blob: a98eb3073bb48661e8638467d8f9ee325ab7cba6 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
#define MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_
// This file contains classes for reading and writing integer types from/to
// byte array representations. Signed/unsigned, partial (whole byte) sizes,
// and big/little endian byte order is all supported.
//
// Usage examples:
//
// uint8_t* buffer = ...;
//
// // Read an unsigned 4 byte integer in big endian format
// uint32_t val = ByteReader<uint32_t>::ReadBigEndian(buffer);
//
// // Read a signed 24-bit (3 byte) integer in little endian format
// int32_t val = ByteReader<int32_t, 3>::ReadLittle(buffer);
//
// // Write an unsigned 8 byte integer in little endian format
// ByteWriter<uint64_t>::WriteLittleEndian(buffer, val);
//
// Write an unsigned 40-bit (5 byte) integer in big endian format
// ByteWriter<uint64_t, 5>::WriteBigEndian(buffer, val);
//
// These classes are implemented as recursive templetizations, inteded to make
// it easy for the compiler to completely inline the reading/writing.
#include <stdint.h>
#include <limits>
namespace webrtc {
// According to ISO C standard ISO/IEC 9899, section 6.2.6.2 (2), the three
// representations of signed integers allowed are two's complement, one's
// complement and sign/magnitude. We can detect which is used by looking at
// the two last bits of -1, which will be 11 in two's complement, 10 in one's
// complement and 01 in sign/magnitude.
// TODO(sprang): In the unlikely event that we actually need to support a
// platform that doesn't use two's complement, implement conversion to/from
// wire format.
// Assume the if any one signed integer type is two's complement, then all
// other will be too.
static_assert(
(-1 & 0x03) == 0x03,
"Only two's complement representation of signed integers supported.");
// Plain const char* won't work for static_assert, use #define instead.
#define kSizeErrorMsg "Byte size must be less than or equal to data type size."
// Utility class for getting the unsigned equivalent of a signed type.
template <typename T>
struct UnsignedOf;
// Class for reading integers from a sequence of bytes.
// T = type of integer, B = bytes to read, is_signed = true if signed integer.
// If is_signed is true and B < sizeof(T), sign extension might be needed.
template <typename T,
unsigned int B = sizeof(T),
bool is_signed = std::numeric_limits<T>::is_signed>
class ByteReader;
// Specialization of ByteReader for unsigned types.
template <typename T, unsigned int B>
class ByteReader<T, B, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(B <= sizeof(T), kSizeErrorMsg);
return InternalReadBigEndian(data);
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(B <= sizeof(T), kSizeErrorMsg);
return InternalReadLittleEndian(data);
}
private:
static T InternalReadBigEndian(const uint8_t* data) {
T val(0);
for (unsigned int i = 0; i < B; ++i)
val |= static_cast<T>(data[i]) << ((B - 1 - i) * 8);
return val;
}
static T InternalReadLittleEndian(const uint8_t* data) {
T val(0);
for (unsigned int i = 0; i < B; ++i)
val |= static_cast<T>(data[i]) << (i * 8);
return val;
}
};
// Specialization of ByteReader for signed types.
template <typename T, unsigned int B>
class ByteReader<T, B, true> {
public:
typedef typename UnsignedOf<T>::Type U;
static T ReadBigEndian(const uint8_t* data) {
U unsigned_val = ByteReader<T, B, false>::ReadBigEndian(data);
if (B < sizeof(T))
unsigned_val = SignExtend(unsigned_val);
return ReinterpretAsSigned(unsigned_val);
}
static T ReadLittleEndian(const uint8_t* data) {
U unsigned_val = ByteReader<T, B, false>::ReadLittleEndian(data);
if (B < sizeof(T))
unsigned_val = SignExtend(unsigned_val);
return ReinterpretAsSigned(unsigned_val);
}
private:
// As a hack to avoid implementation-specific or undefined behavior when
// bit-shifting or casting signed integers, read as a signed equivalent
// instead and convert to signed. This is safe since we have asserted that
// two's complement for is used.
