| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "webrtc/modules/audio_coding/neteq/time_stretch.h" |
| |
| #include <algorithm> // min, max |
| |
| #include "webrtc/base/safe_conversions.h" |
| #include "webrtc/base/scoped_ptr.h" |
| #include "webrtc/common_audio/signal_processing/include/signal_processing_library.h" |
| #include "webrtc/modules/audio_coding/neteq/background_noise.h" |
| #include "webrtc/modules/audio_coding/neteq/dsp_helper.h" |
| |
| namespace webrtc { |
| |
| TimeStretch::ReturnCodes TimeStretch::Process(const int16_t* input, |
| size_t input_len, |
| bool fast_mode, |
| AudioMultiVector* output, |
| size_t* length_change_samples) { |
| // Pre-calculate common multiplication with |fs_mult_|. |
| size_t fs_mult_120 = |
| static_cast<size_t>(fs_mult_ * 120); // Corresponds to 15 ms. |
| |
| const int16_t* signal; |
| rtc::scoped_ptr<int16_t[]> signal_array; |
| size_t signal_len; |
| if (num_channels_ == 1) { |
| signal = input; |
| signal_len = input_len; |
| } else { |
| // We want |signal| to be only the first channel of |input|, which is |
| // interleaved. Thus, we take the first sample, skip forward |num_channels| |
| // samples, and continue like that. |
| signal_len = input_len / num_channels_; |
| signal_array.reset(new int16_t[signal_len]); |
| signal = signal_array.get(); |
| size_t j = master_channel_; |
| for (size_t i = 0; i < signal_len; ++i) { |
| signal_array[i] = input[j]; |
| j += num_channels_; |
| } |
| } |
| |
| // Find maximum absolute value of input signal. |
| max_input_value_ = WebRtcSpl_MaxAbsValueW16(signal, signal_len); |
| |
| // Downsample to 4 kHz sample rate and calculate auto-correlation. |
| DspHelper::DownsampleTo4kHz(signal, signal_len, kDownsampledLen, |
| sample_rate_hz_, true /* compensate delay*/, |
| downsampled_input_); |
| AutoCorrelation(); |
| |
| // Find the strongest correlation peak. |
| static const size_t kNumPeaks = 1; |
| size_t peak_index; |
| int16_t peak_value; |
| DspHelper::PeakDetection(auto_correlation_, kCorrelationLen, kNumPeaks, |
| fs_mult_, &peak_index, &peak_value); |
| // Assert that |peak_index| stays within boundaries. |
| assert(peak_index <= (2 * kCorrelationLen - 1) * fs_mult_); |
| |
| // Compensate peak_index for displaced starting position. The displacement |
| // happens in AutoCorrelation(). Here, |kMinLag| is in the down-sampled 4 kHz |
| // domain, while the |peak_index| is in the original sample rate; hence, the |
| // multiplication by fs_mult_ * 2. |
| peak_index += kMinLag * fs_mult_ * 2; |
| // Assert that |peak_index| stays within boundaries. |
| assert(peak_index >= static_cast<size_t>(20 * fs_mult_)); |
| assert(peak_index <= 20 * fs_mult_ + (2 * kCorrelationLen - 1) * fs_mult_); |
| |
| // Calculate scaling to ensure that |peak_index| samples can be square-summed |
| // without overflowing. |
| int scaling = 31 - WebRtcSpl_NormW32(max_input_value_ * max_input_value_) - |
| WebRtcSpl_NormW32(static_cast<int32_t>(peak_index)); |
| scaling = std::max(0, scaling); |
| |
| // |vec1| starts at 15 ms minus one pitch period. |
| const int16_t* vec1 = &signal[fs_mult_120 - peak_index]; |
| // |vec2| start at 15 ms. |
| const int16_t* vec2 = &signal[fs_mult_120]; |
| // Calculate energies for |vec1| and |vec2|, assuming they both contain |
| // |peak_index| samples. |
| int32_t vec1_energy = |
| WebRtcSpl_DotProductWithScale(vec1, vec1, peak_index, scaling); |
| int32_t vec2_energy = |
| WebRtcSpl_DotProductWithScale(vec2, vec2, peak_index, scaling); |
| |
| // Calculate cross-correlation between |vec1| and |vec2|. |
| int32_t cross_corr = |
| WebRtcSpl_DotProductWithScale(vec1, vec2, peak_index, scaling); |
| |
| // Check if the signal seems to be active speech or not (simple VAD). |
| bool active_speech = SpeechDetection(vec1_energy, vec2_energy, peak_index, |
| scaling); |
| |
| int16_t best_correlation; |
| if (!active_speech) { |
| SetParametersForPassiveSpeech(signal_len, &best_correlation, &peak_index); |
| } else { |
| // Calculate correlation: |
| // cross_corr / sqrt(vec1_energy * vec2_energy). |
| |
| // Start with calculating scale values. |
| int energy1_scale = std::max(0, 16 - WebRtcSpl_NormW32(vec1_energy)); |
