blob: 397e2692398985f1275c129894bd9cd181a8416e [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/common_audio/blocker.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace {
// Callback Function to add 3 to every sample in the signal.
class PlusThreeBlockerCallback : public webrtc::BlockerCallback {
public:
void ProcessBlock(const float* const* input,
size_t num_frames,
int num_input_channels,
int num_output_channels,
float* const* output) override {
for (int i = 0; i < num_output_channels; ++i) {
for (size_t j = 0; j < num_frames; ++j) {
output[i][j] = input[i][j] + 3;
}
}
}
};
// No-op Callback Function.
class CopyBlockerCallback : public webrtc::BlockerCallback {
public:
void ProcessBlock(const float* const* input,
size_t num_frames,
int num_input_channels,
int num_output_channels,
float* const* output) override {
for (int i = 0; i < num_output_channels; ++i) {
for (size_t j = 0; j < num_frames; ++j) {
output[i][j] = input[i][j];
}
}
}
};
} // namespace
namespace webrtc {
// Tests blocking with a window that multiplies the signal by 2, a callback
// that adds 3 to each sample in the signal, and different combinations of chunk
// size, block size, and shift amount.
class BlockerTest : public ::testing::Test {
protected:
void RunTest(Blocker* blocker,
int chunk_size,
int num_frames,
const float* const* input,
float* const* input_chunk,
float* const* output,
float* const* output_chunk,
int num_input_channels,
int num_output_channels) {
int start = 0;
int end = chunk_size - 1;
while (end < num_frames) {
CopyTo(input_chunk, 0, start, num_input_channels, chunk_size, input);
blocker->ProcessChunk(input_chunk,
chunk_size,
num_input_channels,
num_output_channels,
output_chunk);
CopyTo(output, start, 0, num_output_channels, chunk_size, output_chunk);
start = start + chunk_size;
end = end + chunk_size;
}
}
void ValidateSignalEquality(const float* const* expected,
const float* const* actual,
int num_channels,
int num_frames) {
for (int i = 0; i < num_channels; ++i) {
for (int j = 0; j < num_frames; ++j) {
EXPECT_FLOAT_EQ(expected[i][j], actual[i][j]);
}
}
}
void ValidateInitialDelay(const float* const* output,
int num_channels,
int num_frames,
int initial_delay) {
for (int i = 0; i < num_channels; ++i) {
for (int j = 0; j < num_frames; ++j) {
if (j < initial_delay) {
EXPECT_FLOAT_EQ(output[i][j], 0.f);
} else {
EXPECT_GT(output[i][j], 0.f);
}
}
}
}
static void CopyTo(float* const* dst,
int start_index_dst,
int start_index_src,
int num_channels,
int num_frames,
const float* const* src) {
for (int i = 0; i < num_channels; ++i) {
memcpy(&dst[i][start_index_dst],
&src[i][start_index_src],
num_frames * sizeof(float));
}
}
};
TEST_F(BlockerTest, TestBlockerMutuallyPrimeChunkandBlockSize) {
const int kNumInputChannels = 3;
const int kNumOutputChannels = 2;
const int kNumFrames = 10;
const int kBlockSize = 4;
const int kChunkSize = 5;
const int kShiftAmount = 2;
const float kInput[kNumInputChannels][kNumFrames] = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
ChannelBuffer<float> input_cb(kNumFrames, kNumInputChannels);
input_cb.SetDataForTesting(kInput[0], sizeof(kInput) / sizeof(**kInput));
const float kExpectedOutput[kNumInputChannels][kNumFrames] = {
{6, 6, 12, 20, 20, 20, 20, 20, 20, 20},
{6, 6, 12, 28, 28, 28, 28, 28, 28, 28}};
ChannelBuffer<float> expected_output_cb(kNumFrames, kNumInputChannels);
expected_output_cb.SetDataForTesting(
kExpectedOutput[0], sizeof(kExpectedOutput) / sizeof(**kExpectedOutput));
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
PlusThreeBlockerCallback callback;
Blocker blocker(kChunkSize,
kBlockSize,
kNumInputChannels,
kNumOutputChannels,
kWindow,
kShiftAmount,
&callback);
RunTest(&blocker,
kChunkSize,
kNumFrames,
input_cb.channels(),
input_chunk_cb.channels(),
actual_output_cb.channels(),
output_chunk_cb.channels(),
kNumInputChannels,
kNumOutputChannels);
ValidateSignalEquality(expected_output_cb.channels(),
actual_output_cb.channels(),
kNumOutputChannels,
kNumFrames);
}
TEST_F(BlockerTest, TestBlockerMutuallyPrimeShiftAndBlockSize) {
const int kNumInputChannels = 3;
const int kNumOutputChannels = 2;
const int kNumFrames = 12;
const int kBlockSize = 4;
const int kChunkSize = 6;
const int kShiftAmount = 3;
const float kInput[kNumInputChannels][kNumFrames] = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
