blob: 8129af9ab2d37b00edce3b03bb8b975807fad310 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <algorithm> // max
#include <memory>
#include <vector>
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/bind.h"
#include "webrtc/base/checks.h"
#include "webrtc/base/criticalsection.h"
#include "webrtc/base/event.h"
#include "webrtc/base/logging.h"
#include "webrtc/base/platform_thread.h"
#include "webrtc/base/rate_limiter.h"
#include "webrtc/call.h"
#include "webrtc/call/transport_adapter.h"
#include "webrtc/common_video/include/frame_callback.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_header_parser.h"
#include "webrtc/modules/rtp_rtcp/include/rtp_rtcp.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_sender.h"
#include "webrtc/modules/rtp_rtcp/source/rtcp_utility.h"
#include "webrtc/modules/rtp_rtcp/source/rtp_format_vp9.h"
#include "webrtc/modules/video_coding/codecs/vp9/include/vp9.h"
#include "webrtc/system_wrappers/include/sleep.h"
#include "webrtc/test/call_test.h"
#include "webrtc/test/configurable_frame_size_encoder.h"
#include "webrtc/test/fake_texture_frame.h"
#include "webrtc/test/frame_utils.h"
#include "webrtc/test/null_transport.h"
#include "webrtc/test/testsupport/perf_test.h"
#include "webrtc/video/send_statistics_proxy.h"
#include "webrtc/video_frame.h"
#include "webrtc/video_send_stream.h"
namespace webrtc {
enum VideoFormat { kGeneric, kVP8, };
void ExpectEqualFramesVector(const std::vector<VideoFrame>& frames1,
const std::vector<VideoFrame>& frames2);
VideoFrame CreateVideoFrame(int width, int height, uint8_t data);
class VideoSendStreamTest : public test::CallTest {
protected:
void TestNackRetransmission(uint32_t retransmit_ssrc,
uint8_t retransmit_payload_type);
void TestPacketFragmentationSize(VideoFormat format, bool with_fec);
void TestVp9NonFlexMode(uint8_t num_temporal_layers,
uint8_t num_spatial_layers);
};
TEST_F(VideoSendStreamTest, CanStartStartedStream) {
Call::Config call_config;
CreateSenderCall(call_config);
test::NullTransport transport;
CreateSendConfig(1, 0, &transport);
CreateVideoStreams();
video_send_stream_->Start();
video_send_stream_->Start();
DestroyStreams();
}
TEST_F(VideoSendStreamTest, CanStopStoppedStream) {
Call::Config call_config;
CreateSenderCall(call_config);
test::NullTransport transport;
CreateSendConfig(1, 0, &transport);
CreateVideoStreams();
video_send_stream_->Stop();
video_send_stream_->Stop();
DestroyStreams();
}
TEST_F(VideoSendStreamTest, SupportsCName) {
static std::string kCName = "PjQatC14dGfbVwGPUOA9IH7RlsFDbWl4AhXEiDsBizo=";
class CNameObserver : public test::SendTest {
public:
CNameObserver() : SendTest(kDefaultTimeoutMs) {}
private:
Action OnSendRtcp(const uint8_t* packet, size_t length) override {
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
if (packet_type == RTCPUtility::RTCPPacketTypes::kSdesChunk) {
EXPECT_EQ(parser.Packet().CName.CName, kCName);
observation_complete_.Set();
}
packet_type = parser.Iterate();
}
return SEND_PACKET;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.c_name = kCName;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for RTCP with CNAME.";
}
} test;
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, SupportsAbsoluteSendTime) {
class AbsoluteSendTimeObserver : public test::SendTest {
public:
AbsoluteSendTimeObserver() : SendTest(kDefaultTimeoutMs) {
EXPECT_TRUE(parser_->RegisterRtpHeaderExtension(
kRtpExtensionAbsoluteSendTime, test::kAbsSendTimeExtensionId));
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_FALSE(header.extension.hasTransmissionTimeOffset);
EXPECT_TRUE(header.extension.hasAbsoluteSendTime);
EXPECT_EQ(header.extension.transmissionTimeOffset, 0);
if (header.extension.absoluteSendTime != 0) {
// Wait for at least one packet with a non-zero send time. The send time
// is a 16-bit value derived from the system clock, and it is valid
// for a packet to have a zero send time. To tell that from an
// unpopulated value we'll wait for a packet with non-zero send time.
observation_complete_.Set();
} else {
LOG(LS_WARNING) << "Got a packet with zero absoluteSendTime, waiting"
" for another packet...";
}
return SEND_PACKET;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kAbsSendTimeUri, test::kAbsSendTimeExtensionId));
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for single RTP packet.";
}
} test;
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, SupportsTransmissionTimeOffset) {
static const int kEncodeDelayMs = 5;
class TransmissionTimeOffsetObserver : public test::SendTest {
public:
TransmissionTimeOffsetObserver()
: SendTest(kDefaultTimeoutMs),
encoder_(Clock::GetRealTimeClock(), kEncodeDelayMs) {
EXPECT_TRUE(parser_->RegisterRtpHeaderExtension(
kRtpExtensionTransmissionTimeOffset, test::kTOffsetExtensionId));
}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_TRUE(header.extension.hasTransmissionTimeOffset);
EXPECT_FALSE(header.extension.hasAbsoluteSendTime);
EXPECT_GT(header.extension.transmissionTimeOffset, 0);
EXPECT_EQ(header.extension.absoluteSendTime, 0u);
observation_complete_.Set();
return SEND_PACKET;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = &encoder_;
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kTimestampOffsetUri, test::kTOffsetExtensionId));
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for a single RTP packet.";
}
test::DelayedEncoder encoder_;
} test;
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, SupportsTransportWideSequenceNumbers) {
static const uint8_t kExtensionId = 13;
class TransportWideSequenceNumberObserver : public test::SendTest {
public:
TransportWideSequenceNumberObserver()
: SendTest(kDefaultTimeoutMs), encoder_(Clock::GetRealTimeClock()) {
EXPECT_TRUE(parser_->RegisterRtpHeaderExtension(
kRtpExtensionTransportSequenceNumber, kExtensionId));
}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_TRUE(header.extension.hasTransportSequenceNumber);
EXPECT_FALSE(header.extension.hasTransmissionTimeOffset);
EXPECT_FALSE(header.extension.hasAbsoluteSendTime);
observation_complete_.Set();
return SEND_PACKET;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = &encoder_;
send_config->rtp.extensions.clear();
send_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kTransportSequenceNumberUri, kExtensionId));
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for a single RTP packet.";
}
test::FakeEncoder encoder_;
} test;
RunBaseTest(&test);
}
class FakeReceiveStatistics : public NullReceiveStatistics {
public:
FakeReceiveStatistics(uint32_t send_ssrc,
uint32_t last_sequence_number,
uint32_t cumulative_lost,
uint8_t fraction_lost)
: lossy_stats_(new LossyStatistician(last_sequence_number,
cumulative_lost,
fraction_lost)) {
stats_map_[send_ssrc] = lossy_stats_.get();
}
StatisticianMap GetActiveStatisticians() const override { return stats_map_; }
StreamStatistician* GetStatistician(uint32_t ssrc) const override {
return lossy_stats_.get();
}
private:
class LossyStatistician : public StreamStatistician {
public:
LossyStatistician(uint32_t extended_max_sequence_number,
uint32_t cumulative_lost,
uint8_t fraction_lost) {
stats_.fraction_lost = fraction_lost;
stats_.cumulative_lost = cumulative_lost;
stats_.extended_max_sequence_number = extended_max_sequence_number;
}
bool GetStatistics(RtcpStatistics* statistics, bool reset) override {
*statistics = stats_;
return true;
}
void GetDataCounters(size_t* bytes_received,
uint32_t* packets_received) const override {
*bytes_received = 0;
*packets_received = 0;
}
void GetReceiveStreamDataCounters(
StreamDataCounters* data_counters) const override {}
uint32_t BitrateReceived() const override { return 0; }
bool IsRetransmitOfOldPacket(const RTPHeader& header,
int64_t min_rtt) const override {
return false;
}
bool IsPacketInOrder(uint16_t sequence_number) const override {
return true;
}
RtcpStatistics stats_;
};
std::unique_ptr<LossyStatistician> lossy_stats_;
StatisticianMap stats_map_;
};
class FecObserver : public test::EndToEndTest {
public:
FecObserver(bool header_extensions_enabled,
bool use_nack,
bool expect_red,
bool expect_fec,
const std::string& codec)
: EndToEndTest(VideoSendStreamTest::kDefaultTimeoutMs),
payload_name_(codec),
use_nack_(use_nack),
expect_red_(expect_red),
expect_fec_(expect_fec),
send_count_(0),
received_media_(false),
received_fec_(false),
header_extensions_enabled_(header_extensions_enabled) {
if (codec == "H264") {
encoder_.reset(new test::FakeH264Encoder(Clock::GetRealTimeClock()));
} else if (codec == "VP8") {
encoder_.reset(VideoEncoder::Create(VideoEncoder::EncoderType::kVp8));
} else if (codec == "VP9") {
encoder_.reset(VideoEncoder::Create(VideoEncoder::EncoderType::kVp9));
} else {
RTC_NOTREACHED();
}
}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
++send_count_;
int encapsulated_payload_type = -1;
if (header.payloadType == VideoSendStreamTest::kRedPayloadType) {
EXPECT_TRUE(expect_red_);
encapsulated_payload_type = static_cast<int>(packet[header.headerLength]);
if (encapsulated_payload_type !=
VideoSendStreamTest::kFakeVideoSendPayloadType) {
EXPECT_EQ(VideoSendStreamTest::kUlpfecPayloadType,
encapsulated_payload_type);
}
} else {
EXPECT_EQ(VideoSendStreamTest::kFakeVideoSendPayloadType,
header.payloadType);
if (static_cast<size_t>(header.headerLength + header.paddingLength) <
length) {
// Not padding-only, media received outside of RED.
EXPECT_FALSE(expect_red_);
received_media_ = true;
}
}
if (header_extensions_enabled_) {
EXPECT_TRUE(header.extension.hasAbsoluteSendTime);
uint32_t kHalf24BitsSpace = 0xFFFFFF / 2;
if (header.extension.absoluteSendTime <= kHalf24BitsSpace &&
prev_header_.extension.absoluteSendTime > kHalf24BitsSpace) {
// 24 bits wrap.
