| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| #include "rtc_base/physical_socket_server.h" |
| |
| #if defined(_MSC_VER) && _MSC_VER < 1300 |
| #pragma warning(disable : 4786) |
| #endif |
| |
| #ifdef MEMORY_SANITIZER |
| #include <sanitizer/msan_interface.h> |
| #endif |
| |
| #if defined(WEBRTC_POSIX) |
| #include <fcntl.h> |
| #include <string.h> |
| #if defined(WEBRTC_USE_EPOLL) |
| // "poll" will be used to wait for the signal dispatcher. |
| #include <poll.h> |
| #endif |
| #include <sys/ioctl.h> |
| #include <sys/select.h> |
| #include <sys/time.h> |
| #include <unistd.h> |
| #endif |
| |
| #if defined(WEBRTC_WIN) |
| #include <windows.h> |
| #include <winsock2.h> |
| #include <ws2tcpip.h> |
| #undef SetPort |
| #endif |
| |
| #include <errno.h> |
| |
| #include <algorithm> |
| #include <map> |
| |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/byte_order.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/network_monitor.h" |
| #include "rtc_base/null_socket_server.h" |
| #include "rtc_base/time_utils.h" |
| |
| #if defined(WEBRTC_LINUX) |
| #include <linux/sockios.h> |
| #endif |
| |
| #if defined(WEBRTC_WIN) |
| #define LAST_SYSTEM_ERROR (::GetLastError()) |
| #elif defined(__native_client__) && __native_client__ |
| #define LAST_SYSTEM_ERROR (0) |
| #elif defined(WEBRTC_POSIX) |
| #define LAST_SYSTEM_ERROR (errno) |
| #endif // WEBRTC_WIN |
| |
| #if defined(WEBRTC_POSIX) |
| #include <netinet/tcp.h> // for TCP_NODELAY |
| #define IP_MTU 14 // Until this is integrated from linux/in.h to netinet/in.h |
| typedef void* SockOptArg; |
| |
| #endif // WEBRTC_POSIX |
| |
| #if defined(WEBRTC_POSIX) && !defined(WEBRTC_MAC) && !defined(__native_client__) |
| |
| int64_t GetSocketRecvTimestamp(int socket) { |
| struct timeval tv_ioctl; |
| int ret = ioctl(socket, SIOCGSTAMP, &tv_ioctl); |
| if (ret != 0) |
| return -1; |
| int64_t timestamp = |
| rtc::kNumMicrosecsPerSec * static_cast<int64_t>(tv_ioctl.tv_sec) + |
| static_cast<int64_t>(tv_ioctl.tv_usec); |
| return timestamp; |
| } |
| |
| #else |
| |
| int64_t GetSocketRecvTimestamp(int socket) { |
| return -1; |
| } |
| #endif |
| |
| #if defined(WEBRTC_WIN) |
| typedef char* SockOptArg; |
| #endif |
| |
| #if defined(WEBRTC_USE_EPOLL) |
| // POLLRDHUP / EPOLLRDHUP are only defined starting with Linux 2.6.17. |
| #if !defined(POLLRDHUP) |
| #define POLLRDHUP 0x2000 |
| #endif |
| #if !defined(EPOLLRDHUP) |
| #define EPOLLRDHUP 0x2000 |
| #endif |
| #endif |
| |
| namespace { |
| class ScopedSetTrue { |
| public: |
| ScopedSetTrue(bool* value) : value_(value) { |
| RTC_DCHECK(!*value_); |
| *value_ = true; |
| } |
| ~ScopedSetTrue() { *value_ = false; } |
| |
| private: |
| bool* value_; |
| }; |
| } // namespace |
| |
| namespace rtc { |
| |
| PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s) |
| : ss_(ss), |
| s_(s), |
| error_(0), |
| state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED), |
| resolver_(nullptr) { |
| if (s_ != INVALID_SOCKET) { |
| SetEnabledEvents(DE_READ | DE_WRITE); |
| |
| int type = SOCK_STREAM; |
| socklen_t len = sizeof(type); |
| const int res = |
| getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len); |
| RTC_DCHECK_EQ(0, res); |
| udp_ = (SOCK_DGRAM == type); |
| } |
| } |
| |
| PhysicalSocket::~PhysicalSocket() { |
| Close(); |
| } |
| |
| bool PhysicalSocket::Create(int family, int type) { |
| Close(); |
| s_ = ::socket(family, type, 0); |
| udp_ = (SOCK_DGRAM == type); |
| family_ = family; |
| UpdateLastError(); |
| if (udp_) { |
| SetEnabledEvents(DE_READ | DE_WRITE); |
| } |
| return s_ != INVALID_SOCKET; |
| } |
| |
| SocketAddress PhysicalSocket::GetLocalAddress() const { |
| sockaddr_storage addr_storage = {}; |
| socklen_t addrlen = sizeof(addr_storage); |
| sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); |
| int result = ::getsockname(s_, addr, &addrlen); |
| SocketAddress address; |
| if (result >= 0) { |
| SocketAddressFromSockAddrStorage(addr_storage, &address); |
| } else { |
| RTC_LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket=" |
| << s_; |
| } |
| return address; |
| } |
| |
| SocketAddress PhysicalSocket::GetRemoteAddress() const { |
| sockaddr_storage addr_storage = {}; |
| socklen_t addrlen = sizeof(addr_storage); |
| sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); |
| int result = ::getpeername(s_, addr, &addrlen); |
| SocketAddress address; |
| if (result >= 0) { |
| SocketAddressFromSockAddrStorage(addr_storage, &address); |
| } else { |
| RTC_LOG(LS_WARNING) |
| << "GetRemoteAddress: unable to get remote addr, socket=" << s_; |
| } |
| return address; |
| } |
| |
| int PhysicalSocket::Bind(const SocketAddress& bind_addr) { |
| SocketAddress copied_bind_addr = bind_addr; |
| // If a network binder is available, use it to bind a socket to an interface |
| // instead of bind(), since this is more reliable on an OS with a weak host |
| // model. |
| if (ss_->network_binder() && !bind_addr.IsAnyIP()) { |
| NetworkBindingResult result = |
| ss_->network_binder()->BindSocketToNetwork(s_, bind_addr.ipaddr()); |
| if (result == NetworkBindingResult::SUCCESS) { |
| // Since the network binder handled binding the socket to the desired |
| // network interface, we don't need to (and shouldn't) include an IP in |
| // the bind() call; bind() just needs to assign a port. |
| copied_bind_addr.SetIP(GetAnyIP(copied_bind_addr.ipaddr().family())); |
| } else if (result == NetworkBindingResult::NOT_IMPLEMENTED) { |
| RTC_LOG(LS_INFO) << "Can't bind socket to network because " |
| "network binding is not implemented for this OS."; |
| } else { |
| if (bind_addr.IsLoopbackIP()) { |
| // If we couldn't bind to a loopback IP (which should only happen in |
| // test scenarios), continue on. This may be expected behavior. |
| RTC_LOG(LS_VERBOSE) << "Binding socket to loopback address" |
| << " failed; result: " << static_cast<int>(result); |
| } else { |
| RTC_LOG(LS_WARNING) << "Binding socket to network address" |
| << " failed; result: " << static_cast<int>(result); |
| // If a network binding was attempted and failed, we should stop here |
| // and not try to use the socket. Otherwise, we may end up sending |
| // packets with an invalid source address. |
| // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7026 |
| return -1; |
| } |
| } |
| } |
