| /* |
| * Copyright (c) 2015 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "common_video/h264/sps_parser.h" |
| |
| #include "common_video/h264/h264_common.h" |
| #include "rtc_base/arraysize.h" |
| #include "rtc_base/bit_buffer.h" |
| #include "rtc_base/buffer.h" |
| #include "test/gtest.h" |
| |
| namespace webrtc { |
| |
| // Example SPS can be generated with ffmpeg. Here's an example set of commands, |
| // runnable on OS X: |
| // 1) Generate a video, from the camera: |
| // ffmpeg -f avfoundation -i "0" -video_size 640x360 camera.mov |
| // |
| // 2) Scale the video to the desired size: |
| // ffmpeg -i camera.mov -vf scale=640x360 scaled.mov |
| // |
| // 3) Get just the H.264 bitstream in AnnexB: |
| // ffmpeg -i scaled.mov -vcodec copy -vbsf h264_mp4toannexb -an out.h264 |
| // |
| // 4) Open out.h264 and find the SPS, generally everything between the first |
| // two start codes (0 0 0 1 or 0 0 1). The first byte should be 0x67, |
| // which should be stripped out before being passed to the parser. |
| |
| static const size_t kSpsBufferMaxSize = 256; |
| |
| // Generates a fake SPS with basically everything empty but the width/height. |
| // Pass in a buffer of at least kSpsBufferMaxSize. |
| // The fake SPS that this generates also always has at least one emulation byte |
| // at offset 2, since the first two bytes are always 0, and has a 0x3 as the |
| // level_idc, to make sure the parser doesn't eat all 0x3 bytes. |
| void GenerateFakeSps(uint16_t width, |
| uint16_t height, |
| int id, |
| uint32_t log2_max_frame_num_minus4, |
| uint32_t log2_max_pic_order_cnt_lsb_minus4, |
| rtc::Buffer* out_buffer) { |
| uint8_t rbsp[kSpsBufferMaxSize] = {0}; |
| rtc::BitBufferWriter writer(rbsp, kSpsBufferMaxSize); |
| // Profile byte. |
| writer.WriteUInt8(0); |
| // Constraint sets and reserved zero bits. |
| writer.WriteUInt8(0); |
| // level_idc. |
| writer.WriteUInt8(0x3u); |
| // seq_paramter_set_id. |
| writer.WriteExponentialGolomb(id); |
| // Profile is not special, so we skip all the chroma format settings. |
| |
| // Now some bit magic. |
| // log2_max_frame_num_minus4: ue(v). |
| writer.WriteExponentialGolomb(log2_max_frame_num_minus4); |
| // pic_order_cnt_type: ue(v). 0 is the type we want. |
| writer.WriteExponentialGolomb(0); |
| // log2_max_pic_order_cnt_lsb_minus4: ue(v). 0 is fine. |
| writer.WriteExponentialGolomb(log2_max_pic_order_cnt_lsb_minus4); |
| // max_num_ref_frames: ue(v). 0 is fine. |
| writer.WriteExponentialGolomb(0); |
| // gaps_in_frame_num_value_allowed_flag: u(1). |
| writer.WriteBits(0, 1); |
| // Next are width/height. First, calculate the mbs/map_units versions. |
| uint16_t width_in_mbs_minus1 = (width + 15) / 16 - 1; |
| |
| // For the height, we're going to define frame_mbs_only_flag, so we need to |
| // divide by 2. See the parser for the full calculation. |
| uint16_t height_in_map_units_minus1 = ((height + 15) / 16 - 1) / 2; |
| // Write each as ue(v). |
| writer.WriteExponentialGolomb(width_in_mbs_minus1); |