EXPECT_GT(prev_header_.extension.absoluteSendTime,
header.extension.absoluteSendTime);
} else {
EXPECT_GE(header.extension.absoluteSendTime,
prev_header_.extension.absoluteSendTime);
}
EXPECT_TRUE(header.extension.hasTransportSequenceNumber);
uint16_t seq_num_diff = header.extension.transportSequenceNumber -
prev_header_.extension.transportSequenceNumber;
EXPECT_EQ(1, seq_num_diff);
}
if (encapsulated_payload_type != -1) {
if (encapsulated_payload_type ==
VideoSendStreamTest::kUlpfecPayloadType) {
EXPECT_TRUE(expect_fec_);
received_fec_ = true;
} else {
received_media_ = true;
}
}
if (send_count_ > 100 && received_media_) {
if (received_fec_ || !expect_fec_)
observation_complete_.Set();
}
prev_header_ = header;
return SEND_PACKET;
}
test::PacketTransport* CreateSendTransport(Call* sender_call) override {
// At low RTT (< kLowRttNackMs) -> NACK only, no FEC.
// Configure some network delay.
const int kNetworkDelayMs = 100;
FakeNetworkPipe::Config config;
config.loss_percent = 50;
config.queue_delay_ms = kNetworkDelayMs;
return new test::PacketTransport(sender_call, this,
test::PacketTransport::kSender, config);
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
transport_adapter_.reset(
new internal::TransportAdapter(send_config->send_transport));
transport_adapter_->Enable();
if (use_nack_) {
send_config->rtp.nack.rtp_history_ms =
(*receive_configs)[0].rtp.nack.rtp_history_ms =
VideoSendStreamTest::kNackRtpHistoryMs;
}
send_config->encoder_settings.encoder = encoder_.get();
send_config->encoder_settings.payload_name = payload_name_;
send_config->rtp.fec.red_payload_type =
VideoSendStreamTest::kRedPayloadType;
send_config->rtp.fec.ulpfec_payload_type =
VideoSendStreamTest::kUlpfecPayloadType;
if (header_extensions_enabled_) {
send_config->rtp.extensions.push_back(RtpExtension(
RtpExtension::kAbsSendTimeUri, test::kAbsSendTimeExtensionId));
send_config->rtp.extensions.push_back(
RtpExtension(RtpExtension::kTransportSequenceNumberUri,
test::kTransportSequenceNumberExtensionId));
}
(*receive_configs)[0].rtp.fec.red_payload_type =
send_config->rtp.fec.red_payload_type;
(*receive_configs)[0].rtp.fec.ulpfec_payload_type =
send_config->rtp.fec.ulpfec_payload_type;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out waiting for FEC and media packets.";
}
std::unique_ptr<internal::TransportAdapter> transport_adapter_;
std::unique_ptr<VideoEncoder> encoder_;
const std::string payload_name_;
const bool use_nack_;
const bool expect_red_;
const bool expect_fec_;
int send_count_;
bool received_media_;
bool received_fec_;
bool header_extensions_enabled_;
RTPHeader prev_header_;
};
TEST_F(VideoSendStreamTest, SupportsFecWithExtensions) {
FecObserver test(true, false, true, true, "VP8");
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, SupportsFecWithoutExtensions) {
FecObserver test(false, false, true, true, "VP8");
RunBaseTest(&test);
}
// The FEC scheme used is not efficient for H264, so we should not use RED/FEC
// since we'll still have to re-request FEC packets, effectively wasting
// bandwidth since the receiver has to wait for FEC retransmissions to determine
// that the received state is actually decodable.
TEST_F(VideoSendStreamTest, DoesNotUtilizeFecForH264WithNackEnabled) {
FecObserver test(false, true, true, false, "H264");
RunBaseTest(&test);
}
// Without retransmissions FEC for H264 is fine.
TEST_F(VideoSendStreamTest, DoesUtilizeRedForH264WithoutNackEnabled) {
FecObserver test(false, false, true, true, "H264");
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, DoesUtilizeRedForVp8WithNackEnabled) {
FecObserver test(false, true, true, true, "VP8");
RunBaseTest(&test);
}
#if !defined(RTC_DISABLE_VP9)
TEST_F(VideoSendStreamTest, DoesUtilizeRedForVp9WithNackEnabled) {
FecObserver test(false, true, true, true, "VP9");
RunBaseTest(&test);
}
#endif // !defined(RTC_DISABLE_VP9)
void VideoSendStreamTest::TestNackRetransmission(
uint32_t retransmit_ssrc,
uint8_t retransmit_payload_type) {
class NackObserver : public test::SendTest {
public:
explicit NackObserver(uint32_t retransmit_ssrc,
uint8_t retransmit_payload_type)
: SendTest(kDefaultTimeoutMs),
send_count_(0),
retransmit_ssrc_(retransmit_ssrc),
retransmit_payload_type_(retransmit_payload_type),
nacked_sequence_number_(-1) {
}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
// Nack second packet after receiving the third one.
if (++send_count_ == 3) {
uint16_t nack_sequence_number = header.sequenceNumber - 1;
nacked_sequence_number_ = nack_sequence_number;
NullReceiveStatistics null_stats;
RTCPSender rtcp_sender(false, Clock::GetRealTimeClock(), &null_stats,
nullptr, nullptr, transport_adapter_.get());
rtcp_sender.SetRTCPStatus(RtcpMode::kReducedSize);
rtcp_sender.SetRemoteSSRC(kVideoSendSsrcs[0]);
RTCPSender::FeedbackState feedback_state;
EXPECT_EQ(0,
rtcp_sender.SendRTCP(
feedback_state, kRtcpNack, 1, &nack_sequence_number));
}
uint16_t sequence_number = header.sequenceNumber;
if (header.ssrc == retransmit_ssrc_ &&
retransmit_ssrc_ != kVideoSendSsrcs[0]) {
// Not kVideoSendSsrcs[0], assume correct RTX packet. Extract sequence
// number.
const uint8_t* rtx_header = packet + header.headerLength;
sequence_number = (rtx_header[0] << 8) + rtx_header[1];
}
if (sequence_number == nacked_sequence_number_) {
EXPECT_EQ(retransmit_ssrc_, header.ssrc);
EXPECT_EQ(retransmit_payload_type_, header.payloadType);
observation_complete_.Set();
}
return SEND_PACKET;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
transport_adapter_.reset(
new internal::TransportAdapter(send_config->send_transport));
transport_adapter_->Enable();
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
send_config->rtp.rtx.payload_type = retransmit_payload_type_;
if (retransmit_ssrc_ != kVideoSendSsrcs[0])
send_config->rtp.rtx.ssrcs.push_back(retransmit_ssrc_);
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for NACK retransmission.";
}
std::unique_ptr<internal::TransportAdapter> transport_adapter_;
int send_count_;
uint32_t retransmit_ssrc_;
uint8_t retransmit_payload_type_;
int nacked_sequence_number_;
} test(retransmit_ssrc, retransmit_payload_type);
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, RetransmitsNack) {
// Normal NACKs should use the send SSRC.
TestNackRetransmission(kVideoSendSsrcs[0], kFakeVideoSendPayloadType);
}
TEST_F(VideoSendStreamTest, RetransmitsNackOverRtx) {
// NACKs over RTX should use a separate SSRC.
TestNackRetransmission(kSendRtxSsrcs[0], kSendRtxPayloadType);
}
void VideoSendStreamTest::TestPacketFragmentationSize(VideoFormat format,
bool with_fec) {
// Use a fake encoder to output a frame of every size in the range [90, 290],
// for each size making sure that the exact number of payload bytes received
// is correct and that packets are fragmented to respect max packet size.
static const size_t kMaxPacketSize = 128;
static const size_t start = 90;
static const size_t stop = 290;
// Observer that verifies that the expected number of packets and bytes
// arrive for each frame size, from start_size to stop_size.
class FrameFragmentationTest : public test::SendTest,
public EncodedFrameObserver {
public:
FrameFragmentationTest(size_t max_packet_size,
size_t start_size,
size_t stop_size,
bool test_generic_packetization,
bool use_fec)
: SendTest(kLongTimeoutMs),
encoder_(stop),
max_packet_size_(max_packet_size),
stop_size_(stop_size),
test_generic_packetization_(test_generic_packetization),
use_fec_(use_fec),
packet_count_(0),
accumulated_size_(0),
accumulated_payload_(0),
fec_packet_received_(false),
current_size_rtp_(start_size),
current_size_frame_(static_cast<int32_t>(start_size)) {
// Fragmentation required, this test doesn't make sense without it.
encoder_.SetFrameSize(start_size);
RTC_DCHECK_GT(stop_size, max_packet_size);
}
private:
Action OnSendRtp(const uint8_t* packet, size_t size) override {
size_t length = size;
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_LE(length, max_packet_size_);
if (use_fec_) {
uint8_t payload_type = packet[header.headerLength];
bool is_fec = header.payloadType == kRedPayloadType &&
payload_type == kUlpfecPayloadType;
if (is_fec) {
fec_packet_received_ = true;
return SEND_PACKET;
}
}
accumulated_size_ += length;
if (use_fec_)
TriggerLossReport(header);
if (test_generic_packetization_) {
size_t overhead = header.headerLength + header.paddingLength;
// Only remove payload header and RED header if the packet actually
// contains payload.
if (length > overhead) {
overhead += (1 /* Generic header */);
if (use_fec_)
overhead += 1; // RED for FEC header.
}
EXPECT_GE(length, overhead);
accumulated_payload_ += length - overhead;
}
// Marker bit set indicates last packet of a frame.
if (header.markerBit) {
if (use_fec_ && accumulated_payload_ == current_size_rtp_ - 1) {
// With FEC enabled, frame size is incremented asynchronously, so
// "old" frames one byte too small may arrive. Accept, but don't
// increase expected frame size.
accumulated_size_ = 0;
accumulated_payload_ = 0;
return SEND_PACKET;
}
EXPECT_GE(accumulated_size_, current_size_rtp_);
if (test_generic_packetization_) {
EXPECT_EQ(current_size_rtp_, accumulated_payload_);
}
// Last packet of frame; reset counters.
accumulated_size_ = 0;
accumulated_payload_ = 0;
if (current_size_rtp_ == stop_size_) {
// Done! (Don't increase size again, might arrive more @ stop_size).
observation_complete_.Set();
} else {
// Increase next expected frame size. If testing with FEC, make sure
// a FEC packet has been received for this frame size before
// proceeding, to make sure that redundancy packets don't exceed
// size limit.
if (!use_fec_) {
++current_size_rtp_;
} else if (fec_packet_received_) {
fec_packet_received_ = false;
++current_size_rtp_;
++current_size_frame_;
}
}
}
return SEND_PACKET;
}
void TriggerLossReport(const RTPHeader& header) {
// Send lossy receive reports to trigger FEC enabling.
if (packet_count_++ % 2 != 0) {
// Receive statistics reporting having lost 50% of the packets.