| sockaddr_storage addr_storage; |
| size_t len = copied_bind_addr.ToSockAddrStorage(&addr_storage); |
| sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); |
| int err = ::bind(s_, addr, static_cast<int>(len)); |
| UpdateLastError(); |
| #if !defined(NDEBUG) |
| if (0 == err) { |
| dbg_addr_ = "Bound @ "; |
| dbg_addr_.append(GetLocalAddress().ToString()); |
| } |
| #endif |
| return err; |
| } |
| |
| int PhysicalSocket::Connect(const SocketAddress& addr) { |
| // TODO(pthatcher): Implicit creation is required to reconnect... |
| // ...but should we make it more explicit? |
| if (state_ != CS_CLOSED) { |
| SetError(EALREADY); |
| return SOCKET_ERROR; |
| } |
| if (addr.IsUnresolvedIP()) { |
| RTC_LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect"; |
| resolver_ = new AsyncResolver(); |
| resolver_->SignalDone.connect(this, &PhysicalSocket::OnResolveResult); |
| resolver_->Start(addr); |
| state_ = CS_CONNECTING; |
| return 0; |
| } |
| |
| return DoConnect(addr); |
| } |
| |
| int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) { |
| if ((s_ == INVALID_SOCKET) && !Create(connect_addr.family(), SOCK_STREAM)) { |
| return SOCKET_ERROR; |
| } |
| sockaddr_storage addr_storage; |
| size_t len = connect_addr.ToSockAddrStorage(&addr_storage); |
| sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); |
| int err = ::connect(s_, addr, static_cast<int>(len)); |
| UpdateLastError(); |
| uint8_t events = DE_READ | DE_WRITE; |
| if (err == 0) { |
| state_ = CS_CONNECTED; |
| } else if (IsBlockingError(GetError())) { |
| state_ = CS_CONNECTING; |
| events |= DE_CONNECT; |
| } else { |
| return SOCKET_ERROR; |
| } |
| |
| EnableEvents(events); |
| return 0; |
| } |
| |
| int PhysicalSocket::GetError() const { |
| CritScope cs(&crit_); |
| return error_; |
| } |
| |
| void PhysicalSocket::SetError(int error) { |
| CritScope cs(&crit_); |
| error_ = error; |
| } |
| |
| AsyncSocket::ConnState PhysicalSocket::GetState() const { |
| return state_; |
| } |
| |
| int PhysicalSocket::GetOption(Option opt, int* value) { |
| int slevel; |
| int sopt; |
| if (TranslateOption(opt, &slevel, &sopt) == -1) |
| return -1; |
| socklen_t optlen = sizeof(*value); |
| int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen); |
| if (ret == -1) { |
| return -1; |
| } |
| if (opt == OPT_DONTFRAGMENT) { |
| #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) |
| *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0; |
| #endif |
| } else if (opt == OPT_DSCP) { |
| #if defined(WEBRTC_POSIX) |
| // unshift DSCP value to get six most significant bits of IP DiffServ field |
| *value >>= 2; |
| #endif |
| } |
| return ret; |
| } |
| |
| int PhysicalSocket::SetOption(Option opt, int value) { |
| int slevel; |
| int sopt; |
| if (TranslateOption(opt, &slevel, &sopt) == -1) |
| return -1; |
| if (opt == OPT_DONTFRAGMENT) { |
| #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) |
| value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT; |
| #endif |
| } else if (opt == OPT_DSCP) { |
| #if defined(WEBRTC_POSIX) |
| // shift DSCP value to fit six most significant bits of IP DiffServ field |
| value <<= 2; |
| #endif |
| } |
| #if defined(WEBRTC_POSIX) |
| if (sopt == IPV6_TCLASS) { |
| // Set the IPv4 option in all cases to support dual-stack sockets. |
| // Don't bother checking the return code, as this is expected to fail if |
| // it's not actually dual-stack. |
| ::setsockopt(s_, IPPROTO_IP, IP_TOS, (SockOptArg)&value, sizeof(value)); |
| } |
| #endif |
| int result = |
| ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value)); |
| if (result != 0) { |
| UpdateLastError(); |
| } |
| return result; |
| } |
| |
| int PhysicalSocket::Send(const void* pv, size_t cb) { |
| int sent = DoSend( |
| s_, reinterpret_cast<const char*>(pv), static_cast<int>(cb), |
| #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) |
| // Suppress SIGPIPE. Without this, attempting to send on a socket whose |
| // other end is closed will result in a SIGPIPE signal being raised to |
| // our process, which by default will terminate the process, which we |
| // don't want. By specifying this flag, we'll just get the error EPIPE |
| // instead and can handle the error gracefully. |
| MSG_NOSIGNAL |
| #else |
| 0 |
| #endif |
| ); |
| UpdateLastError(); |
| MaybeRemapSendError(); |
| // We have seen minidumps where this may be false. |
| RTC_DCHECK(sent <= static_cast<int>(cb)); |
| if ((sent > 0 && sent < static_cast<int>(cb)) || |
| (sent < 0 && IsBlockingError(GetError()))) { |
| EnableEvents(DE_WRITE); |
| } |
| return sent; |
| } |
| |
| int PhysicalSocket::SendTo(const void* buffer, |
| size_t length, |
| const SocketAddress& addr) { |
| sockaddr_storage saddr; |
| size_t len = addr.ToSockAddrStorage(&saddr); |
| int sent = |
| DoSendTo(s_, static_cast<const char*>(buffer), static_cast<int>(length), |
| #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) |
| // Suppress SIGPIPE. See above for explanation. |
| MSG_NOSIGNAL, |
| #else |
| 0, |
| #endif |
| reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len)); |
| UpdateLastError(); |
| MaybeRemapSendError(); |
| // We have seen minidumps where this may be false. |
| RTC_DCHECK(sent <= static_cast<int>(length)); |
| if ((sent > 0 && sent < static_cast<int>(length)) || |
| (sent < 0 && IsBlockingError(GetError()))) { |
| EnableEvents(DE_WRITE); |
| } |
| return sent; |
| } |
| |
| int PhysicalSocket::Recv(void* buffer, size_t length, int64_t* timestamp) { |
| int received = |
| ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0); |
| if ((received == 0) && (length != 0)) { |
| // Note: on graceful shutdown, recv can return 0. In this case, we |
| // pretend it is blocking, and then signal close, so that simplifying |
| // assumptions can be made about Recv. |
| RTC_LOG(LS_WARNING) << "EOF from socket; deferring close event"; |
| // Must turn this back on so that the select() loop will notice the close |
| // event. |
| EnableEvents(DE_READ); |
| SetError(EWOULDBLOCK); |
| return SOCKET_ERROR; |
| } |
| if (timestamp) { |
| *timestamp = GetSocketRecvTimestamp(s_); |
| } |
| UpdateLastError(); |
| int error = GetError(); |
| bool success = (received >= 0) || IsBlockingError(error); |
| if (udp_ || success) { |
| EnableEvents(DE_READ); |
| } |
| if (!success) { |