ChannelBuffer<float> input_cb(kNumFrames, kNumInputChannels);
input_cb.SetDataForTesting(kInput[0], sizeof(kInput) / sizeof(**kInput));
const float kExpectedOutput[kNumOutputChannels][kNumFrames] = {
{6, 10, 10, 20, 10, 10, 20, 10, 10, 20, 10, 10},
{6, 14, 14, 28, 14, 14, 28, 14, 14, 28, 14, 14}};
ChannelBuffer<float> expected_output_cb(kNumFrames, kNumOutputChannels);
expected_output_cb.SetDataForTesting(
kExpectedOutput[0], sizeof(kExpectedOutput) / sizeof(**kExpectedOutput));
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
PlusThreeBlockerCallback callback;
Blocker blocker(kChunkSize,
kBlockSize,
kNumInputChannels,
kNumOutputChannels,
kWindow,
kShiftAmount,
&callback);
RunTest(&blocker,
kChunkSize,
kNumFrames,
input_cb.channels(),
input_chunk_cb.channels(),
actual_output_cb.channels(),
output_chunk_cb.channels(),
kNumInputChannels,
kNumOutputChannels);
ValidateSignalEquality(expected_output_cb.channels(),
actual_output_cb.channels(),
kNumOutputChannels,
kNumFrames);
}
TEST_F(BlockerTest, TestBlockerNoOverlap) {
const int kNumInputChannels = 3;
const int kNumOutputChannels = 2;
const int kNumFrames = 12;
const int kBlockSize = 4;
const int kChunkSize = 4;
const int kShiftAmount = 4;
const float kInput[kNumInputChannels][kNumFrames] = {
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
{2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2},
{3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3}};
ChannelBuffer<float> input_cb(kNumFrames, kNumInputChannels);
input_cb.SetDataForTesting(kInput[0], sizeof(kInput) / sizeof(**kInput));
const float kExpectedOutput[kNumOutputChannels][kNumFrames] = {
{10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10},
{14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14}};
ChannelBuffer<float> expected_output_cb(kNumFrames, kNumOutputChannels);
expected_output_cb.SetDataForTesting(
kExpectedOutput[0], sizeof(kExpectedOutput) / sizeof(**kExpectedOutput));
const float kWindow[kBlockSize] = {2.f, 2.f, 2.f, 2.f};
ChannelBuffer<float> actual_output_cb(kNumFrames, kNumOutputChannels);
ChannelBuffer<float> input_chunk_cb(kChunkSize, kNumInputChannels);
ChannelBuffer<float> output_chunk_cb(kChunkSize, kNumOutputChannels);
PlusThreeBlockerCallback callback;
Blocker blocker(kChunkSize,
kBlockSize,
kNumInputChannels,
kNumOutputChannels,
kWindow,
kShiftAmount,
&callback);
RunTest(&blocker,
kChunkSize,
kNumFrames,
input_cb.channels(),
input_chunk_cb.channels(),
actual_output_cb.channels(),
output_chunk_cb.channels(),
kNumInputChannels,
kNumOutputChannels);
ValidateSignalEquality(expected_output_cb.channels(),
actual_output_cb.channels(),
kNumOutputChannels,
kNumFrames);
}
TEST_F(BlockerTest, InitialDelaysAreMinimum) {
const int kNumInputChannels = 3;
const int kNumOutputChannels = 2;
const int kNumFrames = 1280;
const int kChunkSize[] =
{80, 80, 80, 80, 80, 80, 160, 160, 160, 160, 160, 160};
const int kBlockSize[] =
{64, 64, 64, 128, 128, 128, 128, 128, 128, 256, 256, 256};
const int kShiftAmount[] =
{16, 32, 64, 32, 64, 128, 32, 64, 128, 64, 128, 256};
const int kInitialDelay[] =
{48, 48, 48, 112, 112, 112, 96, 96, 96, 224, 224, 224};
float input[kNumInputChannels][kNumFrames];
for (int i = 0; i < kNumInputChannels; ++i) {
for (int j = 0; j < kNumFrames; ++j) {
input[i][j] = i + 1;
}
}
ChannelBuffer<float> input_cb(kNumFrames, kNumInputChannels);
input_cb.SetDataForTesting(input[0], sizeof(input) / sizeof(**input));
ChannelBuffer<float> output_cb(kNumFrames, kNumOutputChannels);
CopyBlockerCallback callback;
for (size_t i = 0; i < (sizeof(kChunkSize) / sizeof(*kChunkSize)); ++i) {
rtc::scoped_ptr<float[]> window(new float[kBlockSize[i]]);
for (int j = 0; j < kBlockSize[i]; ++j) {
window[j] = 1.f;
}
ChannelBuffer<float> input_chunk_cb(kChunkSize[i], kNumInputChannels);
ChannelBuffer<float> output_chunk_cb(kChunkSize[i], kNumOutputChannels);
Blocker blocker(kChunkSize[i],
kBlockSize[i],
kNumInputChannels,
kNumOutputChannels,
window.get(),
kShiftAmount[i],
&callback);
RunTest(&blocker,
kChunkSize[i],
kNumFrames,
input_cb.channels(),
input_chunk_cb.channels(),
output_cb.channels(),
output_chunk_cb.channels(),
kNumInputChannels,
kNumOutputChannels);
ValidateInitialDelay(output_cb.channels(),
kNumOutputChannels,
kNumFrames,
kInitialDelay[i]);
}
}
} // namespace webrtc