FakeReceiveStatistics lossy_receive_stats(
kVideoSendSsrcs[0], header.sequenceNumber, packet_count_ / 2, 127);
RTCPSender rtcp_sender(false, Clock::GetRealTimeClock(),
&lossy_receive_stats, nullptr, nullptr,
transport_adapter_.get());
rtcp_sender.SetRTCPStatus(RtcpMode::kReducedSize);
rtcp_sender.SetRemoteSSRC(kVideoSendSsrcs[0]);
RTCPSender::FeedbackState feedback_state;
EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr));
}
}
void EncodedFrameCallback(const EncodedFrame& encoded_frame) override {
// Increase frame size for next encoded frame, in the context of the
// encoder thread.
if (!use_fec_ &&
current_size_frame_.Value() < static_cast<int32_t>(stop_size_)) {
++current_size_frame_;
}
encoder_.SetFrameSize(static_cast<size_t>(current_size_frame_.Value()));
}
Call::Config GetSenderCallConfig() override {
Call::Config config;
const int kMinBitrateBps = 30000;
config.bitrate_config.min_bitrate_bps = kMinBitrateBps;
return config;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
transport_adapter_.reset(
new internal::TransportAdapter(send_config->send_transport));
transport_adapter_->Enable();
if (use_fec_) {
send_config->rtp.fec.red_payload_type = kRedPayloadType;
send_config->rtp.fec.ulpfec_payload_type = kUlpfecPayloadType;
}
if (!test_generic_packetization_)
send_config->encoder_settings.payload_name = "VP8";
send_config->encoder_settings.encoder = &encoder_;
send_config->rtp.max_packet_size = kMaxPacketSize;
send_config->post_encode_callback = this;
// Make sure there is at least one extension header, to make the RTP
// header larger than the base length of 12 bytes.
EXPECT_FALSE(send_config->rtp.extensions.empty());
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while observing incoming RTP packets.";
}
std::unique_ptr<internal::TransportAdapter> transport_adapter_;
test::ConfigurableFrameSizeEncoder encoder_;
const size_t max_packet_size_;
const size_t stop_size_;
const bool test_generic_packetization_;
const bool use_fec_;
uint32_t packet_count_;
size_t accumulated_size_;
size_t accumulated_payload_;
bool fec_packet_received_;
size_t current_size_rtp_;
Atomic32 current_size_frame_;
};
// Don't auto increment if FEC is used; continue sending frame size until
// a FEC packet has been received.
FrameFragmentationTest test(
kMaxPacketSize, start, stop, format == kGeneric, with_fec);
RunBaseTest(&test);
}
// TODO(sprang): Is there any way of speeding up these tests?
TEST_F(VideoSendStreamTest, FragmentsGenericAccordingToMaxPacketSize) {
TestPacketFragmentationSize(kGeneric, false);
}
TEST_F(VideoSendStreamTest, FragmentsGenericAccordingToMaxPacketSizeWithFec) {
TestPacketFragmentationSize(kGeneric, true);
}
TEST_F(VideoSendStreamTest, FragmentsVp8AccordingToMaxPacketSize) {
TestPacketFragmentationSize(kVP8, false);
}
TEST_F(VideoSendStreamTest, FragmentsVp8AccordingToMaxPacketSizeWithFec) {
TestPacketFragmentationSize(kVP8, true);
}
// The test will go through a number of phases.
// 1. Start sending packets.
// 2. As soon as the RTP stream has been detected, signal a low REMB value to
// suspend the stream.
// 3. Wait until |kSuspendTimeFrames| have been captured without seeing any RTP
// packets.
// 4. Signal a high REMB and then wait for the RTP stream to start again.
// When the stream is detected again, and the stats show that the stream
// is no longer suspended, the test ends.
TEST_F(VideoSendStreamTest, SuspendBelowMinBitrate) {
static const int kSuspendTimeFrames = 60; // Suspend for 2 seconds @ 30 fps.
class RembObserver : public test::SendTest,
public rtc::VideoSinkInterface<VideoFrame> {
public:
RembObserver()
: SendTest(kDefaultTimeoutMs),
clock_(Clock::GetRealTimeClock()),
stream_(nullptr),
test_state_(kBeforeSuspend),
rtp_count_(0),
last_sequence_number_(0),
suspended_frame_count_(0),
low_remb_bps_(0),
high_remb_bps_(0) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
++rtp_count_;
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
last_sequence_number_ = header.sequenceNumber;
if (test_state_ == kBeforeSuspend) {
// The stream has started. Try to suspend it.
SendRtcpFeedback(low_remb_bps_);
test_state_ = kDuringSuspend;
} else if (test_state_ == kDuringSuspend) {
if (header.paddingLength == 0) {
// Received non-padding packet during suspension period. Reset the
// counter.
suspended_frame_count_ = 0;
}
SendRtcpFeedback(0); // REMB is only sent if value is > 0.
} else if (test_state_ == kWaitingForPacket) {
if (header.paddingLength == 0) {
// Non-padding packet observed. Test is almost complete. Will just
// have to wait for the stats to change.
test_state_ = kWaitingForStats;
}
SendRtcpFeedback(0); // REMB is only sent if value is > 0.
} else if (test_state_ == kWaitingForStats) {
VideoSendStream::Stats stats = stream_->GetStats();
if (stats.suspended == false) {
// Stats flipped to false. Test is complete.
observation_complete_.Set();
}
SendRtcpFeedback(0); // REMB is only sent if value is > 0.
}
return SEND_PACKET;
}
// This method implements the rtc::VideoSinkInterface. This is called when
// a frame is provided to the VideoSendStream.
void OnFrame(const VideoFrame& video_frame) override {
rtc::CritScope lock(&crit_);
if (test_state_ == kDuringSuspend &&
++suspended_frame_count_ > kSuspendTimeFrames) {
VideoSendStream::Stats stats = stream_->GetStats();
EXPECT_TRUE(stats.suspended);
SendRtcpFeedback(high_remb_bps_);
test_state_ = kWaitingForPacket;
}
}
void set_low_remb_bps(int value) {
rtc::CritScope lock(&crit_);
low_remb_bps_ = value;
}
void set_high_remb_bps(int value) {
rtc::CritScope lock(&crit_);
high_remb_bps_ = value;
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
stream_ = send_stream;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
transport_adapter_.reset(
new internal::TransportAdapter(send_config->send_transport));
transport_adapter_->Enable();
send_config->rtp.nack.rtp_history_ms = kNackRtpHistoryMs;
send_config->pre_encode_callback = this;
send_config->suspend_below_min_bitrate = true;
int min_bitrate_bps = encoder_config->streams[0].min_bitrate_bps;
set_low_remb_bps(min_bitrate_bps - 10000);
int threshold_window = std::max(min_bitrate_bps / 10, 20000);
ASSERT_GT(encoder_config->streams[0].max_bitrate_bps,
min_bitrate_bps + threshold_window + 5000);
set_high_remb_bps(min_bitrate_bps + threshold_window + 5000);
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out during suspend-below-min-bitrate test.";
}
enum TestState {
kBeforeSuspend,
kDuringSuspend,
kWaitingForPacket,
kWaitingForStats
};
virtual void SendRtcpFeedback(int remb_value)
EXCLUSIVE_LOCKS_REQUIRED(crit_) {
FakeReceiveStatistics receive_stats(kVideoSendSsrcs[0],
last_sequence_number_, rtp_count_, 0);
RTCPSender rtcp_sender(false, clock_, &receive_stats, nullptr, nullptr,
transport_adapter_.get());
rtcp_sender.SetRTCPStatus(RtcpMode::kReducedSize);
rtcp_sender.SetRemoteSSRC(kVideoSendSsrcs[0]);
if (remb_value > 0) {
rtcp_sender.SetREMBStatus(true);
rtcp_sender.SetREMBData(remb_value, std::vector<uint32_t>());
}
RTCPSender::FeedbackState feedback_state;
EXPECT_EQ(0, rtcp_sender.SendRTCP(feedback_state, kRtcpRr));
}
std::unique_ptr<internal::TransportAdapter> transport_adapter_;
Clock* const clock_;
VideoSendStream* stream_;
rtc::CriticalSection crit_;
TestState test_state_ GUARDED_BY(crit_);
int rtp_count_ GUARDED_BY(crit_);
int last_sequence_number_ GUARDED_BY(crit_);
int suspended_frame_count_ GUARDED_BY(crit_);
int low_remb_bps_ GUARDED_BY(crit_);
int high_remb_bps_ GUARDED_BY(crit_);
} test;
RunBaseTest(&test);
}
// This test that padding stops being send after a while if the Camera stops
// producing video frames and that padding resumes if the camera restarts.
TEST_F(VideoSendStreamTest, NoPaddingWhenVideoIsMuted) {
class NoPaddingWhenVideoIsMuted : public test::SendTest {
public:
NoPaddingWhenVideoIsMuted()
: SendTest(kDefaultTimeoutMs),
clock_(Clock::GetRealTimeClock()),
last_packet_time_ms_(-1),
capturer_(nullptr) {
}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
last_packet_time_ms_ = clock_->TimeInMilliseconds();
RTPHeader header;
parser_->Parse(packet, length, &header);
const bool only_padding =
header.headerLength + header.paddingLength == length;
if (test_state_ == kBeforeStopCapture) {
capturer_->Stop();
test_state_ = kWaitingForPadding;
} else if (test_state_ == kWaitingForPadding && only_padding) {
test_state_ = kWaitingForNoPackets;
} else if (test_state_ == kWaitingForPaddingAfterCameraRestart &&
only_padding) {
observation_complete_.Set();
}
return SEND_PACKET;
}
Action OnSendRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
const int kNoPacketsThresholdMs = 2000;
if (test_state_ == kWaitingForNoPackets &&
(last_packet_time_ms_ > 0 &&
clock_->TimeInMilliseconds() - last_packet_time_ms_ >
kNoPacketsThresholdMs)) {
capturer_->Start();
test_state_ = kWaitingForPaddingAfterCameraRestart;
}
return SEND_PACKET;
}
size_t GetNumVideoStreams() const override { return 3; }
void OnFrameGeneratorCapturerCreated(
test::FrameGeneratorCapturer* frame_generator_capturer) override {
rtc::CritScope lock(&crit_);
capturer_ = frame_generator_capturer;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for RTP packets to stop being sent.";
}
enum TestState {
kBeforeStopCapture,
kWaitingForPadding,
kWaitingForNoPackets,
kWaitingForPaddingAfterCameraRestart
};
TestState test_state_ = kBeforeStopCapture;
Clock* const clock_;
std::unique_ptr<internal::TransportAdapter> transport_adapter_;
rtc::CriticalSection crit_;
int64_t last_packet_time_ms_ GUARDED_BY(crit_);
test::FrameGeneratorCapturer* capturer_ GUARDED_BY(crit_);
} test;
RunBaseTest(&test);
}
// This test first observes "high" bitrate use at which point it sends a REMB to
// indicate that it should be lowered significantly. The test then observes that
// the bitrate observed is sinking well below the min-transmit-bitrate threshold
// to verify that the min-transmit bitrate respects incoming REMB.