| RTC_LOG_F(LS_VERBOSE) << "Error = " << error; |
| } |
| return received; |
| } |
| |
| int PhysicalSocket::RecvFrom(void* buffer, |
| size_t length, |
| SocketAddress* out_addr, |
| int64_t* timestamp) { |
| sockaddr_storage addr_storage; |
| socklen_t addr_len = sizeof(addr_storage); |
| sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); |
| int received = ::recvfrom(s_, static_cast<char*>(buffer), |
| static_cast<int>(length), 0, addr, &addr_len); |
| if (timestamp) { |
| *timestamp = GetSocketRecvTimestamp(s_); |
| } |
| UpdateLastError(); |
| if ((received >= 0) && (out_addr != nullptr)) |
| SocketAddressFromSockAddrStorage(addr_storage, out_addr); |
| int error = GetError(); |
| bool success = (received >= 0) || IsBlockingError(error); |
| if (udp_ || success) { |
| EnableEvents(DE_READ); |
| } |
| if (!success) { |
| RTC_LOG_F(LS_VERBOSE) << "Error = " << error; |
| } |
| return received; |
| } |
| |
| int PhysicalSocket::Listen(int backlog) { |
| int err = ::listen(s_, backlog); |
| UpdateLastError(); |
| if (err == 0) { |
| state_ = CS_CONNECTING; |
| EnableEvents(DE_ACCEPT); |
| #if !defined(NDEBUG) |
| dbg_addr_ = "Listening @ "; |
| dbg_addr_.append(GetLocalAddress().ToString()); |
| #endif |
| } |
| return err; |
| } |
| |
| AsyncSocket* PhysicalSocket::Accept(SocketAddress* out_addr) { |
| // Always re-subscribe DE_ACCEPT to make sure new incoming connections will |
| // trigger an event even if DoAccept returns an error here. |
| EnableEvents(DE_ACCEPT); |
| sockaddr_storage addr_storage; |
| socklen_t addr_len = sizeof(addr_storage); |
| sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); |
| SOCKET s = DoAccept(s_, addr, &addr_len); |
| UpdateLastError(); |
| if (s == INVALID_SOCKET) |
| return nullptr; |
| if (out_addr != nullptr) |
| SocketAddressFromSockAddrStorage(addr_storage, out_addr); |
| return ss_->WrapSocket(s); |
| } |
| |
| int PhysicalSocket::Close() { |
| if (s_ == INVALID_SOCKET) |
| return 0; |
| int err = ::closesocket(s_); |
| UpdateLastError(); |
| s_ = INVALID_SOCKET; |
| state_ = CS_CLOSED; |
| SetEnabledEvents(0); |
| if (resolver_) { |
| resolver_->Destroy(false); |
| resolver_ = nullptr; |
| } |
| return err; |
| } |
| |
| SOCKET PhysicalSocket::DoAccept(SOCKET socket, |
| sockaddr* addr, |
| socklen_t* addrlen) { |
| return ::accept(socket, addr, addrlen); |
| } |
| |
| int PhysicalSocket::DoSend(SOCKET socket, const char* buf, int len, int flags) { |
| return ::send(socket, buf, len, flags); |
| } |
| |
| int PhysicalSocket::DoSendTo(SOCKET socket, |
| const char* buf, |
| int len, |
| int flags, |
| const struct sockaddr* dest_addr, |
| socklen_t addrlen) { |
| return ::sendto(socket, buf, len, flags, dest_addr, addrlen); |
| } |
| |
| void PhysicalSocket::OnResolveResult(AsyncResolverInterface* resolver) { |
| if (resolver != resolver_) { |
| return; |
| } |
| |
| int error = resolver_->GetError(); |
| if (error == 0) { |
| error = DoConnect(resolver_->address()); |
| } else { |
| Close(); |
| } |
| |
| if (error) { |
| SetError(error); |
| SignalCloseEvent(this, error); |
| } |
| } |
| |
| void PhysicalSocket::UpdateLastError() { |
| SetError(LAST_SYSTEM_ERROR); |
| } |
| |
| void PhysicalSocket::MaybeRemapSendError() { |
| #if defined(WEBRTC_MAC) |
| // https://developer.apple.com/library/mac/documentation/Darwin/ |
| // Reference/ManPages/man2/sendto.2.html |
| // ENOBUFS - The output queue for a network interface is full. |
| // This generally indicates that the interface has stopped sending, |
| // but may be caused by transient congestion. |
| if (GetError() == ENOBUFS) { |
| SetError(EWOULDBLOCK); |
| } |
| #endif |
| } |
| |
| void PhysicalSocket::SetEnabledEvents(uint8_t events) { |
| enabled_events_ = events; |
| } |
| |
| void PhysicalSocket::EnableEvents(uint8_t events) { |
| enabled_events_ |= events; |
| } |
| |
| void PhysicalSocket::DisableEvents(uint8_t events) { |
| enabled_events_ &= ~events; |
| } |
| |
| int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) { |
| switch (opt) { |
| case OPT_DONTFRAGMENT: |
| #if defined(WEBRTC_WIN) |
| *slevel = IPPROTO_IP; |
| *sopt = IP_DONTFRAGMENT; |
| break; |
| #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__) |
| RTC_LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported."; |
| return -1; |
| #elif defined(WEBRTC_POSIX) |
| *slevel = IPPROTO_IP; |
| *sopt = IP_MTU_DISCOVER; |
| break; |
| #endif |
| case OPT_RCVBUF: |
| *slevel = SOL_SOCKET; |
| *sopt = SO_RCVBUF; |
| break; |
| case OPT_SNDBUF: |
| *slevel = SOL_SOCKET; |
| *sopt = SO_SNDBUF; |
| break; |
| case OPT_NODELAY: |
| *slevel = IPPROTO_TCP; |
| *sopt = TCP_NODELAY; |
| break; |
| case OPT_DSCP: |
| #if defined(WEBRTC_POSIX) |
| if (family_ == AF_INET6) { |
| *slevel = IPPROTO_IPV6; |
| *sopt = IPV6_TCLASS; |
| } else { |
| *slevel = IPPROTO_IP; |
| *sopt = IP_TOS; |
| } |
| break; |
| #else |
| RTC_LOG(LS_WARNING) << "Socket::OPT_DSCP not supported."; |
| return -1; |
| #endif |
| case OPT_RTP_SENDTIME_EXTN_ID: |
| return -1; // No logging is necessary as this not a OS socket option. |
| default: |
| RTC_NOTREACHED(); |
| return -1; |
| } |
| return 0; |
| } |
| |
| SocketDispatcher::SocketDispatcher(PhysicalSocketServer* ss) |
| #if defined(WEBRTC_WIN) |
| : PhysicalSocket(ss), |
| id_(0), |
| signal_close_(false) |
| #else |
| : PhysicalSocket(ss) |
| #endif |
| { |
| } |
| |
| SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer* ss) |
| #if defined(WEBRTC_WIN) |
| : PhysicalSocket(ss, s), |
| id_(0), |
| signal_close_(false) |
| #else |
| : PhysicalSocket(ss, s) |
| #endif |
| { |
| } |
| |
| SocketDispatcher::~SocketDispatcher() { |
| Close(); |
| } |
| |
| bool SocketDispatcher::Initialize() { |
| RTC_DCHECK(s_ != INVALID_SOCKET); |
| // Must be a non-blocking |
| #if defined(WEBRTC_WIN) |
| u_long argp = 1; |
| ioctlsocket(s_, FIONBIO, &argp); |
| #elif defined(WEBRTC_POSIX) |
| fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK); |
| #endif |
| #if defined(WEBRTC_IOS) |
| // iOS may kill sockets when the app is moved to the background |
| // (specifically, if the app doesn't use the "voip" UIBackgroundMode). When |
| // we attempt to write to such a socket, SIGPIPE will be raised, which by |
| // default will terminate the process, which we don't want. By specifying |
| // this socket option, SIGPIPE will be disabled for the socket. |