| writer.WriteExponentialGolomb(height_in_map_units_minus1); |
| // frame_mbs_only_flag: u(1). Needs to be false. |
| writer.WriteBits(0, 1); |
| // mb_adaptive_frame_field_flag: u(1). |
| writer.WriteBits(0, 1); |
| // direct_8x8_inferene_flag: u(1). |
| writer.WriteBits(0, 1); |
| // frame_cropping_flag: u(1). 1, so we can supply crop. |
| writer.WriteBits(1, 1); |
| // Now we write the left/right/top/bottom crop. For simplicity, we'll put all |
| // the crop at the left/top. |
| // We picked a 4:2:0 format, so the crops are 1/2 the pixel crop values. |
| // Left/right. |
| writer.WriteExponentialGolomb(((16 - (width % 16)) % 16) / 2); |
| writer.WriteExponentialGolomb(0); |
| // Top/bottom. |
| writer.WriteExponentialGolomb(((16 - (height % 16)) % 16) / 2); |
| writer.WriteExponentialGolomb(0); |
| |
| // vui_parameters_present_flag: u(1) |
| writer.WriteBits(0, 1); |
| |
| // Get the number of bytes written (including the last partial byte). |
| size_t byte_count, bit_offset; |
| writer.GetCurrentOffset(&byte_count, &bit_offset); |
| if (bit_offset > 0) { |
| byte_count++; |
| } |
| |
| out_buffer->Clear(); |
| H264::WriteRbsp(rbsp, byte_count, out_buffer); |
| } |
| |
| TEST(H264SpsParserTest, TestSampleSPSHdLandscape) { |
| // SPS for a 1280x720 camera capture from ffmpeg on osx. Contains |
| // emulation bytes but no cropping. |
| const uint8_t buffer[] = {0x7A, 0x00, 0x1F, 0xBC, 0xD9, 0x40, 0x50, 0x05, |
| 0xBA, 0x10, 0x00, 0x00, 0x03, 0x00, 0xC0, 0x00, |
| 0x00, 0x2A, 0xE0, 0xF1, 0x83, 0x19, 0x60}; |
| absl::optional<SpsParser::SpsState> sps = |
| SpsParser::ParseSps(buffer, arraysize(buffer)); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(1280u, sps->width); |
| EXPECT_EQ(720u, sps->height); |
| } |
| |
| TEST(H264SpsParserTest, TestSampleSPSVgaLandscape) { |
| // SPS for a 640x360 camera capture from ffmpeg on osx. Contains emulation |
| // bytes and cropping (360 isn't divisible by 16). |
| const uint8_t buffer[] = {0x7A, 0x00, 0x1E, 0xBC, 0xD9, 0x40, 0xA0, 0x2F, |
| 0xF8, 0x98, 0x40, 0x00, 0x00, 0x03, 0x01, 0x80, |
| 0x00, 0x00, 0x56, 0x83, 0xC5, 0x8B, 0x65, 0x80}; |
| absl::optional<SpsParser::SpsState> sps = |
| SpsParser::ParseSps(buffer, arraysize(buffer)); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(640u, sps->width); |
| EXPECT_EQ(360u, sps->height); |
| } |
| |
| TEST(H264SpsParserTest, TestSampleSPSWeirdResolution) { |
| // SPS for a 200x400 camera capture from ffmpeg on osx. Horizontal and |
| // veritcal crop (neither dimension is divisible by 16). |
| const uint8_t buffer[] = {0x7A, 0x00, 0x0D, 0xBC, 0xD9, 0x43, 0x43, 0x3E, |
| 0x5E, 0x10, 0x00, 0x00, 0x03, 0x00, 0x60, 0x00, |
| 0x00, 0x15, 0xA0, 0xF1, 0x42, 0x99, 0x60}; |
| absl::optional<SpsParser::SpsState> sps = |
| SpsParser::ParseSps(buffer, arraysize(buffer)); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(200u, sps->width); |
| EXPECT_EQ(400u, sps->height); |
| } |
| |
| TEST(H264SpsParserTest, TestSyntheticSPSQvgaLandscape) { |
| rtc::Buffer buffer; |