//
// Note that the test starts at "high" bitrate and does not ramp up to "higher"
// bitrate since no receiver block or remb is sent in the initial phase.
TEST_F(VideoSendStreamTest, MinTransmitBitrateRespectsRemb) {
static const int kMinTransmitBitrateBps = 400000;
static const int kHighBitrateBps = 150000;
static const int kRembBitrateBps = 80000;
static const int kRembRespectedBitrateBps = 100000;
class BitrateObserver : public test::SendTest {
public:
BitrateObserver()
: SendTest(kDefaultTimeoutMs),
retranmission_rate_limiter_(Clock::GetRealTimeClock(), 1000),
stream_(nullptr),
bitrate_capped_(false) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
if (RtpHeaderParser::IsRtcp(packet, length))
return DROP_PACKET;
RTPHeader header;
if (!parser_->Parse(packet, length, &header))
return DROP_PACKET;
RTC_DCHECK(stream_);
VideoSendStream::Stats stats = stream_->GetStats();
if (!stats.substreams.empty()) {
EXPECT_EQ(1u, stats.substreams.size());
int total_bitrate_bps =
stats.substreams.begin()->second.total_bitrate_bps;
test::PrintResult("bitrate_stats_",
"min_transmit_bitrate_low_remb",
"bitrate_bps",
static_cast<size_t>(total_bitrate_bps),
"bps",
false);
if (total_bitrate_bps > kHighBitrateBps) {
rtp_rtcp_->SetREMBData(kRembBitrateBps,
std::vector<uint32_t>(1, header.ssrc));
rtp_rtcp_->Process();
bitrate_capped_ = true;
} else if (bitrate_capped_ &&
total_bitrate_bps < kRembRespectedBitrateBps) {
observation_complete_.Set();
}
}
// Packets don't have to be delivered since the test is the receiver.
return DROP_PACKET;
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
stream_ = send_stream;
RtpRtcp::Configuration config;
config.outgoing_transport = feedback_transport_.get();
config.retransmission_rate_limiter = &retranmission_rate_limiter_;
rtp_rtcp_.reset(RtpRtcp::CreateRtpRtcp(config));
rtp_rtcp_->SetREMBStatus(true);
rtp_rtcp_->SetRTCPStatus(RtcpMode::kReducedSize);
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
feedback_transport_.reset(
new internal::TransportAdapter(send_config->send_transport));
feedback_transport_->Enable();
encoder_config->min_transmit_bitrate_bps = kMinTransmitBitrateBps;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timeout while waiting for low bitrate stats after REMB.";
}
std::unique_ptr<RtpRtcp> rtp_rtcp_;
std::unique_ptr<internal::TransportAdapter> feedback_transport_;
RateLimiter retranmission_rate_limiter_;
VideoSendStream* stream_;
bool bitrate_capped_;
} test;
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, ChangingNetworkRoute) {
class ChangingNetworkRouteTest : public test::EndToEndTest {
public:
const int kStartBitrateBps = 300000;
const int kNewMaxBitrateBps = 1234567;
ChangingNetworkRouteTest()
: EndToEndTest(test::CallTest::kDefaultTimeoutMs),
call_(nullptr) {}
void OnCallsCreated(Call* sender_call, Call* receiver_call) override {
call_ = sender_call;
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
if (call_->GetStats().send_bandwidth_bps > kStartBitrateBps) {
observation_complete_.Set();
}
return SEND_PACKET;
}
void PerformTest() override {
rtc::NetworkRoute new_route(true, 10, 20, -1);
call_->OnNetworkRouteChanged("transport", new_route);
Call::Config::BitrateConfig bitrate_config;
bitrate_config.start_bitrate_bps = kStartBitrateBps;
call_->SetBitrateConfig(bitrate_config);
EXPECT_TRUE(Wait())
<< "Timed out while waiting for start bitrate to be exceeded.";
bitrate_config.start_bitrate_bps = -1;
bitrate_config.max_bitrate_bps = kNewMaxBitrateBps;
call_->SetBitrateConfig(bitrate_config);
// TODO(holmer): We should set the last sent packet id here and verify
// that we correctly ignore any packet loss reported prior to that id.
++new_route.local_network_id;
call_->OnNetworkRouteChanged("transport", new_route);
EXPECT_EQ(kStartBitrateBps, call_->GetStats().send_bandwidth_bps);
}
private:
Call* call_;
} test;
RunBaseTest(&test);
}
class MaxPaddingSetTest : public test::SendTest {
public:
static const uint32_t kMinTransmitBitrateBps = 400000;
static const uint32_t kActualEncodeBitrateBps = 40000;
static const uint32_t kMinPacketsToSend = 50;
explicit MaxPaddingSetTest(bool test_switch_content_type)
: SendTest(test::CallTest::kDefaultTimeoutMs),
call_(nullptr),
send_stream_(nullptr),
packets_sent_(0),
running_without_padding_(test_switch_content_type) {}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
send_stream_ = send_stream;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
RTC_DCHECK_EQ(1u, encoder_config->streams.size());
if (running_without_padding_) {
encoder_config->min_transmit_bitrate_bps = 0;
encoder_config->content_type =
VideoEncoderConfig::ContentType::kRealtimeVideo;
} else {
encoder_config->min_transmit_bitrate_bps = kMinTransmitBitrateBps;
encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen;
}
encoder_config_ = encoder_config->Copy();
}
void OnCallsCreated(Call* sender_call, Call* receiver_call) override {
call_ = sender_call;
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
if (running_without_padding_)
EXPECT_EQ(0, call_->GetStats().max_padding_bitrate_bps);
// Wait until at least kMinPacketsToSend frames have been encoded, so that
// we have reliable data.
if (++packets_sent_ < kMinPacketsToSend)
return SEND_PACKET;
if (running_without_padding_) {
// We've sent kMinPacketsToSend packets with default configuration, switch
// to enabling screen content and setting min transmit bitrate.
packets_sent_ = 0;
encoder_config_.min_transmit_bitrate_bps = kMinTransmitBitrateBps;
encoder_config_.content_type = VideoEncoderConfig::ContentType::kScreen;
send_stream_->ReconfigureVideoEncoder(encoder_config_.Copy());
running_without_padding_ = false;
return SEND_PACKET;
}
// Make sure the pacer has been configured with a min transmit bitrate.
if (call_->GetStats().max_padding_bitrate_bps > 0)
observation_complete_.Set();
return SEND_PACKET;
}
void PerformTest() override {
ASSERT_TRUE(Wait()) << "Timed out waiting for a valid padding bitrate.";
}
private:
rtc::CriticalSection crit_;
Call* call_;
VideoSendStream* send_stream_;
VideoEncoderConfig encoder_config_;
uint32_t packets_sent_ GUARDED_BY(crit_);
bool running_without_padding_;
};
TEST_F(VideoSendStreamTest, RespectsMinTransmitBitrate) {
MaxPaddingSetTest test(false);
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, RespectsMinTransmitBitrateAfterContentSwitch) {
MaxPaddingSetTest test(true);
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, CanReconfigureToUseStartBitrateAbovePreviousMax) {
class StartBitrateObserver : public test::FakeEncoder {
public:
StartBitrateObserver()
: FakeEncoder(Clock::GetRealTimeClock()),
start_bitrate_changed_(false, false),
start_bitrate_kbps_(0) {}
int32_t InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) override {
rtc::CritScope lock(&crit_);
start_bitrate_kbps_ = config->startBitrate;
start_bitrate_changed_.Set();
return FakeEncoder::InitEncode(config, number_of_cores, max_payload_size);
}
int32_t SetRates(uint32_t new_target_bitrate, uint32_t framerate) override {
rtc::CritScope lock(&crit_);
start_bitrate_kbps_ = new_target_bitrate;
start_bitrate_changed_.Set();
return FakeEncoder::SetRates(new_target_bitrate, framerate);
}
int GetStartBitrateKbps() const {
rtc::CritScope lock(&crit_);
return start_bitrate_kbps_;
}
bool WaitForStartBitrate() {
return start_bitrate_changed_.Wait(
VideoSendStreamTest::kDefaultTimeoutMs);
}
private:
rtc::CriticalSection crit_;
rtc::Event start_bitrate_changed_;
int start_bitrate_kbps_ GUARDED_BY(crit_);
};
CreateSenderCall(Call::Config());
test::NullTransport transport;
CreateSendConfig(1, 0, &transport);
Call::Config::BitrateConfig bitrate_config;
bitrate_config.start_bitrate_bps =
2 * video_encoder_config_.streams[0].max_bitrate_bps;
sender_call_->SetBitrateConfig(bitrate_config);
StartBitrateObserver encoder;
video_send_config_.encoder_settings.encoder = &encoder;
CreateVideoStreams();
EXPECT_TRUE(encoder.WaitForStartBitrate());
EXPECT_EQ(video_encoder_config_.streams[0].max_bitrate_bps / 1000,
encoder.GetStartBitrateKbps());
video_encoder_config_.streams[0].max_bitrate_bps =
2 * bitrate_config.start_bitrate_bps;
video_send_stream_->ReconfigureVideoEncoder(video_encoder_config_.Copy());
// New bitrate should be reconfigured above the previous max. As there's no
// network connection this shouldn't be flaky, as no bitrate should've been
// reported in between.
EXPECT_TRUE(encoder.WaitForStartBitrate());
EXPECT_EQ(bitrate_config.start_bitrate_bps / 1000,
encoder.GetStartBitrateKbps());
DestroyStreams();
}
// This test that if the encoder use an internal source, VideoEncoder::SetRates
// will be called with zero bitrate during initialization and that
// VideoSendStream::Stop also triggers VideoEncoder::SetRates Start to be called
// with zero bitrate.