| int value = 1; |
| ::setsockopt(s_, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value)); |
| #endif |
| ss_->Add(this); |
| return true; |
| } |
| |
| bool SocketDispatcher::Create(int type) { |
| return Create(AF_INET, type); |
| } |
| |
| bool SocketDispatcher::Create(int family, int type) { |
| // Change the socket to be non-blocking. |
| if (!PhysicalSocket::Create(family, type)) |
| return false; |
| |
| if (!Initialize()) |
| return false; |
| |
| #if defined(WEBRTC_WIN) |
| do { |
| id_ = ++next_id_; |
| } while (id_ == 0); |
| #endif |
| return true; |
| } |
| |
| #if defined(WEBRTC_WIN) |
| |
| WSAEVENT SocketDispatcher::GetWSAEvent() { |
| return WSA_INVALID_EVENT; |
| } |
| |
| SOCKET SocketDispatcher::GetSocket() { |
| return s_; |
| } |
| |
| bool SocketDispatcher::CheckSignalClose() { |
| if (!signal_close_) |
| return false; |
| |
| char ch; |
| if (recv(s_, &ch, 1, MSG_PEEK) > 0) |
| return false; |
| |
| state_ = CS_CLOSED; |
| signal_close_ = false; |
| SignalCloseEvent(this, signal_err_); |
| return true; |
| } |
| |
| int SocketDispatcher::next_id_ = 0; |
| |
| #elif defined(WEBRTC_POSIX) |
| |
| int SocketDispatcher::GetDescriptor() { |
| return s_; |
| } |
| |
| bool SocketDispatcher::IsDescriptorClosed() { |
| if (udp_) { |
| // The MSG_PEEK trick doesn't work for UDP, since (at least in some |
| // circumstances) it requires reading an entire UDP packet, which would be |
| // bad for performance here. So, just check whether |s_| has been closed, |
| // which should be sufficient. |
| return s_ == INVALID_SOCKET; |
| } |
| // We don't have a reliable way of distinguishing end-of-stream |
| // from readability. So test on each readable call. Is this |
| // inefficient? Probably. |
| char ch; |
| ssize_t res = ::recv(s_, &ch, 1, MSG_PEEK); |
| if (res > 0) { |
| // Data available, so not closed. |
| return false; |
| } else if (res == 0) { |
| // EOF, so closed. |
| return true; |
| } else { // error |
| switch (errno) { |
| // Returned if we've already closed s_. |
| case EBADF: |
| // Returned during ungraceful peer shutdown. |
| case ECONNRESET: |
| return true; |
| // The normal blocking error; don't log anything. |
| case EWOULDBLOCK: |
| // Interrupted system call. |
| case EINTR: |
| return false; |
| default: |
| // Assume that all other errors are just blocking errors, meaning the |
| // connection is still good but we just can't read from it right now. |
| // This should only happen when connecting (and at most once), because |
| // in all other cases this function is only called if the file |
| // descriptor is already known to be in the readable state. However, |
| // it's not necessary a problem if we spuriously interpret a |
| // "connection lost"-type error as a blocking error, because typically |
| // the next recv() will get EOF, so we'll still eventually notice that |
| // the socket is closed. |
| RTC_LOG_ERR(LS_WARNING) << "Assuming benign blocking error"; |
| return false; |
| } |
| } |
| } |
| |
| #endif // WEBRTC_POSIX |
| |
| uint32_t SocketDispatcher::GetRequestedEvents() { |
| return enabled_events(); |
| } |
| |
| void SocketDispatcher::OnPreEvent(uint32_t ff) { |
| if ((ff & DE_CONNECT) != 0) |
| state_ = CS_CONNECTED; |
| |
| #if defined(WEBRTC_WIN) |
| // We set CS_CLOSED from CheckSignalClose. |
| #elif defined(WEBRTC_POSIX) |
| if ((ff & DE_CLOSE) != 0) |
| state_ = CS_CLOSED; |
| #endif |
| } |
| |
| #if defined(WEBRTC_WIN) |
| |
| void SocketDispatcher::OnEvent(uint32_t ff, int err) { |
| int cache_id = id_; |
| // Make sure we deliver connect/accept first. Otherwise, consumers may see |
| // something like a READ followed by a CONNECT, which would be odd. |
| if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) { |
| if (ff != DE_CONNECT) |
| RTC_LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff; |
| DisableEvents(DE_CONNECT); |
| #if !defined(NDEBUG) |
| dbg_addr_ = "Connected @ "; |
| dbg_addr_.append(GetRemoteAddress().ToString()); |
| #endif |
| SignalConnectEvent(this); |
| } |
| if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) { |
| DisableEvents(DE_ACCEPT); |
| SignalReadEvent(this); |
| } |
| if ((ff & DE_READ) != 0) { |
| DisableEvents(DE_READ); |
| SignalReadEvent(this); |
| } |
| if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) { |
| DisableEvents(DE_WRITE); |
| SignalWriteEvent(this); |
| } |
| if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) { |
| signal_close_ = true; |
| signal_err_ = err; |
| } |
| } |
| |
| #elif defined(WEBRTC_POSIX) |
| |
| void SocketDispatcher::OnEvent(uint32_t ff, int err) { |
| #if defined(WEBRTC_USE_EPOLL) |
| // Remember currently enabled events so we can combine multiple changes |
| // into one update call later. |
| // The signal handlers might re-enable events disabled here, so we can't |
| // keep a list of events to disable at the end of the method. This list |
| // would not be updated with the events enabled by the signal handlers. |
| StartBatchedEventUpdates(); |
| #endif |
| // Make sure we deliver connect/accept first. Otherwise, consumers may see |
| // something like a READ followed by a CONNECT, which would be odd. |
| if ((ff & DE_CONNECT) != 0) { |
| DisableEvents(DE_CONNECT); |
| SignalConnectEvent(this); |
| } |
| if ((ff & DE_ACCEPT) != 0) { |
| DisableEvents(DE_ACCEPT); |
| SignalReadEvent(this); |
| } |
| if ((ff & DE_READ) != 0) { |
| DisableEvents(DE_READ); |
| SignalReadEvent(this); |
| } |
| if ((ff & DE_WRITE) != 0) { |
| DisableEvents(DE_WRITE); |
| SignalWriteEvent(this); |
| } |
| if ((ff & DE_CLOSE) != 0) { |
| // The socket is now dead to us, so stop checking it. |
| SetEnabledEvents(0); |
| SignalCloseEvent(this, err); |
| } |
| #if defined(WEBRTC_USE_EPOLL) |
| FinishBatchedEventUpdates(); |
| #endif |
| } |
| |
| #endif // WEBRTC_POSIX |
| |
| #if defined(WEBRTC_USE_EPOLL) |
| |
| inline static int GetEpollEvents(uint32_t ff) { |
| int events = 0; |
| if (ff & (DE_READ | DE_ACCEPT)) { |
| events |= EPOLLIN; |
| } |
| if (ff & (DE_WRITE | DE_CONNECT)) { |
| events |= EPOLLOUT; |
| } |
| return events; |
| } |
| |
| void SocketDispatcher::StartBatchedEventUpdates() { |
| RTC_DCHECK_EQ(saved_enabled_events_, -1); |
| saved_enabled_events_ = enabled_events(); |
| } |
| |
| void SocketDispatcher::FinishBatchedEventUpdates() { |
