TestExpectedDelimiter) {
enc_res_ = hex_encode(encoded_, sizeof(encoded_), data_, sizeof(data_));
ASSERT_EQ(sizeof(data_) * 2, enc_res_);
dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_),
encoded_, enc_res_, ':');
ASSERT_EQ(0U, dec_res_);
}
// Test that encoding with a delimiter and decoding without one fails.
TEST_F(HexEncodeTest, TestExpectedNoDelimiter) {
enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(encoded_),
data_, sizeof(data_), ':');
ASSERT_EQ(sizeof(data_) * 3 - 1, enc_res_);
dec_res_ = hex_decode(decoded_, sizeof(decoded_), encoded_, enc_res_);
ASSERT_EQ(0U, dec_res_);
}
// Test that we handle a zero-length buffer with no delimiter.
TEST_F(HexEncodeTest, TestZeroLengthNoDelimiter) {
enc_res_ = hex_encode(encoded_, sizeof(encoded_), "", 0);
ASSERT_EQ(0U, enc_res_);
dec_res_ = hex_decode(decoded_, sizeof(decoded_), encoded_, enc_res_);
ASSERT_EQ(0U, dec_res_);
}
// Test that we handle a zero-length buffer with a delimiter.
TEST_F(HexEncodeTest, TestZeroLengthWithDelimiter) {
enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(encoded_), "", 0, ':');
ASSERT_EQ(0U, enc_res_);
dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_),
encoded_, enc_res_, ':');
ASSERT_EQ(0U, dec_res_);
}
// Test the std::string variants that take no delimiter.
TEST_F(HexEncodeTest, TestHelpersNoDelimiter) {
std::string result = hex_encode(data_, sizeof(data_));
ASSERT_EQ("80818283848586878889", result);
dec_res_ = hex_decode(decoded_, sizeof(decoded_), result);
ASSERT_EQ(sizeof(data_), dec_res_);
ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_));
}
// Test the std::string variants that use a delimiter.
TEST_F(HexEncodeTest, TestHelpersWithDelimiter) {
std::string result = hex_encode_with_delimiter(data_, sizeof(data_), ':');
ASSERT_EQ("80:81:82:83:84:85:86:87:88:89", result);
dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), result, ':');
ASSERT_EQ(sizeof(data_), dec_res_);
ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_));
}
// Test that encoding into a too-small output buffer (without delimiter) fails.
TEST_F(HexEncodeTest, TestEncodeTooShort) {
enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(data_) * 2,
data_, sizeof(data_), 0);
ASSERT_EQ(0U, enc_res_);
}
// Test that encoding into a too-small output buffer (with delimiter) fails.
TEST_F(HexEncodeTest, TestEncodeWithDelimiterTooShort) {
enc_res_ = hex_encode_with_delimiter(encoded_, sizeof(data_) * 3 - 1,
data_, sizeof(data_), ':');
ASSERT_EQ(0U, enc_res_);
}
// Test that decoding into a too-small output buffer fails.
TEST_F(HexEncodeTest, TestDecodeTooShort) {
dec_res_ = hex_decode_with_delimiter(decoded_, 4, "0123456789", 10, 0);
ASSERT_EQ(0U, dec_res_);
ASSERT_EQ(0x7f, decoded_[4]);
}
// Test that decoding non-hex data fails.
TEST_F(HexEncodeTest, TestDecodeBogusData) {
dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), "xyz", 3, 0);
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding an odd number of hex characters fails.
TEST_F(HexEncodeTest, TestDecodeOddHexDigits) {
dec_res_ = hex_decode_with_delimiter(decoded_, sizeof(decoded_), "012", 3, 0);
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding a string with too many delimiters fails.
TEST_F(HexEncodeTest, TestDecodeWithDelimiterTooManyDelimiters) {
dec_res_ = hex_decode_with_delimiter(decoded_, 4, "01::23::45::67", 14, ':');
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding a string with a leading delimiter fails.
TEST_F(HexEncodeTest, TestDecodeWithDelimiterLeadingDelimiter) {
dec_res_ = hex_decode_with_delimiter(decoded_, 4, ":01:23:45:67", 12, ':');
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding a string with a trailing delimiter fails.
TEST_F(HexEncodeTest, TestDecodeWithDelimiterTrailingDelimiter) {
dec_res_ = hex_decode_with_delimiter(decoded_, 4, "01:23:45:67:", 12, ':');
ASSERT_EQ(0U, dec_res_);
}
// Tests counting substrings.