TEST_F(VideoSendStreamTest, VideoSendStreamStopSetEncoderRateToZero) {
class StartStopBitrateObserver : public test::FakeEncoder {
public:
StartStopBitrateObserver()
: FakeEncoder(Clock::GetRealTimeClock()),
encoder_init_(false, false),
bitrate_changed_(false, false),
bitrate_kbps_(0) {}
int32_t InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) override {
rtc::CritScope lock(&crit_);
bitrate_kbps_ = config->startBitrate;
encoder_init_.Set();
return FakeEncoder::InitEncode(config, number_of_cores, max_payload_size);
}
int32_t SetRates(uint32_t new_target_bitrate, uint32_t framerate) override {
rtc::CritScope lock(&crit_);
bitrate_kbps_ = new_target_bitrate;
bitrate_changed_.Set();
return FakeEncoder::SetRates(new_target_bitrate, framerate);
}
int GetBitrateKbps() const {
rtc::CritScope lock(&crit_);
return bitrate_kbps_;
}
bool WaitForEncoderInit() {
return encoder_init_.Wait(VideoSendStreamTest::kDefaultTimeoutMs);
}
bool WaitBitrateChanged() {
return bitrate_changed_.Wait(VideoSendStreamTest::kDefaultTimeoutMs);
}
private:
rtc::CriticalSection crit_;
rtc::Event encoder_init_;
rtc::Event bitrate_changed_;
int bitrate_kbps_ GUARDED_BY(crit_);
};
CreateSenderCall(Call::Config());
test::NullTransport transport;
CreateSendConfig(1, 0, &transport);
StartStopBitrateObserver encoder;
video_send_config_.encoder_settings.encoder = &encoder;
video_send_config_.encoder_settings.internal_source = true;
CreateVideoStreams();
EXPECT_TRUE(encoder.WaitForEncoderInit());
EXPECT_GT(encoder.GetBitrateKbps(), 0);
video_send_stream_->Start();
EXPECT_TRUE(encoder.WaitBitrateChanged());
EXPECT_GT(encoder.GetBitrateKbps(), 0);
video_send_stream_->Stop();
EXPECT_TRUE(encoder.WaitBitrateChanged());
EXPECT_EQ(0, encoder.GetBitrateKbps());
video_send_stream_->Start();
EXPECT_TRUE(encoder.WaitBitrateChanged());
EXPECT_GT(encoder.GetBitrateKbps(), 0);
DestroyStreams();
}
TEST_F(VideoSendStreamTest, CapturesTextureAndVideoFrames) {
class FrameObserver : public rtc::VideoSinkInterface<VideoFrame> {
public:
FrameObserver() : output_frame_event_(false, false) {}
void OnFrame(const VideoFrame& video_frame) override {
output_frames_.push_back(video_frame);
output_frame_event_.Set();
}
void WaitOutputFrame() {
const int kWaitFrameTimeoutMs = 3000;
EXPECT_TRUE(output_frame_event_.Wait(kWaitFrameTimeoutMs))
<< "Timeout while waiting for output frames.";
}
const std::vector<VideoFrame>& output_frames() const {
return output_frames_;
}
private:
// Delivered output frames.
std::vector<VideoFrame> output_frames_;
// Indicate an output frame has arrived.
rtc::Event output_frame_event_;
};
// Initialize send stream.
CreateSenderCall(Call::Config());
test::NullTransport transport;
CreateSendConfig(1, 0, &transport);
FrameObserver observer;
video_send_config_.pre_encode_callback = &observer;
CreateVideoStreams();
// Prepare five input frames. Send ordinary VideoFrame and texture frames
// alternatively.
std::vector<VideoFrame> input_frames;
int width = static_cast<int>(video_encoder_config_.streams[0].width);
int height = static_cast<int>(video_encoder_config_.streams[0].height);
test::FakeNativeHandle* handle1 = new test::FakeNativeHandle();
test::FakeNativeHandle* handle2 = new test::FakeNativeHandle();
test::FakeNativeHandle* handle3 = new test::FakeNativeHandle();
input_frames.push_back(test::FakeNativeHandle::CreateFrame(
handle1, width, height, 1, 1, kVideoRotation_0));
input_frames.push_back(test::FakeNativeHandle::CreateFrame(
handle2, width, height, 2, 2, kVideoRotation_0));
input_frames.push_back(CreateVideoFrame(width, height, 3));
input_frames.push_back(CreateVideoFrame(width, height, 4));
input_frames.push_back(test::FakeNativeHandle::CreateFrame(
handle3, width, height, 5, 5, kVideoRotation_0));
video_send_stream_->Start();
for (size_t i = 0; i < input_frames.size(); i++) {
video_send_stream_->Input()->IncomingCapturedFrame(input_frames[i]);
// Do not send the next frame too fast, so the frame dropper won't drop it.
if (i < input_frames.size() - 1)
SleepMs(1000 / video_encoder_config_.streams[0].max_framerate);
// Wait until the output frame is received before sending the next input
// frame. Or the previous input frame may be replaced without delivering.
observer.WaitOutputFrame();
}
video_send_stream_->Stop();
// Test if the input and output frames are the same. render_time_ms and
// timestamp are not compared because capturer sets those values.
ExpectEqualFramesVector(input_frames, observer.output_frames());
DestroyStreams();
}
void ExpectEqualFramesVector(const std::vector<VideoFrame>& frames1,
const std::vector<VideoFrame>& frames2) {
EXPECT_EQ(frames1.size(), frames2.size());
for (size_t i = 0; i < std::min(frames1.size(), frames2.size()); ++i)
// Compare frame buffers, since we don't care about differing timestamps.
EXPECT_TRUE(test::FrameBufsEqual(frames1[i].video_frame_buffer(),
frames2[i].video_frame_buffer()));
}
VideoFrame CreateVideoFrame(int width, int height, uint8_t data) {
const int kSizeY = width * height * 2;
std::unique_ptr<uint8_t[]> buffer(new uint8_t[kSizeY]);
memset(buffer.get(), data, kSizeY);
VideoFrame frame;
frame.CreateFrame(buffer.get(), buffer.get(), buffer.get(), width, height,
width, width / 2, width / 2, kVideoRotation_0);
frame.set_timestamp(data);
frame.set_render_time_ms(data);
return frame;
}
TEST_F(VideoSendStreamTest, EncoderIsProperlyInitializedAndDestroyed) {
class EncoderStateObserver : public test::SendTest, public VideoEncoder {
public:
EncoderStateObserver()
: SendTest(kDefaultTimeoutMs),
stream_(nullptr),
initialized_(false),
callback_registered_(false),
num_releases_(0),
released_(false) {}
bool IsReleased() {
rtc::CritScope lock(&crit_);
return released_;
}
bool IsReadyForEncode() {
rtc::CritScope lock(&crit_);
return initialized_ && callback_registered_;
}
size_t num_releases() {
rtc::CritScope lock(&crit_);
return num_releases_;
}
private:
int32_t InitEncode(const VideoCodec* codecSettings,
int32_t numberOfCores,
size_t maxPayloadSize) override {
rtc::CritScope lock(&crit_);
EXPECT_FALSE(initialized_);
initialized_ = true;
released_ = false;
return 0;
}
int32_t Encode(const VideoFrame& inputImage,
const CodecSpecificInfo* codecSpecificInfo,
const std::vector<FrameType>* frame_types) override {
EXPECT_TRUE(IsReadyForEncode());
observation_complete_.Set();
return 0;
}
int32_t RegisterEncodeCompleteCallback(
EncodedImageCallback* callback) override {
rtc::CritScope lock(&crit_);
EXPECT_TRUE(initialized_);
callback_registered_ = true;
return 0;
}
int32_t Release() override {
rtc::CritScope lock(&crit_);
EXPECT_TRUE(IsReadyForEncode());
EXPECT_FALSE(released_);
initialized_ = false;
callback_registered_ = false;
released_ = true;
++num_releases_;
return 0;
}
int32_t SetChannelParameters(uint32_t packetLoss, int64_t rtt) override {
EXPECT_TRUE(IsReadyForEncode());
return 0;
}
int32_t SetRates(uint32_t newBitRate, uint32_t frameRate) override {
EXPECT_TRUE(IsReadyForEncode());
return 0;
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
stream_ = send_stream;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = this;
encoder_config_ = encoder_config->Copy();
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for Encode.";
EXPECT_EQ(0u, num_releases());
stream_->ReconfigureVideoEncoder(std::move(encoder_config_));
EXPECT_EQ(0u, num_releases());
stream_->Stop();
// Encoder should not be released before destroying the VideoSendStream.
EXPECT_FALSE(IsReleased());
EXPECT_TRUE(IsReadyForEncode());
stream_->Start();
// Sanity check, make sure we still encode frames with this encoder.
EXPECT_TRUE(Wait()) << "Timed out while waiting for Encode.";
}
rtc::CriticalSection crit_;
VideoSendStream* stream_;
bool initialized_ GUARDED_BY(crit_);
bool callback_registered_ GUARDED_BY(crit_);
size_t num_releases_ GUARDED_BY(crit_);
bool released_ GUARDED_BY(crit_);
VideoEncoderConfig encoder_config_;
} test_encoder;
RunBaseTest(&test_encoder);
EXPECT_TRUE(test_encoder.IsReleased());
EXPECT_EQ(1u, test_encoder.num_releases());
}
TEST_F(VideoSendStreamTest, EncoderSetupPropagatesCommonEncoderConfigValues) {
class VideoCodecConfigObserver : public test::SendTest,
public test::FakeEncoder {
public:
VideoCodecConfigObserver()
: SendTest(kDefaultTimeoutMs),
FakeEncoder(Clock::GetRealTimeClock()),
init_encode_event_(false, false),
num_initializations_(0),
stream_(nullptr) {}
private:
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = this;
encoder_config_ = encoder_config->Copy();
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
stream_ = send_stream;
}
int32_t InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) override {
if (num_initializations_ == 0) {
// Verify default values.
EXPECT_EQ(kRealtimeVideo, config->mode);
} else {
// Verify that changed values are propagated.
EXPECT_EQ(kScreensharing, config->mode);
}
++num_initializations_;
init_encode_event_.Set();
return FakeEncoder::InitEncode(config, number_of_cores, max_payload_size);
}
void PerformTest() override {
EXPECT_TRUE(init_encode_event_.Wait(kDefaultTimeoutMs));
EXPECT_EQ(1u, num_initializations_) << "VideoEncoder not initialized.";
encoder_config_.content_type = VideoEncoderConfig::ContentType::kScreen;
stream_->ReconfigureVideoEncoder(std::move(encoder_config_));
EXPECT_TRUE(init_encode_event_.Wait(kDefaultTimeoutMs));
EXPECT_EQ(2u, num_initializations_)
<< "ReconfigureVideoEncoder did not reinitialize the encoder with "
"new encoder settings.";
}
rtc::Event init_encode_event_;
size_t num_initializations_;
VideoSendStream* stream_;
VideoEncoderConfig encoder_config_;
} test;
RunBaseTest(&test);
}
static const size_t kVideoCodecConfigObserverNumberOfTemporalLayers = 4;
template <typename T>
class VideoCodecConfigObserver : public test::SendTest,
public test::FakeEncoder {
public:
VideoCodecConfigObserver(VideoCodecType video_codec_type,
const char* codec_name)
: SendTest(VideoSendStreamTest::kDefaultTimeoutMs),
FakeEncoder(Clock::GetRealTimeClock()),
video_codec_type_(video_codec_type),
codec_name_(codec_name),
init_encode_event_(false, false),
num_initializations_(0),
stream_(nullptr) {
memset(&encoder_settings_, 0, sizeof(encoder_settings_));
}
private:
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = this;
send_config->encoder_settings.payload_name = codec_name_;
for (size_t i = 0; i < encoder_config->streams.size(); ++i) {
encoder_config->streams[i].temporal_layer_thresholds_bps.resize(
kVideoCodecConfigObserverNumberOfTemporalLayers - 1);
}
encoder_config->encoder_specific_settings = &encoder_settings_;
encoder_config_ = encoder_config->Copy();
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
stream_ = send_stream;
}
int32_t InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) override {
EXPECT_EQ(video_codec_type_, config->codecType);
VerifyCodecSpecifics(*config);
++num_initializations_;
init_encode_event_.Set();
return FakeEncoder::InitEncode(config, number_of_cores, max_payload_size);
}
void VerifyCodecSpecifics(const VideoCodec& config) const;
void PerformTest() override {
EXPECT_TRUE(
init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs));
ASSERT_EQ(1u, num_initializations_) << "VideoEncoder not initialized.";
encoder_settings_.frameDroppingOn = true;
stream_->ReconfigureVideoEncoder(std::move(encoder_config_));
ASSERT_TRUE(
init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs));
EXPECT_EQ(2u, num_initializations_)
<< "ReconfigureVideoEncoder did not reinitialize the encoder with "
"new encoder settings.";
}
int32_t Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codec_specific_info,
const std::vector<FrameType>* frame_types) override {
// Silently skip the encode, FakeEncoder::Encode doesn't produce VP8.