| RTC_DCHECK_NE(saved_enabled_events_, -1); |
| uint8_t old_events = static_cast<uint8_t>(saved_enabled_events_); |
| saved_enabled_events_ = -1; |
| MaybeUpdateDispatcher(old_events); |
| } |
| |
| void SocketDispatcher::MaybeUpdateDispatcher(uint8_t old_events) { |
| if (GetEpollEvents(enabled_events()) != GetEpollEvents(old_events) && |
| saved_enabled_events_ == -1) { |
| ss_->Update(this); |
| } |
| } |
| |
| void SocketDispatcher::SetEnabledEvents(uint8_t events) { |
| uint8_t old_events = enabled_events(); |
| PhysicalSocket::SetEnabledEvents(events); |
| MaybeUpdateDispatcher(old_events); |
| } |
| |
| void SocketDispatcher::EnableEvents(uint8_t events) { |
| uint8_t old_events = enabled_events(); |
| PhysicalSocket::EnableEvents(events); |
| MaybeUpdateDispatcher(old_events); |
| } |
| |
| void SocketDispatcher::DisableEvents(uint8_t events) { |
| uint8_t old_events = enabled_events(); |
| PhysicalSocket::DisableEvents(events); |
| MaybeUpdateDispatcher(old_events); |
| } |
| |
| #endif // WEBRTC_USE_EPOLL |
| |
| int SocketDispatcher::Close() { |
| if (s_ == INVALID_SOCKET) |
| return 0; |
| |
| #if defined(WEBRTC_WIN) |
| id_ = 0; |
| signal_close_ = false; |
| #endif |
| #if defined(WEBRTC_USE_EPOLL) |
| // If we're batching events, the socket can be closed and reopened |
| // during the batch. Set saved_enabled_events_ to 0 here so the new |
| // socket, if any, has the correct old events bitfield |
| if (saved_enabled_events_ != -1) { |
| saved_enabled_events_ = 0; |
| } |
| #endif |
| ss_->Remove(this); |
| return PhysicalSocket::Close(); |
| } |
| |
| #if defined(WEBRTC_POSIX) |
| class EventDispatcher : public Dispatcher { |
| public: |
| EventDispatcher(PhysicalSocketServer* ss) : ss_(ss), fSignaled_(false) { |
| if (pipe(afd_) < 0) |
| RTC_LOG(LERROR) << "pipe failed"; |
| ss_->Add(this); |
| } |
| |
| ~EventDispatcher() override { |
| ss_->Remove(this); |
| close(afd_[0]); |
| close(afd_[1]); |
| } |
| |
| virtual void Signal() { |
| CritScope cs(&crit_); |
| if (!fSignaled_) { |
| const uint8_t b[1] = {0}; |
| const ssize_t res = write(afd_[1], b, sizeof(b)); |
| RTC_DCHECK_EQ(1, res); |
| fSignaled_ = true; |
| } |
| } |
| |
| uint32_t GetRequestedEvents() override { return DE_READ; } |
| |
| void OnPreEvent(uint32_t ff) override { |
| // It is not possible to perfectly emulate an auto-resetting event with |
| // pipes. This simulates it by resetting before the event is handled. |
| |
| CritScope cs(&crit_); |
| if (fSignaled_) { |
| uint8_t b[4]; // Allow for reading more than 1 byte, but expect 1. |
| const ssize_t res = read(afd_[0], b, sizeof(b)); |
| RTC_DCHECK_EQ(1, res); |
| fSignaled_ = false; |
| } |
| } |
| |
| void OnEvent(uint32_t ff, int err) override { RTC_NOTREACHED(); } |
| |
| int GetDescriptor() override { return afd_[0]; } |
| |
| bool IsDescriptorClosed() override { return false; } |
| |
| private: |
| PhysicalSocketServer* ss_; |
| int afd_[2]; |
| bool fSignaled_; |
| RecursiveCriticalSection crit_; |
| }; |
| |
| #endif // WEBRTC_POSIX |
| |
| #if defined(WEBRTC_WIN) |
| static uint32_t FlagsToEvents(uint32_t events) { |
| uint32_t ffFD = FD_CLOSE; |
| if (events & DE_READ) |
| ffFD |= FD_READ; |
| if (events & DE_WRITE) |
| ffFD |= FD_WRITE; |
| if (events & DE_CONNECT) |
| ffFD |= FD_CONNECT; |
| if (events & DE_ACCEPT) |
| ffFD |= FD_ACCEPT; |
| return ffFD; |
| } |
| |
| class EventDispatcher : public Dispatcher { |
| public: |
| EventDispatcher(PhysicalSocketServer* ss) : ss_(ss) { |
| hev_ = WSACreateEvent(); |
| if (hev_) { |
| ss_->Add(this); |
| } |
| } |
| |
| ~EventDispatcher() override { |
| if (hev_ != nullptr) { |
| ss_->Remove(this); |
| WSACloseEvent(hev_); |
| hev_ = nullptr; |
| } |
| } |
| |
| virtual void Signal() { |
| if (hev_ != nullptr) |
| WSASetEvent(hev_); |
| } |
| |
| uint32_t GetRequestedEvents() override { return 0; } |
| |
| void OnPreEvent(uint32_t ff) override { WSAResetEvent(hev_); } |
| |
| void OnEvent(uint32_t ff, int err) override {} |
| |
| WSAEVENT GetWSAEvent() override { return hev_; } |
| |
| SOCKET GetSocket() override { return INVALID_SOCKET; } |
| |
| bool CheckSignalClose() override { return false; } |
| |
| private: |
| PhysicalSocketServer* ss_; |
| WSAEVENT hev_; |
| }; |
| #endif // WEBRTC_WIN |
| |
| // Sets the value of a boolean value to false when signaled. |
| class Signaler : public EventDispatcher { |
| public: |
| Signaler(PhysicalSocketServer* ss, bool* pf) : EventDispatcher(ss), pf_(pf) {} |
| ~Signaler() override {} |
| |
| void OnEvent(uint32_t ff, int err) override { |
| if (pf_) |
| *pf_ = false; |
| } |
| |
| private: |
| bool* pf_; |
| }; |
| |
| PhysicalSocketServer::PhysicalSocketServer() |
| : |
| #if defined(WEBRTC_USE_EPOLL) |
| // Since Linux 2.6.8, the size argument is ignored, but must be greater |
| // than zero. Before that the size served as hint to the kernel for the |
| // amount of space to initially allocate in internal data structures. |
| epoll_fd_(epoll_create(FD_SETSIZE)), |
| #endif |
| #if defined(WEBRTC_WIN) |
| socket_ev_(WSACreateEvent()), |
| #endif |
| fWait_(false) { |
| #if defined(WEBRTC_USE_EPOLL) |
| if (epoll_fd_ == -1) { |
| // Not an error, will fall back to "select" below. |
| RTC_LOG_E(LS_WARNING, EN, errno) << "epoll_create"; |
| // Note that -1 == INVALID_SOCKET, the alias used by later checks. |
| } |
| #endif |
| signal_wakeup_ = new Signaler(this, &fWait_); |
| } |
| |
| PhysicalSocketServer::~PhysicalSocketServer() { |
| #if defined(WEBRTC_WIN) |
| WSACloseEvent(socket_ev_); |
| #endif |
| delete signal_wakeup_; |
| #if defined(WEBRTC_USE_EPOLL) |
| if (epoll_fd_ != INVALID_SOCKET) { |
| close(epoll_fd_); |
| } |
| #endif |
| RTC_DCHECK(dispatcher_by_key_.empty()); |
| RTC_DCHECK(key_by_dispatcher_.empty()); |
| } |
| |
| void PhysicalSocketServer::WakeUp() { |
| signal_wakeup_->Signal(); |
| } |
| |
| Socket* PhysicalSocketServer::CreateSocket(int family, int type) { |
| PhysicalSocket* socket = new PhysicalSocket(this); |
| if (socket->Create(family, type)) { |
| return socket; |
| } else { |
| delete socket; |
| return nullptr; |
| } |
| } |
| |
| AsyncSocket* PhysicalSocketServer::CreateAsyncSocket(int family, int type) { |
| SocketDispatcher* dispatcher = new SocketDispatcher(this); |
| if (dispatcher->Create(family, type)) { |
| return dispatcher; |
| } else { |