| GenerateFakeSps(320u, 180u, 1, 0, 0, &buffer); |
| absl::optional<SpsParser::SpsState> sps = |
| SpsParser::ParseSps(buffer.data(), buffer.size()); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(320u, sps->width); |
| EXPECT_EQ(180u, sps->height); |
| EXPECT_EQ(1u, sps->id); |
| } |
| |
| TEST(H264SpsParserTest, TestSyntheticSPSWeirdResolution) { |
| rtc::Buffer buffer; |
| GenerateFakeSps(156u, 122u, 2, 0, 0, &buffer); |
| absl::optional<SpsParser::SpsState> sps = |
| SpsParser::ParseSps(buffer.data(), buffer.size()); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(156u, sps->width); |
| EXPECT_EQ(122u, sps->height); |
| EXPECT_EQ(2u, sps->id); |
| } |
| |
| TEST(H264SpsParserTest, TestSampleSPSWithScalingLists) { |
| // SPS from a 1920x1080 video. Contains scaling lists (and vertical cropping). |
| const uint8_t buffer[] = {0x64, 0x00, 0x2a, 0xad, 0x84, 0x01, 0x0c, 0x20, |
| 0x08, 0x61, 0x00, 0x43, 0x08, 0x02, 0x18, 0x40, |
| 0x10, 0xc2, 0x00, 0x84, 0x3b, 0x50, 0x3c, 0x01, |
| 0x13, 0xf2, 0xcd, 0xc0, 0x40, 0x40, 0x50, 0x00, |
| 0x00, 0x00, 0x10, 0x00, 0x00, 0x01, 0xe8, 0x40}; |
| absl::optional<SpsParser::SpsState> sps = |
| SpsParser::ParseSps(buffer, arraysize(buffer)); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(1920u, sps->width); |
| EXPECT_EQ(1080u, sps->height); |
| } |
| |
| TEST(H264SpsParserTest, TestLog2MaxFrameNumMinus4) { |
| rtc::Buffer buffer; |
| GenerateFakeSps(320u, 180u, 1, 0, 0, &buffer); |
| absl::optional<SpsParser::SpsState> sps = |
| SpsParser::ParseSps(buffer.data(), buffer.size()); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(320u, sps->width); |
| EXPECT_EQ(180u, sps->height); |
| EXPECT_EQ(1u, sps->id); |
| EXPECT_EQ(4u, sps->log2_max_frame_num); |
| |
| GenerateFakeSps(320u, 180u, 1, 28, 0, &buffer); |
| sps = SpsParser::ParseSps(buffer.data(), buffer.size()); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(320u, sps->width); |
| EXPECT_EQ(180u, sps->height); |
| EXPECT_EQ(1u, sps->id); |
| EXPECT_EQ(32u, sps->log2_max_frame_num); |
| |
| GenerateFakeSps(320u, 180u, 1, 29, 0, &buffer); |
| EXPECT_FALSE(SpsParser::ParseSps(buffer.data(), buffer.size())); |
| } |
| |
| TEST(H264SpsParserTest, TestLog2MaxPicOrderCntMinus4) { |
| rtc::Buffer buffer; |
| GenerateFakeSps(320u, 180u, 1, 0, 0, &buffer); |
| absl::optional<SpsParser::SpsState> sps = |
| SpsParser::ParseSps(buffer.data(), buffer.size()); |
| ASSERT_TRUE(sps.has_value()); |
| EXPECT_EQ(320u, sps->width); |
| EXPECT_EQ(180u, sps->height); |
| EXPECT_EQ(1u, sps->id); |
| EXPECT_EQ(4u, sps->log2_max_pic_order_cnt_lsb); |
| |
| GenerateFakeSps(320u, 180u, 1, 0, 28, &buffer); |
| EXPECT_TRUE(static_cast<bool>( |
| sps = SpsParser::ParseSps(buffer.data(), buffer.size()))); |
| EXPECT_EQ(320u, sps->width); |
| EXPECT_EQ(180u, sps->height); |
| EXPECT_EQ(1u, sps->id); |
| EXPECT_EQ(32u, sps->log2_max_pic_order_cnt_lsb); |
| |
| GenerateFakeSps(320u, 180u, 1, 0, 29, &buffer); |
| EXPECT_FALSE(SpsParser::ParseSps(buffer.data(), buffer.size())); |
| } |
| |
| } // namespace webrtc |