return 0;
}
T encoder_settings_;
const VideoCodecType video_codec_type_;
const char* const codec_name_;
rtc::Event init_encode_event_;
size_t num_initializations_;
VideoSendStream* stream_;
VideoEncoderConfig encoder_config_;
};
template <>
void VideoCodecConfigObserver<VideoCodecH264>::VerifyCodecSpecifics(
const VideoCodec& config) const {
EXPECT_EQ(0, memcmp(&config.codecSpecific.H264, &encoder_settings_,
sizeof(encoder_settings_)));
}
template <>
void VideoCodecConfigObserver<VideoCodecVP8>::VerifyCodecSpecifics(
const VideoCodec& config) const {
// Check that the number of temporal layers has propagated properly to
// VideoCodec.
EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers,
config.codecSpecific.VP8.numberOfTemporalLayers);
for (unsigned char i = 0; i < config.numberOfSimulcastStreams; ++i) {
EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers,
config.simulcastStream[i].numberOfTemporalLayers);
}
// Set expected temporal layers as they should have been set when
// reconfiguring the encoder and not match the set config.
VideoCodecVP8 encoder_settings = encoder_settings_;
encoder_settings.numberOfTemporalLayers =
kVideoCodecConfigObserverNumberOfTemporalLayers;
EXPECT_EQ(0, memcmp(&config.codecSpecific.VP8, &encoder_settings,
sizeof(encoder_settings_)));
}
template <>
void VideoCodecConfigObserver<VideoCodecVP9>::VerifyCodecSpecifics(
const VideoCodec& config) const {
// Check that the number of temporal layers has propagated properly to
// VideoCodec.
EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers,
config.codecSpecific.VP9.numberOfTemporalLayers);
for (unsigned char i = 0; i < config.numberOfSimulcastStreams; ++i) {
EXPECT_EQ(kVideoCodecConfigObserverNumberOfTemporalLayers,
config.simulcastStream[i].numberOfTemporalLayers);
}
// Set expected temporal layers as they should have been set when
// reconfiguring the encoder and not match the set config.
VideoCodecVP9 encoder_settings = encoder_settings_;
encoder_settings.numberOfTemporalLayers =
kVideoCodecConfigObserverNumberOfTemporalLayers;
EXPECT_EQ(0, memcmp(&config.codecSpecific.VP9, &encoder_settings,
sizeof(encoder_settings_)));
}
TEST_F(VideoSendStreamTest, EncoderSetupPropagatesVp8Config) {
VideoCodecConfigObserver<VideoCodecVP8> test(kVideoCodecVP8, "VP8");
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, EncoderSetupPropagatesVp9Config) {
VideoCodecConfigObserver<VideoCodecVP9> test(kVideoCodecVP9, "VP9");
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, EncoderSetupPropagatesH264Config) {
VideoCodecConfigObserver<VideoCodecH264> test(kVideoCodecH264, "H264");
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, RtcpSenderReportContainsMediaBytesSent) {
class RtcpSenderReportTest : public test::SendTest {
public:
RtcpSenderReportTest() : SendTest(kDefaultTimeoutMs),
rtp_packets_sent_(0),
media_bytes_sent_(0) {}
private:
Action OnSendRtp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
++rtp_packets_sent_;
media_bytes_sent_ += length - header.headerLength - header.paddingLength;
return SEND_PACKET;
}
Action OnSendRtcp(const uint8_t* packet, size_t length) override {
rtc::CritScope lock(&crit_);
RTCPUtility::RTCPParserV2 parser(packet, length, true);
EXPECT_TRUE(parser.IsValid());
RTCPUtility::RTCPPacketTypes packet_type = parser.Begin();
while (packet_type != RTCPUtility::RTCPPacketTypes::kInvalid) {
if (packet_type == RTCPUtility::RTCPPacketTypes::kSr) {
// Only compare sent media bytes if SenderPacketCount matches the
// number of sent rtp packets (a new rtp packet could be sent before
// the rtcp packet).
if (parser.Packet().SR.SenderOctetCount > 0 &&
parser.Packet().SR.SenderPacketCount == rtp_packets_sent_) {
EXPECT_EQ(media_bytes_sent_, parser.Packet().SR.SenderOctetCount);
observation_complete_.Set();
}
}
packet_type = parser.Iterate();
}
return SEND_PACKET;
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Timed out while waiting for RTCP sender report.";
}
rtc::CriticalSection crit_;
size_t rtp_packets_sent_ GUARDED_BY(&crit_);
size_t media_bytes_sent_ GUARDED_BY(&crit_);
} test;
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, TranslatesTwoLayerScreencastToTargetBitrate) {
static const int kScreencastTargetBitrateKbps = 200;
class ScreencastTargetBitrateTest : public test::SendTest,
public test::FakeEncoder {
public:
ScreencastTargetBitrateTest()
: SendTest(kDefaultTimeoutMs),
test::FakeEncoder(Clock::GetRealTimeClock()) {}
private:
int32_t InitEncode(const VideoCodec* config,
int32_t number_of_cores,
size_t max_payload_size) override {
EXPECT_EQ(static_cast<unsigned int>(kScreencastTargetBitrateKbps),
config->targetBitrate);
observation_complete_.Set();
return test::FakeEncoder::InitEncode(
config, number_of_cores, max_payload_size);
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = this;
EXPECT_EQ(1u, encoder_config->streams.size());
EXPECT_TRUE(
encoder_config->streams[0].temporal_layer_thresholds_bps.empty());
encoder_config->streams[0].temporal_layer_thresholds_bps.push_back(
kScreencastTargetBitrateKbps * 1000);
encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen;
}
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for the encoder to be initialized.";
}
} test;
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, ReconfigureBitratesSetsEncoderBitratesCorrectly) {
// These are chosen to be "kind of odd" to not be accidentally checked against
// default values.
static const int kMinBitrateKbps = 137;
static const int kStartBitrateKbps = 345;
static const int kLowerMaxBitrateKbps = 312;
static const int kMaxBitrateKbps = 413;
static const int kIncreasedStartBitrateKbps = 451;
static const int kIncreasedMaxBitrateKbps = 597;
class EncoderBitrateThresholdObserver : public test::SendTest,
public test::FakeEncoder {
public:
EncoderBitrateThresholdObserver()
: SendTest(kDefaultTimeoutMs),
FakeEncoder(Clock::GetRealTimeClock()),
init_encode_event_(false, false),
bitrate_changed_event_(false, false),
target_bitrate_(0),
num_initializations_(0),
call_(nullptr),
send_stream_(nullptr) {}
private:
int32_t InitEncode(const VideoCodec* codecSettings,
int32_t numberOfCores,
size_t maxPayloadSize) override {
EXPECT_GE(codecSettings->startBitrate, codecSettings->minBitrate);
EXPECT_LE(codecSettings->startBitrate, codecSettings->maxBitrate);
if (num_initializations_ == 0) {
EXPECT_EQ(static_cast<unsigned int>(kMinBitrateKbps),
codecSettings->minBitrate);
EXPECT_EQ(static_cast<unsigned int>(kStartBitrateKbps),
codecSettings->startBitrate);
EXPECT_EQ(static_cast<unsigned int>(kMaxBitrateKbps),
codecSettings->maxBitrate);
observation_complete_.Set();
} else if (num_initializations_ == 1) {
EXPECT_EQ(static_cast<unsigned int>(kLowerMaxBitrateKbps),
codecSettings->maxBitrate);
// The start bitrate should be kept (-1) and capped to the max bitrate.
// Since this is not an end-to-end call no receiver should have been
// returning a REMB that could lower this estimate.
EXPECT_EQ(codecSettings->startBitrate, codecSettings->maxBitrate);
} else if (num_initializations_ == 2) {
EXPECT_EQ(static_cast<unsigned int>(kIncreasedMaxBitrateKbps),
codecSettings->maxBitrate);
// The start bitrate will be whatever the rate BitRateController
// has currently configured but in the span of the set max and min
// bitrate.
}
++num_initializations_;
init_encode_event_.Set();
return FakeEncoder::InitEncode(codecSettings, numberOfCores,
maxPayloadSize);
}
int32_t SetRates(uint32_t newBitRate, uint32_t frameRate) override {
{
rtc::CritScope lock(&crit_);
target_bitrate_ = newBitRate;
}
bitrate_changed_event_.Set();
return FakeEncoder::SetRates(newBitRate, frameRate);
}
void WaitForSetRates(uint32_t expected_bitrate) {
EXPECT_TRUE(
bitrate_changed_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs))
<< "Timed out while waiting encoder rate to be set.";
rtc::CritScope lock(&crit_);
EXPECT_EQ(expected_bitrate, target_bitrate_);
}
Call::Config GetSenderCallConfig() override {
Call::Config config;
config.bitrate_config.min_bitrate_bps = kMinBitrateKbps * 1000;
config.bitrate_config.start_bitrate_bps = kStartBitrateKbps * 1000;
config.bitrate_config.max_bitrate_bps = kMaxBitrateKbps * 1000;
return config;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = this;
// Set bitrates lower/higher than min/max to make sure they are properly
// capped.
encoder_config->streams.front().min_bitrate_bps = kMinBitrateKbps * 1000;
encoder_config->streams.front().max_bitrate_bps = kMaxBitrateKbps * 1000;
encoder_config_ = encoder_config->Copy();
}
void OnCallsCreated(Call* sender_call, Call* receiver_call) override {
call_ = sender_call;
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
send_stream_ = send_stream;
}
void PerformTest() override {
ASSERT_TRUE(
init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs))
<< "Timed out while waiting for encoder to be configured.";
WaitForSetRates(kStartBitrateKbps);
Call::Config::BitrateConfig bitrate_config;
bitrate_config.start_bitrate_bps = kIncreasedStartBitrateKbps * 1000;
bitrate_config.max_bitrate_bps = kIncreasedMaxBitrateKbps * 1000;
call_->SetBitrateConfig(bitrate_config);
// Encoder rate is capped by EncoderConfig max_bitrate_bps.