| delete dispatcher; |
| return nullptr; |
| } |
| } |
| |
| AsyncSocket* PhysicalSocketServer::WrapSocket(SOCKET s) { |
| SocketDispatcher* dispatcher = new SocketDispatcher(s, this); |
| if (dispatcher->Initialize()) { |
| return dispatcher; |
| } else { |
| delete dispatcher; |
| return nullptr; |
| } |
| } |
| |
| void PhysicalSocketServer::Add(Dispatcher* pdispatcher) { |
| CritScope cs(&crit_); |
| if (key_by_dispatcher_.count(pdispatcher)) { |
| RTC_LOG(LS_WARNING) |
| << "PhysicalSocketServer asked to add a duplicate dispatcher."; |
| return; |
| } |
| uint64_t key = next_dispatcher_key_++; |
| dispatcher_by_key_.emplace(key, pdispatcher); |
| key_by_dispatcher_.emplace(pdispatcher, key); |
| #if defined(WEBRTC_USE_EPOLL) |
| if (epoll_fd_ != INVALID_SOCKET) { |
| AddEpoll(pdispatcher, key); |
| } |
| #endif // WEBRTC_USE_EPOLL |
| } |
| |
| void PhysicalSocketServer::Remove(Dispatcher* pdispatcher) { |
| CritScope cs(&crit_); |
| if (!key_by_dispatcher_.count(pdispatcher)) { |
| RTC_LOG(LS_WARNING) |
| << "PhysicalSocketServer asked to remove a unknown " |
| "dispatcher, potentially from a duplicate call to Add."; |
| return; |
| } |
| uint64_t key = key_by_dispatcher_.at(pdispatcher); |
| key_by_dispatcher_.erase(pdispatcher); |
| dispatcher_by_key_.erase(key); |
| #if defined(WEBRTC_USE_EPOLL) |
| if (epoll_fd_ != INVALID_SOCKET) { |
| RemoveEpoll(pdispatcher); |
| } |
| #endif // WEBRTC_USE_EPOLL |
| } |
| |
| void PhysicalSocketServer::Update(Dispatcher* pdispatcher) { |
| #if defined(WEBRTC_USE_EPOLL) |
| if (epoll_fd_ == INVALID_SOCKET) { |
| return; |
| } |
| |
| // Don't update dispatchers that haven't yet been added. |
| CritScope cs(&crit_); |
| if (!key_by_dispatcher_.count(pdispatcher)) { |
| return; |
| } |
| |
| UpdateEpoll(pdispatcher, key_by_dispatcher_.at(pdispatcher)); |
| #endif |
| } |
| |
| #if defined(WEBRTC_POSIX) |
| |
| bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { |
| // We don't support reentrant waiting. |
| RTC_DCHECK(!waiting_); |
| ScopedSetTrue s(&waiting_); |
| #if defined(WEBRTC_USE_EPOLL) |
| // We don't keep a dedicated "epoll" descriptor containing only the non-IO |
| // (i.e. signaling) dispatcher, so "poll" will be used instead of the default |
| // "select" to support sockets larger than FD_SETSIZE. |
| if (!process_io) { |
| return WaitPoll(cmsWait, signal_wakeup_); |
| } else if (epoll_fd_ != INVALID_SOCKET) { |
| return WaitEpoll(cmsWait); |
| } |
| #endif |
| return WaitSelect(cmsWait, process_io); |
| } |
| |
| static void ProcessEvents(Dispatcher* dispatcher, |
| bool readable, |
| bool writable, |
| bool check_error) { |
| int errcode = 0; |
| // TODO(pthatcher): Should we set errcode if getsockopt fails? |
| if (check_error) { |
| socklen_t len = sizeof(errcode); |
| ::getsockopt(dispatcher->GetDescriptor(), SOL_SOCKET, SO_ERROR, &errcode, |
| &len); |
| } |
| |
| // Most often the socket is writable or readable or both, so make a single |
| // virtual call to get requested events |
| const uint32_t requested_events = dispatcher->GetRequestedEvents(); |
| uint32_t ff = 0; |
| |
| // Check readable descriptors. If we're waiting on an accept, signal |
| // that. Otherwise we're waiting for data, check to see if we're |
| // readable or really closed. |
| // TODO(pthatcher): Only peek at TCP descriptors. |
| if (readable) { |
| if (requested_events & DE_ACCEPT) { |
| ff |= DE_ACCEPT; |
| } else if (errcode || dispatcher->IsDescriptorClosed()) { |
| ff |= DE_CLOSE; |
| } else { |
| ff |= DE_READ; |
| } |
| } |
| |
| // Check writable descriptors. If we're waiting on a connect, detect |
| // success versus failure by the reaped error code. |
| if (writable) { |
| if (requested_events & DE_CONNECT) { |
| if (!errcode) { |
| ff |= DE_CONNECT; |
| } else { |
| ff |= DE_CLOSE; |
| } |
| } else { |
| ff |= DE_WRITE; |
| } |
| } |
| |
| // Tell the descriptor about the event. |
| if (ff != 0) { |
| dispatcher->OnPreEvent(ff); |
| dispatcher->OnEvent(ff, errcode); |
| } |
| } |
| |
| bool PhysicalSocketServer::WaitSelect(int cmsWait, bool process_io) { |
| // Calculate timing information |
| |
| struct timeval* ptvWait = nullptr; |
| struct timeval tvWait; |
| int64_t stop_us; |
| if (cmsWait != kForever) { |
| // Calculate wait timeval |
| tvWait.tv_sec = cmsWait / 1000; |
| tvWait.tv_usec = (cmsWait % 1000) * 1000; |
| ptvWait = &tvWait; |
| |
| // Calculate when to return |
| stop_us = rtc::TimeMicros() + cmsWait * 1000; |
| } |
| |
| |
| fd_set fdsRead; |
| fd_set fdsWrite; |
| // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the |
| // inline assembly in FD_ZERO. |
| // http://crbug.com/344505 |
| #ifdef MEMORY_SANITIZER |
| __msan_unpoison(&fdsRead, sizeof(fdsRead)); |
| __msan_unpoison(&fdsWrite, sizeof(fdsWrite)); |
| #endif |
| |
| fWait_ = true; |
| |
| while (fWait_) { |
| // Zero all fd_sets. Although select() zeros the descriptors not signaled, |
| // we may need to do this for dispatchers that were deleted while |
| // iterating. |
| FD_ZERO(&fdsRead); |
| FD_ZERO(&fdsWrite); |
| int fdmax = -1; |
| { |
| CritScope cr(&crit_); |
| current_dispatcher_keys_.clear(); |
| for (auto const& kv : dispatcher_by_key_) { |
| uint64_t key = kv.first; |
| Dispatcher* pdispatcher = kv.second; |
| // Query dispatchers for read and write wait state |
| if (!process_io && (pdispatcher != signal_wakeup_)) |
| continue; |
| current_dispatcher_keys_.push_back(key); |
| int fd = pdispatcher->GetDescriptor(); |
| // "select"ing a file descriptor that is equal to or larger than |
| // FD_SETSIZE will result in undefined behavior. |
| RTC_DCHECK_LT(fd, FD_SETSIZE); |
| if (fd > fdmax) |
| fdmax = fd; |
| |
| uint32_t ff = pdispatcher->GetRequestedEvents(); |
| if (ff & (DE_READ | DE_ACCEPT)) |
| FD_SET(fd, &fdsRead); |
| if (ff & (DE_WRITE | DE_CONNECT)) |
| FD_SET(fd, &fdsWrite); |
| } |
| } |
| |
| // Wait then call handlers as appropriate |
| // < 0 means error |
| // 0 means timeout |
| // > 0 means count of descriptors ready |
| int n = select(fdmax + 1, &fdsRead, &fdsWrite, nullptr, ptvWait); |
| |
| // If error, return error. |
| if (n < 0) { |
| if (errno != EINTR) { |
| RTC_LOG_E(LS_ERROR, EN, errno) << "select"; |
| return false; |
| } |
| // Else ignore the error and keep going. If this EINTR was for one of the |
| // signals managed by this PhysicalSocketServer, the |