| int energy2_scale = std::max(0, 16 - WebRtcSpl_NormW32(vec2_energy)); |
| |
| // Make sure total scaling is even (to simplify scale factor after sqrt). |
| if ((energy1_scale + energy2_scale) & 1) { |
| // The sum is odd. |
| energy1_scale += 1; |
| } |
| |
| // Scale energies to int16_t. |
| int16_t vec1_energy_int16 = |
| static_cast<int16_t>(vec1_energy >> energy1_scale); |
| int16_t vec2_energy_int16 = |
| static_cast<int16_t>(vec2_energy >> energy2_scale); |
| |
| // Calculate square-root of energy product. |
| int16_t sqrt_energy_prod = WebRtcSpl_SqrtFloor(vec1_energy_int16 * |
| vec2_energy_int16); |
| |
| // Calculate cross_corr / sqrt(en1*en2) in Q14. |
| int temp_scale = 14 - (energy1_scale + energy2_scale) / 2; |
| cross_corr = WEBRTC_SPL_SHIFT_W32(cross_corr, temp_scale); |
| cross_corr = std::max(0, cross_corr); // Don't use if negative. |
| best_correlation = WebRtcSpl_DivW32W16(cross_corr, sqrt_energy_prod); |
| // Make sure |best_correlation| is no larger than 1 in Q14. |
| best_correlation = std::min(static_cast<int16_t>(16384), best_correlation); |
| } |
| |
| |
| // Check accelerate criteria and stretch the signal. |
| ReturnCodes return_value = |
| CheckCriteriaAndStretch(input, input_len, peak_index, best_correlation, |
| active_speech, fast_mode, output); |
| switch (return_value) { |
| case kSuccess: |
| *length_change_samples = peak_index; |
| break; |
| case kSuccessLowEnergy: |
| *length_change_samples = peak_index; |
| break; |
| case kNoStretch: |
| case kError: |
| *length_change_samples = 0; |
| break; |
| } |
| return return_value; |
| } |
| |
| void TimeStretch::AutoCorrelation() { |
| // Set scaling factor for cross correlation to protect against overflow. |
| int scaling = kLogCorrelationLen - WebRtcSpl_NormW32( |
| max_input_value_ * max_input_value_); |
| scaling = std::max(0, scaling); |
| |
| // Calculate correlation from lag kMinLag to lag kMaxLag in 4 kHz domain. |
| int32_t auto_corr[kCorrelationLen]; |
| WebRtcSpl_CrossCorrelation(auto_corr, &downsampled_input_[kMaxLag], |
| &downsampled_input_[kMaxLag - kMinLag], |
| kCorrelationLen, kMaxLag - kMinLag, scaling, -1); |
| |
| // Normalize correlation to 14 bits and write to |auto_correlation_|. |
| int32_t max_corr = WebRtcSpl_MaxAbsValueW32(auto_corr, kCorrelationLen); |
| scaling = std::max(0, 17 - WebRtcSpl_NormW32(max_corr)); |
| WebRtcSpl_VectorBitShiftW32ToW16(auto_correlation_, kCorrelationLen, |
| auto_corr, scaling); |
| } |
| |
| bool TimeStretch::SpeechDetection(int32_t vec1_energy, int32_t vec2_energy, |
| size_t peak_index, int scaling) const { |
| // Check if the signal seems to be active speech or not (simple VAD). |
| // If (vec1_energy + vec2_energy) / (2 * peak_index) <= |
| // 8 * background_noise_energy, then we say that the signal contains no |
| // active speech. |
| // Rewrite the inequality as: |
| // (vec1_energy + vec2_energy) / 16 <= peak_index * background_noise_energy. |
| // The two sides of the inequality will be denoted |left_side| and |
| // |right_side|. |
| int32_t left_side = (vec1_energy + vec2_energy) / 16; |
| int32_t right_side; |
| if (background_noise_.initialized()) { |
| right_side = background_noise_.Energy(master_channel_); |
| } else { |
| // If noise parameters have not been estimated, use a fixed threshold. |
| right_side = 75000; |
| } |
| int right_scale = 16 - WebRtcSpl_NormW32(right_side); |
| right_scale = std::max(0, right_scale); |
| left_side = left_side >> right_scale; |
| right_side = |
| rtc::checked_cast<int32_t>(peak_index) * (right_side >> right_scale); |
| |
| // Scale |left_side| properly before comparing with |right_side|. |
| // (|scaling| is the scale factor before energy calculation, thus the scale |
| // factor for the energy is 2 * scaling.) |
| if (WebRtcSpl_NormW32(left_side) < 2 * scaling) { |
| // Cannot scale only |left_side|, must scale |right_side| too. |
| int temp_scale = WebRtcSpl_NormW32(left_side); |
| left_side = left_side << temp_scale; |
| right_side = right_side >> (2 * scaling - temp_scale); |
| } else { |
| left_side = left_side << 2 * scaling; |
| } |
| return left_side > right_side; |
| } |
| |
| } // namespace webrtc |