WaitForSetRates(kMaxBitrateKbps);
encoder_config_.streams[0].min_bitrate_bps = 0;
encoder_config_.streams[0].max_bitrate_bps = kLowerMaxBitrateKbps * 1000;
send_stream_->ReconfigureVideoEncoder(encoder_config_.Copy());
ASSERT_TRUE(
init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs));
EXPECT_EQ(2, num_initializations_)
<< "Encoder should have been reconfigured with the new value.";
WaitForSetRates(kLowerMaxBitrateKbps);
encoder_config_.streams[0].target_bitrate_bps =
encoder_config_.streams[0].min_bitrate_bps;
encoder_config_.streams[0].max_bitrate_bps =
kIncreasedMaxBitrateKbps * 1000;
send_stream_->ReconfigureVideoEncoder(encoder_config_.Copy());
ASSERT_TRUE(
init_encode_event_.Wait(VideoSendStreamTest::kDefaultTimeoutMs));
EXPECT_EQ(3, num_initializations_)
<< "Encoder should have been reconfigured with the new value.";
// Expected target bitrate is the start bitrate set in the call to
// call_->SetBitrateConfig.
WaitForSetRates(kIncreasedStartBitrateKbps);
}
rtc::Event init_encode_event_;
rtc::Event bitrate_changed_event_;
rtc::CriticalSection crit_;
uint32_t target_bitrate_ GUARDED_BY(&crit_);
int num_initializations_;
webrtc::Call* call_;
webrtc::VideoSendStream* send_stream_;
webrtc::VideoEncoderConfig encoder_config_;
} test;
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, ReportsSentResolution) {
static const size_t kNumStreams = 3;
// Unusual resolutions to make sure that they are the ones being reported.
static const struct {
int width;
int height;
} kEncodedResolution[kNumStreams] = {
{241, 181}, {300, 121}, {121, 221}};
class ScreencastTargetBitrateTest : public test::SendTest,
public test::FakeEncoder {
public:
ScreencastTargetBitrateTest()
: SendTest(kDefaultTimeoutMs),
test::FakeEncoder(Clock::GetRealTimeClock()),
send_stream_(nullptr) {}
private:
int32_t Encode(const VideoFrame& input_image,
const CodecSpecificInfo* codecSpecificInfo,
const std::vector<FrameType>* frame_types) override {
CodecSpecificInfo specifics;
specifics.codecType = kVideoCodecGeneric;
uint8_t buffer[16] = {0};
EncodedImage encoded(buffer, sizeof(buffer), sizeof(buffer));
encoded._timeStamp = input_image.timestamp();
encoded.capture_time_ms_ = input_image.render_time_ms();
for (size_t i = 0; i < kNumStreams; ++i) {
specifics.codecSpecific.generic.simulcast_idx = static_cast<uint8_t>(i);
encoded._frameType = (*frame_types)[i];
encoded._encodedWidth = kEncodedResolution[i].width;
encoded._encodedHeight = kEncodedResolution[i].height;
RTC_DCHECK(callback_);
if (callback_->Encoded(encoded, &specifics, nullptr) != 0)
return -1;
}
observation_complete_.Set();
return 0;
}
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
send_config->encoder_settings.encoder = this;
EXPECT_EQ(kNumStreams, encoder_config->streams.size());
}
size_t GetNumVideoStreams() const override { return kNumStreams; }
void PerformTest() override {
EXPECT_TRUE(Wait())
<< "Timed out while waiting for the encoder to send one frame.";
VideoSendStream::Stats stats = send_stream_->GetStats();
for (size_t i = 0; i < kNumStreams; ++i) {
ASSERT_TRUE(stats.substreams.find(kVideoSendSsrcs[i]) !=
stats.substreams.end())
<< "No stats for SSRC: " << kVideoSendSsrcs[i]
<< ", stats should exist as soon as frames have been encoded.";
VideoSendStream::StreamStats ssrc_stats =
stats.substreams[kVideoSendSsrcs[i]];
EXPECT_EQ(kEncodedResolution[i].width, ssrc_stats.width);
EXPECT_EQ(kEncodedResolution[i].height, ssrc_stats.height);
}
}
void OnVideoStreamsCreated(
VideoSendStream* send_stream,
const std::vector<VideoReceiveStream*>& receive_streams) override {
send_stream_ = send_stream;
}
VideoSendStream* send_stream_;
} test;
RunBaseTest(&test);
}
#if !defined(RTC_DISABLE_VP9)
class Vp9HeaderObserver : public test::SendTest {
public:
Vp9HeaderObserver()
: SendTest(VideoSendStreamTest::kLongTimeoutMs),
vp9_encoder_(VP9Encoder::Create()),
vp9_settings_(VideoEncoder::GetDefaultVp9Settings()),
packets_sent_(0),
frames_sent_(0) {}
virtual void ModifyVideoConfigsHook(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) {}
virtual void InspectHeader(const RTPVideoHeaderVP9& vp9) = 0;
private:
const int kVp9PayloadType = 105;
void ModifyVideoConfigs(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
encoder_config->encoder_specific_settings = &vp9_settings_;
send_config->encoder_settings.encoder = vp9_encoder_.get();
send_config->encoder_settings.payload_name = "VP9";
send_config->encoder_settings.payload_type = kVp9PayloadType;
ModifyVideoConfigsHook(send_config, receive_configs, encoder_config);
EXPECT_EQ(1u, encoder_config->streams.size());
encoder_config->streams[0].temporal_layer_thresholds_bps.resize(
vp9_settings_.numberOfTemporalLayers - 1);
encoder_config_ = encoder_config->Copy();
}
void PerformTest() override {
EXPECT_TRUE(Wait()) << "Test timed out waiting for VP9 packet, num frames "
<< frames_sent_;
}
Action OnSendRtp(const uint8_t* packet, size_t length) override {
RTPHeader header;
EXPECT_TRUE(parser_->Parse(packet, length, &header));
EXPECT_EQ(kVp9PayloadType, header.payloadType);
const uint8_t* payload = packet + header.headerLength;
size_t payload_length = length - header.headerLength - header.paddingLength;
bool new_packet = packets_sent_ == 0 ||
IsNewerSequenceNumber(header.sequenceNumber,
last_header_.sequenceNumber);
if (payload_length > 0 && new_packet) {
RtpDepacketizer::ParsedPayload parsed;
RtpDepacketizerVp9 depacketizer;
EXPECT_TRUE(depacketizer.Parse(&parsed, payload, payload_length));
EXPECT_EQ(RtpVideoCodecTypes::kRtpVideoVp9, parsed.type.Video.codec);
// Verify common fields for all configurations.
VerifyCommonHeader(parsed.type.Video.codecHeader.VP9);
CompareConsecutiveFrames(header, parsed.type.Video);
// Verify configuration specific settings.
InspectHeader(parsed.type.Video.codecHeader.VP9);
++packets_sent_;
if (header.markerBit) {
++frames_sent_;
}
last_header_ = header;
last_vp9_ = parsed.type.Video.codecHeader.VP9;
}
return SEND_PACKET;
}
protected:
bool ContinuousPictureId(const RTPVideoHeaderVP9& vp9) const {
if (last_vp9_.picture_id > vp9.picture_id) {
return vp9.picture_id == 0; // Wrap.
} else {
return vp9.picture_id == last_vp9_.picture_id + 1;
}
}
void VerifySpatialIdxWithinFrame(const RTPVideoHeaderVP9& vp9) const {
bool new_layer = vp9.spatial_idx != last_vp9_.spatial_idx;
EXPECT_EQ(new_layer, vp9.beginning_of_frame);
EXPECT_EQ(new_layer, last_vp9_.end_of_frame);
EXPECT_EQ(new_layer ? last_vp9_.spatial_idx + 1 : last_vp9_.spatial_idx,
vp9.spatial_idx);
}
void VerifyFixedTemporalLayerStructure(const RTPVideoHeaderVP9& vp9,
uint8_t num_layers) const {
switch (num_layers) {
case 0:
VerifyTemporalLayerStructure0(vp9);
break;
case 1:
VerifyTemporalLayerStructure1(vp9);
break;
case 2:
VerifyTemporalLayerStructure2(vp9);
break;
case 3:
VerifyTemporalLayerStructure3(vp9);
break;
default:
RTC_NOTREACHED();
}
}
void VerifyTemporalLayerStructure0(const RTPVideoHeaderVP9& vp9) const {
EXPECT_EQ(kNoTl0PicIdx, vp9.tl0_pic_idx);
EXPECT_EQ(kNoTemporalIdx, vp9.temporal_idx); // no tid
EXPECT_FALSE(vp9.temporal_up_switch);
}
void VerifyTemporalLayerStructure1(const RTPVideoHeaderVP9& vp9) const {
EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx);
EXPECT_EQ(0, vp9.temporal_idx); // 0,0,0,...
EXPECT_FALSE(vp9.temporal_up_switch);
}
void VerifyTemporalLayerStructure2(const RTPVideoHeaderVP9& vp9) const {
EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx);
EXPECT_GE(vp9.temporal_idx, 0); // 0,1,0,1,... (tid reset on I-frames).
EXPECT_LE(vp9.temporal_idx, 1);
EXPECT_EQ(vp9.temporal_idx > 0, vp9.temporal_up_switch);
if (IsNewPictureId(vp9)) {
uint8_t expected_tid =
(!vp9.inter_pic_predicted || last_vp9_.temporal_idx == 1) ? 0 : 1;
EXPECT_EQ(expected_tid, vp9.temporal_idx);
}
}
void VerifyTemporalLayerStructure3(const RTPVideoHeaderVP9& vp9) const {
EXPECT_NE(kNoTl0PicIdx, vp9.tl0_pic_idx);
EXPECT_GE(vp9.temporal_idx, 0); // 0,2,1,2,... (tid reset on I-frames).