| // PosixSignalDeliveryDispatcher will be in the signaled state in the next |
| // iteration. |
| } else if (n == 0) { |
| // If timeout, return success |
| return true; |
| } else { |
| // We have signaled descriptors |
| CritScope cr(&crit_); |
| // Iterate only on the dispatchers whose sockets were passed into |
| // WSAEventSelect; this avoids the ABA problem (a socket being |
| // destroyed and a new one created with the same file descriptor). |
| for (uint64_t key : current_dispatcher_keys_) { |
| if (!dispatcher_by_key_.count(key)) |
| continue; |
| Dispatcher* pdispatcher = dispatcher_by_key_.at(key); |
| |
| int fd = pdispatcher->GetDescriptor(); |
| |
| bool readable = FD_ISSET(fd, &fdsRead); |
| if (readable) { |
| FD_CLR(fd, &fdsRead); |
| } |
| |
| bool writable = FD_ISSET(fd, &fdsWrite); |
| if (writable) { |
| FD_CLR(fd, &fdsWrite); |
| } |
| |
| // The error code can be signaled through reads or writes. |
| ProcessEvents(pdispatcher, readable, writable, readable || writable); |
| } |
| } |
| |
| // Recalc the time remaining to wait. Doing it here means it doesn't get |
| // calced twice the first time through the loop |
| if (ptvWait) { |
| ptvWait->tv_sec = 0; |
| ptvWait->tv_usec = 0; |
| int64_t time_left_us = stop_us - rtc::TimeMicros(); |
| if (time_left_us > 0) { |
| ptvWait->tv_sec = time_left_us / rtc::kNumMicrosecsPerSec; |
| ptvWait->tv_usec = time_left_us % rtc::kNumMicrosecsPerSec; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| #if defined(WEBRTC_USE_EPOLL) |
| |
| void PhysicalSocketServer::AddEpoll(Dispatcher* pdispatcher, uint64_t key) { |
| RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); |
| int fd = pdispatcher->GetDescriptor(); |
| RTC_DCHECK(fd != INVALID_SOCKET); |
| if (fd == INVALID_SOCKET) { |
| return; |
| } |
| |
| struct epoll_event event = {0}; |
| event.events = GetEpollEvents(pdispatcher->GetRequestedEvents()); |
| event.data.u64 = key; |
| int err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event); |
| RTC_DCHECK_EQ(err, 0); |
| if (err == -1) { |
| RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD"; |
| } |
| } |
| |
| void PhysicalSocketServer::RemoveEpoll(Dispatcher* pdispatcher) { |
| RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); |
| int fd = pdispatcher->GetDescriptor(); |
| RTC_DCHECK(fd != INVALID_SOCKET); |
| if (fd == INVALID_SOCKET) { |
| return; |
| } |
| |
| struct epoll_event event = {0}; |
| int err = epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event); |
| RTC_DCHECK(err == 0 || errno == ENOENT); |
| if (err == -1) { |
| if (errno == ENOENT) { |
| // Socket has already been closed. |
| RTC_LOG_E(LS_VERBOSE, EN, errno) << "epoll_ctl EPOLL_CTL_DEL"; |
| } else { |
| RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_DEL"; |
| } |
| } |
| } |
| |
| void PhysicalSocketServer::UpdateEpoll(Dispatcher* pdispatcher, uint64_t key) { |
| RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); |
| int fd = pdispatcher->GetDescriptor(); |
| RTC_DCHECK(fd != INVALID_SOCKET); |
| if (fd == INVALID_SOCKET) { |
| return; |
| } |
| |
| struct epoll_event event = {0}; |
| event.events = GetEpollEvents(pdispatcher->GetRequestedEvents()); |
| event.data.u64 = key; |
| int err = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, fd, &event); |
| RTC_DCHECK_EQ(err, 0); |
| if (err == -1) { |
| RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_MOD"; |
| } |
| } |
| |
| bool PhysicalSocketServer::WaitEpoll(int cmsWait) { |
| RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); |
| int64_t tvWait = -1; |
| int64_t tvStop = -1; |
| if (cmsWait != kForever) { |
| tvWait = cmsWait; |
| tvStop = TimeAfter(cmsWait); |
| } |
| |
| fWait_ = true; |
| while (fWait_) { |
| // Wait then call handlers as appropriate |
| // < 0 means error |
| // 0 means timeout |
| // > 0 means count of descriptors ready |
| int n = epoll_wait(epoll_fd_, epoll_events_.data(), epoll_events_.size(), |
| static_cast<int>(tvWait)); |
| if (n < 0) { |
| if (errno != EINTR) { |
| RTC_LOG_E(LS_ERROR, EN, errno) << "epoll"; |
| return false; |
| } |
| // Else ignore the error and keep going. If this EINTR was for one of the |
| // signals managed by this PhysicalSocketServer, the |
| // PosixSignalDeliveryDispatcher will be in the signaled state in the next |
| // iteration. |
| } else if (n == 0) { |
| // If timeout, return success |
| return true; |
| } else { |
| // We have signaled descriptors |
| CritScope cr(&crit_); |
| for (int i = 0; i < n; ++i) { |
| const epoll_event& event = epoll_events_[i]; |
| uint64_t key = event.data.u64; |
| if (!dispatcher_by_key_.count(key)) { |
| // The dispatcher for this socket no longer exists. |
| continue; |
| } |
| Dispatcher* pdispatcher = dispatcher_by_key_.at(key); |
| |
| bool readable = (event.events & (EPOLLIN | EPOLLPRI)); |
| bool writable = (event.events & EPOLLOUT); |
| bool check_error = (event.events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)); |
| |
| ProcessEvents(pdispatcher, readable, writable, check_error); |
| } |
| } |
| |
| if (cmsWait != kForever) { |
| tvWait = TimeDiff(tvStop, TimeMillis()); |
| if (tvWait <= 0) { |
| // Return success on timeout. |
| return true; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| bool PhysicalSocketServer::WaitPoll(int cmsWait, Dispatcher* dispatcher) { |
| RTC_DCHECK(dispatcher); |
| int64_t tvWait = -1; |
| int64_t tvStop = -1; |
| if (cmsWait != kForever) { |
| tvWait = cmsWait; |
| tvStop = TimeAfter(cmsWait); |
| } |
| |
| fWait_ = true; |
| |
| struct pollfd fds = {0}; |
| int fd = dispatcher->GetDescriptor(); |
| fds.fd = fd; |
| |
| while (fWait_) { |
| uint32_t ff = dispatcher->GetRequestedEvents(); |
| fds.events = 0; |
| if (ff & (DE_READ | DE_ACCEPT)) { |
| fds.events |= POLLIN; |
| } |
| if (ff & (DE_WRITE | DE_CONNECT)) { |
| fds.events |= POLLOUT; |
| } |
| fds.revents = 0; |
| |
| // Wait then call handlers as appropriate |
| // < 0 means error |
| // 0 means timeout |
| // > 0 means count of descriptors ready |
| int n = poll(&fds, 1, static_cast<int>(tvWait)); |
| if (n < 0) { |
| if (errno != EINTR) { |
| RTC_LOG_E(LS_ERROR, EN, errno) << "poll"; |
| return false; |
| } |
| // Else ignore the error and keep going. If this EINTR was for one of the |
| // signals managed by this PhysicalSocketServer, the |