TEST(TokenizeTest, CountSubstrings) {
std::vector<std::string> fields;
EXPECT_EQ(5ul, tokenize("one two three four five", ' ', &fields));
fields.clear();
EXPECT_EQ(1ul, tokenize("one", ' ', &fields));
// Extra spaces should be ignored.
fields.clear();
EXPECT_EQ(5ul, tokenize(" one two three four five ", ' ', &fields));
fields.clear();
EXPECT_EQ(1ul, tokenize(" one ", ' ', &fields));
fields.clear();
EXPECT_EQ(0ul, tokenize(" ", ' ', &fields));
}
// Tests comparing substrings.
TEST(TokenizeTest, CompareSubstrings) {
std::vector<std::string> fields;
tokenize("find middle one", ' ', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("middle", fields.at(1).c_str());
fields.clear();
// Extra spaces should be ignored.
tokenize(" find middle one ", ' ', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("middle", fields.at(1).c_str());
fields.clear();
tokenize(" ", ' ', &fields);
ASSERT_EQ(0ul, fields.size());
}
TEST(TokenizeTest, TokenizeAppend) {
ASSERT_EQ(0ul, tokenize_append("A B C", ' ', NULL));
std::vector<std::string> fields;
tokenize_append("A B C", ' ', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("B", fields.at(1).c_str());
tokenize_append("D E", ' ', &fields);
ASSERT_EQ(5ul, fields.size());
ASSERT_STREQ("B", fields.at(1).c_str());
ASSERT_STREQ("E", fields.at(4).c_str());
}
TEST(TokenizeTest, TokenizeWithMarks) {
ASSERT_EQ(0ul, tokenize("D \"A B", ' ', '(', ')', NULL));
std::vector<std::string> fields;
tokenize("A B C", ' ', '"', '"', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("C", fields.at(2).c_str());
tokenize("\"A B\" C", ' ', '"', '"', &fields);
ASSERT_EQ(2ul, fields.size());
ASSERT_STREQ("A B", fields.at(0).c_str());
tokenize("D \"A B\" C", ' ', '"', '"', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("D", fields.at(0).c_str());
ASSERT_STREQ("A B", fields.at(1).c_str());
tokenize("D \"A B\" C \"E F\"", ' ', '"', '"', &fields);
ASSERT_EQ(4ul, fields.size());
ASSERT_STREQ("D", fields.at(0).c_str());
ASSERT_STREQ("A B", fields.at(1).c_str());
ASSERT_STREQ("E F", fields.at(3).c_str());
// No matching marks.
tokenize("D \"A B", ' ', '"', '"', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("D", fields.at(0).c_str());
ASSERT_STREQ("\"A", fields.at(1).c_str());
tokenize("D (A B) C (E F) G", ' ', '(', ')', &fields);
ASSERT_EQ(5ul, fields.size());
ASSERT_STREQ("D", fields.at(0).c_str());
ASSERT_STREQ("A B", fields.at(1).c_str());
ASSERT_STREQ("E F", fields.at(3).c_str());
}
TEST(TokenizeTest, TokenizeWithEmptyTokens) {
std::vector<std::string> fields;
EXPECT_EQ(3ul, tokenize_with_empty_tokens("a.b.c", '.', &fields));
EXPECT_EQ("a", fields[0]);
EXPECT_EQ("b", fields[1]);
EXPECT_EQ("c", fields[2]);
EXPECT_EQ(3ul, tokenize_with_empty_tokens("..c", '.', &fields));
EXPECT_TRUE(fields[0].empty());
EXPECT_TRUE(fields[1].empty());
EXPECT_EQ("c", fields[2]);
EXPECT_EQ(1ul, tokenize_with_empty_tokens("", '.', &fields));
EXPECT_TRUE(fields[0].empty());
}
TEST(TokenizeFirstTest, NoLeadingSpaces) {
std::string token;
std::string rest;
ASSERT_TRUE(tokenize_first("A &*${}", ' ', &token, &rest));
ASSERT_STREQ("A", token.c_str());
ASSERT_STREQ("&*${}", rest.c_str());
ASSERT_TRUE(tokenize_first("A B& *${}", ' ', &token, &rest));
ASSERT_STREQ("A", token.c_str());
ASSERT_STREQ("B& *${}", rest.c_str());
ASSERT_TRUE(tokenize_first("A B& *${} ", ' ', &token, &rest));
ASSERT_STREQ("A", token.c_str());
ASSERT_STREQ("B& *${} ", rest.c_str());
}
TEST(TokenizeFirstTest, LeadingSpaces) {
std::string token;
std::string rest;
ASSERT_TRUE(tokenize_first(" A B C", ' ', &token, &rest));
ASSERT_STREQ("", token.c_str());
ASSERT_STREQ("A B C", rest.c_str());
ASSERT_TRUE(tokenize_first(" A B C ", ' ', &token, &rest));
ASSERT_STREQ("", token.c_str());
ASSERT_STREQ("A B C ", rest.c_str());
}
TEST(TokenizeFirstTest, SingleToken) {
std::string token;
std::string rest;
// In the case where we cannot find delimiter the whole string is a token.