EXPECT_LE(vp9.temporal_idx, 2);
if (IsNewPictureId(vp9) && vp9.inter_pic_predicted) {
EXPECT_NE(vp9.temporal_idx, last_vp9_.temporal_idx);
switch (vp9.temporal_idx) {
case 0:
EXPECT_EQ(2, last_vp9_.temporal_idx);
EXPECT_FALSE(vp9.temporal_up_switch);
break;
case 1:
EXPECT_EQ(2, last_vp9_.temporal_idx);
EXPECT_TRUE(vp9.temporal_up_switch);
break;
case 2:
EXPECT_EQ(last_vp9_.temporal_idx == 0, vp9.temporal_up_switch);
break;
}
}
}
void VerifyTl0Idx(const RTPVideoHeaderVP9& vp9) const {
if (vp9.tl0_pic_idx == kNoTl0PicIdx)
return;
uint8_t expected_tl0_idx = last_vp9_.tl0_pic_idx;
if (vp9.temporal_idx == 0)
++expected_tl0_idx;
EXPECT_EQ(expected_tl0_idx, vp9.tl0_pic_idx);
}
bool IsNewPictureId(const RTPVideoHeaderVP9& vp9) const {
return frames_sent_ > 0 && (vp9.picture_id != last_vp9_.picture_id);
}
// Flexible mode (F=1): Non-flexible mode (F=0):
//
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// |I|P|L|F|B|E|V|-| |I|P|L|F|B|E|V|-|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// I: |M| PICTURE ID | I: |M| PICTURE ID |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// M: | EXTENDED PID | M: | EXTENDED PID |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// L: | T |U| S |D| L: | T |U| S |D|
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// P,F: | P_DIFF |X|N| | TL0PICIDX |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// X: |EXTENDED P_DIFF| V: | SS .. |
// +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
// V: | SS .. |
// +-+-+-+-+-+-+-+-+
void VerifyCommonHeader(const RTPVideoHeaderVP9& vp9) const {
EXPECT_EQ(kMaxTwoBytePictureId, vp9.max_picture_id); // M:1
EXPECT_NE(kNoPictureId, vp9.picture_id); // I:1
EXPECT_EQ(vp9_settings_.flexibleMode, vp9.flexible_mode); // F
EXPECT_GE(vp9.spatial_idx, 0); // S
EXPECT_LT(vp9.spatial_idx, vp9_settings_.numberOfSpatialLayers);
if (vp9.ss_data_available) // V
VerifySsData(vp9);
if (frames_sent_ == 0)
EXPECT_FALSE(vp9.inter_pic_predicted); // P
if (!vp9.inter_pic_predicted) {
EXPECT_TRUE(vp9.temporal_idx == 0 || vp9.temporal_idx == kNoTemporalIdx);
EXPECT_FALSE(vp9.temporal_up_switch);
}
}
// Scalability structure (SS).
//
// +-+-+-+-+-+-+-+-+
// V: | N_S |Y|G|-|-|-|
// +-+-+-+-+-+-+-+-+
// Y: | WIDTH | N_S + 1 times
// +-+-+-+-+-+-+-+-+
// | HEIGHT |
// +-+-+-+-+-+-+-+-+
// G: | N_G |
// +-+-+-+-+-+-+-+-+
// N_G: | T |U| R |-|-| N_G times
// +-+-+-+-+-+-+-+-+
// | P_DIFF | R times
// +-+-+-+-+-+-+-+-+
void VerifySsData(const RTPVideoHeaderVP9& vp9) const {
EXPECT_TRUE(vp9.ss_data_available); // V
EXPECT_EQ(vp9_settings_.numberOfSpatialLayers, // N_S + 1
vp9.num_spatial_layers);
EXPECT_TRUE(vp9.spatial_layer_resolution_present); // Y:1
size_t expected_width = encoder_config_.streams[0].width;
size_t expected_height = encoder_config_.streams[0].height;
for (int i = static_cast<int>(vp9.num_spatial_layers) - 1; i >= 0; --i) {
EXPECT_EQ(expected_width, vp9.width[i]); // WIDTH
EXPECT_EQ(expected_height, vp9.height[i]); // HEIGHT
expected_width /= 2;
expected_height /= 2;
}
}
void CompareConsecutiveFrames(const RTPHeader& header,
const RTPVideoHeader& video) const {
const RTPVideoHeaderVP9& vp9 = video.codecHeader.VP9;
bool new_frame = packets_sent_ == 0 ||
IsNewerTimestamp(header.timestamp, last_header_.timestamp);
EXPECT_EQ(new_frame, video.isFirstPacket);
if (!new_frame) {
EXPECT_FALSE(last_header_.markerBit);
EXPECT_EQ(last_header_.timestamp, header.timestamp);
EXPECT_EQ(last_vp9_.picture_id, vp9.picture_id);
EXPECT_EQ(last_vp9_.temporal_idx, vp9.temporal_idx);
EXPECT_EQ(last_vp9_.tl0_pic_idx, vp9.tl0_pic_idx);
VerifySpatialIdxWithinFrame(vp9);
return;
}
// New frame.
EXPECT_TRUE(vp9.beginning_of_frame);
// Compare with last packet in previous frame.
if (frames_sent_ == 0)
return;
EXPECT_TRUE(last_vp9_.end_of_frame);
EXPECT_TRUE(last_header_.markerBit);
EXPECT_TRUE(ContinuousPictureId(vp9));
VerifyTl0Idx(vp9);
}
std::unique_ptr<VP9Encoder> vp9_encoder_;
VideoCodecVP9 vp9_settings_;
webrtc::VideoEncoderConfig encoder_config_;
RTPHeader last_header_;
RTPVideoHeaderVP9 last_vp9_;
size_t packets_sent_;
size_t frames_sent_;
};
TEST_F(VideoSendStreamTest, Vp9NonFlexMode_1Tl1SLayers) {
const uint8_t kNumTemporalLayers = 1;
const uint8_t kNumSpatialLayers = 1;
TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers);
}
TEST_F(VideoSendStreamTest, Vp9NonFlexMode_2Tl1SLayers) {
const uint8_t kNumTemporalLayers = 2;
const uint8_t kNumSpatialLayers = 1;
TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers);
}
TEST_F(VideoSendStreamTest, Vp9NonFlexMode_3Tl1SLayers) {
const uint8_t kNumTemporalLayers = 3;
const uint8_t kNumSpatialLayers = 1;
TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers);
}
TEST_F(VideoSendStreamTest, Vp9NonFlexMode_1Tl2SLayers) {
const uint8_t kNumTemporalLayers = 1;
const uint8_t kNumSpatialLayers = 2;
TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers);
}
TEST_F(VideoSendStreamTest, Vp9NonFlexMode_2Tl2SLayers) {
const uint8_t kNumTemporalLayers = 2;
const uint8_t kNumSpatialLayers = 2;
TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers);
}
TEST_F(VideoSendStreamTest, Vp9NonFlexMode_3Tl2SLayers) {
const uint8_t kNumTemporalLayers = 3;
const uint8_t kNumSpatialLayers = 2;
TestVp9NonFlexMode(kNumTemporalLayers, kNumSpatialLayers);
}
void VideoSendStreamTest::TestVp9NonFlexMode(uint8_t num_temporal_layers,
uint8_t num_spatial_layers) {
static const size_t kNumFramesToSend = 100;
// Set to < kNumFramesToSend and coprime to length of temporal layer
// structures to verify temporal id reset on key frame.
static const int kKeyFrameInterval = 31;
class NonFlexibleMode : public Vp9HeaderObserver {
public:
NonFlexibleMode(uint8_t num_temporal_layers, uint8_t num_spatial_layers)
: num_temporal_layers_(num_temporal_layers),
num_spatial_layers_(num_spatial_layers),
l_field_(num_temporal_layers > 1 || num_spatial_layers > 1) {}
void ModifyVideoConfigsHook(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
vp9_settings_.flexibleMode = false;
vp9_settings_.frameDroppingOn = false;
vp9_settings_.keyFrameInterval = kKeyFrameInterval;
vp9_settings_.numberOfTemporalLayers = num_temporal_layers_;
vp9_settings_.numberOfSpatialLayers = num_spatial_layers_;
}
void InspectHeader(const RTPVideoHeaderVP9& vp9) override {
bool ss_data_expected = !vp9.inter_pic_predicted &&
vp9.beginning_of_frame && vp9.spatial_idx == 0;
EXPECT_EQ(ss_data_expected, vp9.ss_data_available);
EXPECT_EQ(vp9.spatial_idx > 0, vp9.inter_layer_predicted); // D
EXPECT_EQ(!vp9.inter_pic_predicted,
frames_sent_ % kKeyFrameInterval == 0);
if (IsNewPictureId(vp9)) {
EXPECT_EQ(0, vp9.spatial_idx);
EXPECT_EQ(num_spatial_layers_ - 1, last_vp9_.spatial_idx);
}
VerifyFixedTemporalLayerStructure(vp9,
l_field_ ? num_temporal_layers_ : 0);
if (frames_sent_ > kNumFramesToSend)
observation_complete_.Set();
}
const uint8_t num_temporal_layers_;
const uint8_t num_spatial_layers_;
const bool l_field_;
} test(num_temporal_layers, num_spatial_layers);
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, Vp9NonFlexModeSmallResolution) {
static const size_t kNumFramesToSend = 50;
static const int kWidth = 4;
static const int kHeight = 4;
class NonFlexibleModeResolution : public Vp9HeaderObserver {
void ModifyVideoConfigsHook(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
vp9_settings_.flexibleMode = false;
vp9_settings_.numberOfTemporalLayers = 1;
vp9_settings_.numberOfSpatialLayers = 1;
EXPECT_EQ(1u, encoder_config->streams.size());
encoder_config->streams[0].width = kWidth;
encoder_config->streams[0].height = kHeight;
}
void InspectHeader(const RTPVideoHeaderVP9& vp9_header) override {
if (frames_sent_ > kNumFramesToSend)
observation_complete_.Set();
}
} test;
RunBaseTest(&test);
}
TEST_F(VideoSendStreamTest, Vp9FlexModeRefCount) {
class FlexibleMode : public Vp9HeaderObserver {
void ModifyVideoConfigsHook(
VideoSendStream::Config* send_config,
std::vector<VideoReceiveStream::Config>* receive_configs,
VideoEncoderConfig* encoder_config) override {
encoder_config->content_type = VideoEncoderConfig::ContentType::kScreen;
vp9_settings_.flexibleMode = true;
vp9_settings_.numberOfTemporalLayers = 1;
vp9_settings_.numberOfSpatialLayers = 2;
}
void InspectHeader(const RTPVideoHeaderVP9& vp9_header) override {
EXPECT_TRUE(vp9_header.flexible_mode);
EXPECT_EQ(kNoTl0PicIdx, vp9_header.tl0_pic_idx);
if (vp9_header.inter_pic_predicted) {
EXPECT_GT(vp9_header.num_ref_pics, 0u);
observation_complete_.Set();
}
}
} test;
RunBaseTest(&test);
}
#endif // !defined(RTC_DISABLE_VP9)
} // namespace webrtc