| // PosixSignalDeliveryDispatcher will be in the signaled state in the next |
| // iteration. |
| } else if (n == 0) { |
| // If timeout, return success |
| return true; |
| } else { |
| // We have signaled descriptors (should only be the passed dispatcher). |
| RTC_DCHECK_EQ(n, 1); |
| RTC_DCHECK_EQ(fds.fd, fd); |
| |
| bool readable = (fds.revents & (POLLIN | POLLPRI)); |
| bool writable = (fds.revents & POLLOUT); |
| bool check_error = (fds.revents & (POLLRDHUP | POLLERR | POLLHUP)); |
| |
| ProcessEvents(dispatcher, readable, writable, check_error); |
| } |
| |
| if (cmsWait != kForever) { |
| tvWait = TimeDiff(tvStop, TimeMillis()); |
| if (tvWait < 0) { |
| // Return success on timeout. |
| return true; |
| } |
| } |
| } |
| |
| return true; |
| } |
| |
| #endif // WEBRTC_USE_EPOLL |
| |
| #endif // WEBRTC_POSIX |
| |
| #if defined(WEBRTC_WIN) |
| bool PhysicalSocketServer::Wait(int cmsWait, bool process_io) { |
| // We don't support reentrant waiting. |
| RTC_DCHECK(!waiting_); |
| ScopedSetTrue s(&waiting_); |
| |
| int64_t cmsTotal = cmsWait; |
| int64_t cmsElapsed = 0; |
| int64_t msStart = Time(); |
| |
| fWait_ = true; |
| while (fWait_) { |
| std::vector<WSAEVENT> events; |
| std::vector<uint64_t> event_owners; |
| |
| events.push_back(socket_ev_); |
| |
| { |
| CritScope cr(&crit_); |
| // Get a snapshot of all current dispatchers; this is used to avoid the |
| // ABA problem (see later comment) and avoids the dispatcher_by_key_ |
| // iterator being invalidated by calling CheckSignalClose, which may |
| // remove the dispatcher from the list. |
| current_dispatcher_keys_.clear(); |
| for (auto const& kv : dispatcher_by_key_) { |
| current_dispatcher_keys_.push_back(kv.first); |
| } |
| for (uint64_t key : current_dispatcher_keys_) { |
| if (!dispatcher_by_key_.count(key)) { |
| continue; |
| } |
| Dispatcher* disp = dispatcher_by_key_.at(key); |
| if (!disp) |
| continue; |
| if (!process_io && (disp != signal_wakeup_)) |
| continue; |
| SOCKET s = disp->GetSocket(); |
| if (disp->CheckSignalClose()) { |
| // We just signalled close, don't poll this socket. |
| } else if (s != INVALID_SOCKET) { |
| WSAEventSelect(s, events[0], |
| FlagsToEvents(disp->GetRequestedEvents())); |
| } else { |
| events.push_back(disp->GetWSAEvent()); |
| event_owners.push_back(key); |
| } |
| } |
| } |
| |
| // Which is shorter, the delay wait or the asked wait? |
| |
| int64_t cmsNext; |
| if (cmsWait == kForever) { |
| cmsNext = cmsWait; |
| } else { |
| cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed); |
| } |
| |
| // Wait for one of the events to signal |
| DWORD dw = |
| WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), &events[0], |
| false, static_cast<DWORD>(cmsNext), false); |
| |
| if (dw == WSA_WAIT_FAILED) { |
| // Failed? |
| // TODO(pthatcher): need a better strategy than this! |
| WSAGetLastError(); |
| RTC_NOTREACHED(); |
| return false; |
| } else if (dw == WSA_WAIT_TIMEOUT) { |
| // Timeout? |
| return true; |
| } else { |
| // Figure out which one it is and call it |
| CritScope cr(&crit_); |
| int index = dw - WSA_WAIT_EVENT_0; |
| if (index > 0) { |
| --index; // The first event is the socket event |
| uint64_t key = event_owners[index]; |
| if (!dispatcher_by_key_.count(key)) { |
| // The dispatcher could have been removed while waiting for events. |
| continue; |
| } |
| Dispatcher* disp = dispatcher_by_key_.at(key); |
| disp->OnPreEvent(0); |
| disp->OnEvent(0, 0); |
| } else if (process_io) { |
| // Iterate only on the dispatchers whose sockets were passed into |
| // WSAEventSelect; this avoids the ABA problem (a socket being |
| // destroyed and a new one created with the same SOCKET handle). |
| for (uint64_t key : current_dispatcher_keys_) { |
| if (!dispatcher_by_key_.count(key)) { |
| continue; |
| } |
| Dispatcher* disp = dispatcher_by_key_.at(key); |
| SOCKET s = disp->GetSocket(); |
| if (s == INVALID_SOCKET) |
| continue; |
| |
| WSANETWORKEVENTS wsaEvents; |
| int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents); |
| if (err == 0) { |
| { |
| if ((wsaEvents.lNetworkEvents & FD_READ) && |
| wsaEvents.iErrorCode[FD_READ_BIT] != 0) { |
| RTC_LOG(WARNING) |
| << "PhysicalSocketServer got FD_READ_BIT error " |
| << wsaEvents.iErrorCode[FD_READ_BIT]; |
| } |
| if ((wsaEvents.lNetworkEvents & FD_WRITE) && |
| wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) { |
| RTC_LOG(WARNING) |
| << "PhysicalSocketServer got FD_WRITE_BIT error " |
| << wsaEvents.iErrorCode[FD_WRITE_BIT]; |
| } |
| if ((wsaEvents.lNetworkEvents & FD_CONNECT) && |
| wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) { |
| RTC_LOG(WARNING) |
| << "PhysicalSocketServer got FD_CONNECT_BIT error " |
| << wsaEvents.iErrorCode[FD_CONNECT_BIT]; |
| } |
| if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && |
| wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) { |
| RTC_LOG(WARNING) |
| << "PhysicalSocketServer got FD_ACCEPT_BIT error " |
| << wsaEvents.iErrorCode[FD_ACCEPT_BIT]; |
| } |
| if ((wsaEvents.lNetworkEvents & FD_CLOSE) && |
| wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) { |
| RTC_LOG(WARNING) |
| << "PhysicalSocketServer got FD_CLOSE_BIT error " |
| << wsaEvents.iErrorCode[FD_CLOSE_BIT]; |
| } |
| } |
| uint32_t ff = 0; |
| int errcode = 0; |
| if (wsaEvents.lNetworkEvents & FD_READ) |
| ff |= DE_READ; |
| if (wsaEvents.lNetworkEvents & FD_WRITE) |
| ff |= DE_WRITE; |
| if (wsaEvents.lNetworkEvents & FD_CONNECT) { |
| if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) { |
| ff |= DE_CONNECT; |
| } else { |
| ff |= DE_CLOSE; |
| errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT]; |
| } |
| } |
| if (wsaEvents.lNetworkEvents & FD_ACCEPT) |
| ff |= DE_ACCEPT; |
| if (wsaEvents.lNetworkEvents & FD_CLOSE) { |
| ff |= DE_CLOSE; |
| errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT]; |
| } |
| if (ff != 0) { |
| disp->OnPreEvent(ff); |
| disp->OnEvent(ff, errcode); |
| } |
| } |
| } |
| } |
| |
| // Reset the network event until new activity occurs |
| WSAResetEvent(socket_ev_); |
| } |
| |
| // Break? |
| if (!fWait_) |
| break; |
| cmsElapsed = TimeSince(msStart); |
| if ((cmsWait != kForever) && (cmsElapsed >= cmsWait)) { |
| break; |
| } |
| } |
| |
| // Done |
| return true; |
| } |
| #endif // WEBRTC_WIN |
| |
| } // namespace rtc |