ASSERT_FALSE(tokenize_first("ABC", ' ', &token, &rest));
ASSERT_TRUE(tokenize_first("ABC ", ' ', &token, &rest));
ASSERT_STREQ("ABC", token.c_str());
ASSERT_STREQ("", rest.c_str());
ASSERT_TRUE(tokenize_first(" ABC ", ' ', &token, &rest));
ASSERT_STREQ("", token.c_str());
ASSERT_STREQ("ABC ", rest.c_str());
}
// Tests counting substrings.
TEST(SplitTest, CountSubstrings) {
std::vector<std::string> fields;
EXPECT_EQ(5ul, split("one,two,three,four,five", ',', &fields));
fields.clear();
EXPECT_EQ(1ul, split("one", ',', &fields));
// Empty fields between commas count.
fields.clear();
EXPECT_EQ(5ul, split("one,,three,four,five", ',', &fields));
fields.clear();
EXPECT_EQ(3ul, split(",three,", ',', &fields));
fields.clear();
EXPECT_EQ(1ul, split("", ',', &fields));
}
// Tests comparing substrings.
TEST(SplitTest, CompareSubstrings) {
std::vector<std::string> fields;
split("find,middle,one", ',', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("middle", fields.at(1).c_str());
fields.clear();
// Empty fields between commas count.
split("find,,middle,one", ',', &fields);
ASSERT_EQ(4ul, fields.size());
ASSERT_STREQ("middle", fields.at(2).c_str());
fields.clear();
split("", ',', &fields);
ASSERT_EQ(1ul, fields.size());
ASSERT_STREQ("", fields.at(0).c_str());
}
TEST(BoolTest, DecodeValid) {
bool value;
EXPECT_TRUE(FromString("true", &value));
EXPECT_TRUE(value);
EXPECT_TRUE(FromString("true,", &value));
EXPECT_TRUE(value);
EXPECT_TRUE(FromString("true , true", &value));
EXPECT_TRUE(value);
EXPECT_TRUE(FromString("true ,\n false", &value));
EXPECT_TRUE(value);
EXPECT_TRUE(FromString(" true \n", &value));
EXPECT_TRUE(value);
EXPECT_TRUE(FromString("false", &value));
EXPECT_FALSE(value);
EXPECT_TRUE(FromString(" false ", &value));
EXPECT_FALSE(value);
EXPECT_TRUE(FromString(" false, ", &value));
EXPECT_FALSE(value);
EXPECT_TRUE(FromString<bool>("true\n"));
EXPECT_FALSE(FromString<bool>("false\n"));
}
TEST(BoolTest, DecodeInvalid) {
bool value;
EXPECT_FALSE(FromString("True", &value));
EXPECT_FALSE(FromString("TRUE", &value));
EXPECT_FALSE(FromString("False", &value));
EXPECT_FALSE(FromString("FALSE", &value));
EXPECT_FALSE(FromString("0", &value));
EXPECT_FALSE(FromString("1", &value));
EXPECT_FALSE(FromString("0,", &value));
EXPECT_FALSE(FromString("1,", &value));
EXPECT_FALSE(FromString("1,0", &value));
EXPECT_FALSE(FromString("1.", &value));
EXPECT_FALSE(FromString("1.0", &value));
EXPECT_FALSE(FromString("", &value));
EXPECT_FALSE(FromString<bool>("false\nfalse"));
}
TEST(BoolTest, RoundTrip) {
bool value;
EXPECT_TRUE(FromString(ToString(true), &value));
EXPECT_TRUE(value);
EXPECT_TRUE(FromString(ToString(false), &value));
EXPECT_FALSE(value);
}
} // namespace rtc