| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_processing/residual_echo_detector.h" |
| |
| #include <vector> |
| |
| #include "rtc_base/ref_counted_object.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| TEST(ResidualEchoDetectorTests, Echo) { |
| rtc::scoped_refptr<ResidualEchoDetector> echo_detector = |
| new rtc::RefCountedObject<ResidualEchoDetector>(); |
| echo_detector->SetReliabilityForTest(1.0f); |
| std::vector<float> ones(160, 1.f); |
| std::vector<float> zeros(160, 0.f); |
| |
| // In this test the capture signal has a delay of 10 frames w.r.t. the render |
| // signal, but is otherwise identical. Both signals are periodic with a 20 |
| // frame interval. |
| for (int i = 0; i < 1000; i++) { |
| if (i % 20 == 0) { |
| echo_detector->AnalyzeRenderAudio(ones); |
| echo_detector->AnalyzeCaptureAudio(zeros); |
| } else if (i % 20 == 10) { |
| echo_detector->AnalyzeRenderAudio(zeros); |
| echo_detector->AnalyzeCaptureAudio(ones); |
| } else { |
| echo_detector->AnalyzeRenderAudio(zeros); |
| echo_detector->AnalyzeCaptureAudio(zeros); |
| } |
| } |
| // We expect to detect echo with near certain likelihood. |
| auto ed_metrics = echo_detector->GetMetrics(); |
| ASSERT_TRUE(ed_metrics.echo_likelihood); |
| EXPECT_NEAR(1.f, ed_metrics.echo_likelihood.value(), 0.01f); |
| } |
| |
| TEST(ResidualEchoDetectorTests, NoEcho) { |
| rtc::scoped_refptr<ResidualEchoDetector> echo_detector = |
| new rtc::RefCountedObject<ResidualEchoDetector>(); |
| echo_detector->SetReliabilityForTest(1.0f); |
| std::vector<float> ones(160, 1.f); |
| std::vector<float> zeros(160, 0.f); |
| |
| // In this test the capture signal is always zero, so no echo should be |
| // detected. |
| for (int i = 0; i < 1000; i++) { |
| if (i % 20 == 0) { |
| echo_detector->AnalyzeRenderAudio(ones); |
| } else { |
| echo_detector->AnalyzeRenderAudio(zeros); |
| } |
| echo_detector->AnalyzeCaptureAudio(zeros); |
| } |
| // We expect to not detect any echo. |
| auto ed_metrics = echo_detector->GetMetrics(); |
| ASSERT_TRUE(ed_metrics.echo_likelihood); |
| EXPECT_NEAR(0.f, ed_metrics.echo_likelihood.value(), 0.01f); |
| } |
| |
| TEST(ResidualEchoDetectorTests, EchoWithRenderClockDrift) { |
| rtc::scoped_refptr<ResidualEchoDetector> echo_detector = |
| new rtc::RefCountedObject<ResidualEchoDetector>(); |
| echo_detector->SetReliabilityForTest(1.0f); |
| std::vector<float> ones(160, 1.f); |
| std::vector<float> zeros(160, 0.f); |
| |
| // In this test the capture signal has a delay of 10 frames w.r.t. the render |
| // signal, but is otherwise identical. Both signals are periodic with a 20 |
| // frame interval. There is a simulated clock drift of 1% in this test, with |
| // the render side producing data slightly faster. |
| for (int i = 0; i < 1000; i++) { |
| if (i % 20 == 0) { |
| echo_detector->AnalyzeRenderAudio(ones); |
| echo_detector->AnalyzeCaptureAudio(zeros); |
| } else if (i % 20 == 10) { |
| echo_detector->AnalyzeRenderAudio(zeros); |
| echo_detector->AnalyzeCaptureAudio(ones); |
| } else { |
| echo_detector->AnalyzeRenderAudio(zeros); |
| echo_detector->AnalyzeCaptureAudio(zeros); |
| } |
| if (i % 100 == 0) { |
| // This is causing the simulated clock drift. |
| echo_detector->AnalyzeRenderAudio(zeros); |
| } |
| } |
| // We expect to detect echo with high likelihood. Clock drift is harder to |
| // correct on the render side than on the capture side. This is due to the |
| // render buffer, clock drift can only be discovered after a certain delay. |
| // A growing buffer can be caused by jitter or clock drift and it's not |
| // possible to make this decision right away. For this reason we only expect |
| // an echo likelihood of 75% in this test. |
| auto ed_metrics = echo_detector->GetMetrics(); |
| ASSERT_TRUE(ed_metrics.echo_likelihood); |
| EXPECT_GT(ed_metrics.echo_likelihood.value(), 0.75f); |
| } |
| |
| TEST(ResidualEchoDetectorTests, EchoWithCaptureClockDrift) { |
| rtc::scoped_refptr<ResidualEchoDetector> echo_detector = |
| new rtc::RefCountedObject<ResidualEchoDetector>(); |
| echo_detector->SetReliabilityForTest(1.0f); |
| std::vector<float> ones(160, 1.f); |
| std::vector<float> zeros(160, 0.f); |
| |
| // In this test the capture signal has a delay of 10 frames w.r.t. the render |
| // signal, but is otherwise identical. Both signals are periodic with a 20 |
| // frame interval. There is a simulated clock drift of 1% in this test, with |
| // the capture side producing data slightly faster. |
| for (int i = 0; i < 1000; i++) { |
| if (i % 20 == 0) { |
| echo_detector->AnalyzeRenderAudio(ones); |
| echo_detector->AnalyzeCaptureAudio(zeros); |
| } else if (i % 20 == 10) { |
| echo_detector->AnalyzeRenderAudio(zeros); |
| echo_detector->AnalyzeCaptureAudio(ones); |
| } else { |
| echo_detector->AnalyzeRenderAudio(zeros); |
| echo_detector->AnalyzeCaptureAudio(zeros); |
| } |
| if (i % 100 == 0) { |
| // This is causing the simulated clock drift. |
| echo_detector->AnalyzeCaptureAudio(zeros); |
| } |
| } |
| // We expect to detect echo with near certain likelihood. |
| auto ed_metrics = echo_detector->GetMetrics(); |
| ASSERT_TRUE(ed_metrics.echo_likelihood); |
| EXPECT_NEAR(1.f, ed_metrics.echo_likelihood.value(), 0.01f); |
| } |
| |
| } // namespace webrtc |