static T ReinterpretAsSigned(U unsigned_val) {
// An unsigned value with only the highest order bit set (ex 0x80).
const U kUnsignedHighestBitMask = static_cast<U>(1)
<< ((sizeof(U) * 8) - 1);
// A signed value with only the highest bit set. Since this is two's
// complement form, we can use the min value from std::numeric_limits.
const T kSignedHighestBitMask = std::numeric_limits<T>::min();
T val;
if ((unsigned_val & kUnsignedHighestBitMask) != 0) {
// Casting is only safe when unsigned value can be represented in the
// signed target type, so mask out highest bit and mask it back manually.
val = static_cast<T>(unsigned_val & ~kUnsignedHighestBitMask);
val |= kSignedHighestBitMask;
} else {
val = static_cast<T>(unsigned_val);
}
return val;
}
// If number of bytes is less than native data type (eg 24 bit, in int32_t),
// and the most significant bit of the actual data is set, we must sign
// extend the remaining byte(s) with ones so that the correct negative
// number is retained.
// Ex: 0x810A0B -> 0xFF810A0B, but 0x710A0B -> 0x00710A0B
static U SignExtend(const U val) {
const uint8_t kMsb = static_cast<uint8_t>(val >> ((B - 1) * 8));
if ((kMsb & 0x80) != 0) {
// Create a mask where all bits used by the B bytes are set to one,
// for instance 0x00FFFFFF for B = 3. Bit-wise invert that mask (to
// (0xFF000000 in the example above) and add it to the input value.
// The "B % sizeof(T)" is a workaround to undefined values warnings for
// B == sizeof(T), in which case this code won't be called anyway.
const U kUsedBitsMask = (1 << ((B % sizeof(T)) * 8)) - 1;
return ~kUsedBitsMask | val;
}
return val;
}
};
// Class for writing integers to a sequence of bytes
// T = type of integer, B = bytes to write
template <typename T,
unsigned int B = sizeof(T),
bool is_signed = std::numeric_limits<T>::is_signed>
class ByteWriter;
// Specialization of ByteWriter for unsigned types.
template <typename T, unsigned int B>
class ByteWriter<T, B, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(B <= sizeof(T), kSizeErrorMsg);
for (unsigned int i = 0; i < B; ++i) {
data[i] = val >> ((B - 1 - i) * 8);
}
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(B <= sizeof(T), kSizeErrorMsg);
for (unsigned int i = 0; i < B; ++i) {
data[i] = val >> (i * 8);
}
}
};
// Specialization of ByteWriter for signed types.
template <typename T, unsigned int B>
class ByteWriter<T, B, true> {
public:
typedef typename UnsignedOf<T>::Type U;
static void WriteBigEndian(uint8_t* data, T val) {
ByteWriter<U, B, false>::WriteBigEndian(data, ReinterpretAsUnsigned(val));
}
static void WriteLittleEndian(uint8_t* data, T val) {
ByteWriter<U, B, false>::WriteLittleEndian(data,
ReinterpretAsUnsigned(val));
}
private:
static U ReinterpretAsUnsigned(T val) {
// According to ISO C standard ISO/IEC 9899, section 6.3.1.3 (1, 2) a
// conversion from signed to unsigned keeps the value if the new type can
// represent it, and otherwise adds one more than the max value of T until
// the value is in range. For two's complement, this fortunately means
// that the bit-wise value will be intact. Thus, since we have asserted that
// two's complement form is actually used, a simple cast is sufficient.
return static_cast<U>(val);
}
};
// ----- Below follows specializations of UnsignedOf utility class -----
template <>
struct UnsignedOf<int8_t> {
typedef uint8_t Type;
};
template <>
struct UnsignedOf<int16_t> {
typedef uint16_t Type;
};
template <>
struct UnsignedOf<int32_t> {
typedef uint32_t Type;
};
template <>
struct UnsignedOf<int64_t> {
typedef uint64_t Type;
};
// ----- Below follows specializations for unsigned, B in { 1, 2, 4, 8 } -----
// TODO(sprang): Check if these actually help or if generic cases will be
// unrolled to and optimized to similar performance.
// Specializations for single bytes
template <typename T>
class ByteReader<T, 1, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(sizeof(T) == 1, kSizeErrorMsg);
return data[0];
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(sizeof(T) == 1, kSizeErrorMsg);
return data[0];
}
};
template <typename T>
class ByteWriter<T, 1, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(sizeof(T) == 1, kSizeErrorMsg);
data[0] = val;
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(sizeof(T) == 1, kSizeErrorMsg);
data[0] = val;
}
};
// Specializations for two byte words
template <typename T>
class ByteReader<T, 2, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 2, kSizeErrorMsg);
return (data[0] << 8) | data[1];
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 2, kSizeErrorMsg);
return data[0] | (data[1] << 8);
}
};
template <typename T>
class ByteWriter<T, 2, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 2, kSizeErrorMsg);
data[0] = val >> 8;
data[1] = val;
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 2, kSizeErrorMsg);
data[0] = val;
data[1] = val >> 8;
}
};
// Specializations for four byte words.
template <typename T>
class ByteReader<T, 4, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 4, kSizeErrorMsg);
return (Get(data, 0) << 24) | (Get(data, 1) << 16) | (Get(data, 2) << 8) |
Get(data, 3);
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 4, kSizeErrorMsg);
return Get(data, 0) | (Get(data, 1) << 8) | (Get(data, 2) << 16) |
(Get(data, 3) << 24);
}
private:
inline static T Get(const uint8_t* data, unsigned int index) {
return static_cast<T>(data[index]);
}
};
// Specializations for four byte words.
template <typename T>
class ByteWriter<T, 4, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 4, kSizeErrorMsg);
data[0] = val >> 24;
data[1] = val >> 16;
data[2] = val >> 8;
data[3] = val;
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 4, kSizeErrorMsg);
data[0] = val;
data[1] = val >> 8;
data[2] = val >> 16;
data[3] = val >> 24;
}
};
// Specializations for eight byte words.
template <typename T>
class ByteReader<T, 8, false> {
public:
static T ReadBigEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 8, kSizeErrorMsg);
return (Get(data, 0) << 56) | (Get(data, 1) << 48) | (Get(data, 2) << 40) |
(Get(data, 3) << 32) | (Get(data, 4) << 24) | (Get(data, 5) << 16) |
(Get(data, 6) << 8) | Get(data, 7);
}
static T ReadLittleEndian(const uint8_t* data) {
static_assert(sizeof(T) >= 8, kSizeErrorMsg);
return Get(data, 0) | (Get(data, 1) << 8) | (Get(data, 2) << 16) |
(Get(data, 3) << 24) | (Get(data, 4) << 32) | (Get(data, 5) << 40) |
(Get(data, 6) << 48) | (Get(data, 7) << 56);
}
private:
inline static T Get(const uint8_t* data, unsigned int index) {
return static_cast<T>(data[index]);
}
};
template <typename T>
class ByteWriter<T, 8, false> {
public:
static void WriteBigEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 8, kSizeErrorMsg);
data[0] = val >> 56;
data[1] = val >> 48;
data[2] = val >> 40;
data[3] = val >> 32;
data[4] = val >> 24;
data[5] = val >> 16;
data[6] = val >> 8;
data[7] = val;
}
static void WriteLittleEndian(uint8_t* data, T val) {
static_assert(sizeof(T) >= 8, kSizeErrorMsg);
data[0] = val;
data[1] = val >> 8;
data[2] = val >> 16;
data[3] = val >> 24;
data[4] = val >> 32;
data[5] = val >> 40;
data[6] = val >> 48;
data[7] = val >> 56;
}
};
} // namespace webrtc
#endif // MODULES_RTP_RTCP_SOURCE_BYTE_IO_H_