blob: a7fc9b3e6984c23f11411d12aa13054f517b01d9 [file] [log] [blame]
/*
* Copyright 2011 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "p2p/base/pseudo_tcp.h"
#include <string.h>
#include <algorithm>
#include <cstddef>
#include <string>
#include <vector>
#include "rtc_base/gunit.h"
#include "rtc_base/helpers.h"
#include "rtc_base/location.h"
#include "rtc_base/logging.h"
#include "rtc_base/memory_stream.h"
#include "rtc_base/message_handler.h"
#include "rtc_base/thread.h"
#include "rtc_base/time_utils.h"
#include "test/gtest.h"
using cricket::PseudoTcp;
static const int kConnectTimeoutMs = 10000; // ~3 * default RTO of 3000ms
static const int kTransferTimeoutMs = 15000;
static const int kBlockSize = 4096;
class PseudoTcpForTest : public cricket::PseudoTcp {
public:
PseudoTcpForTest(cricket::IPseudoTcpNotify* notify, uint32_t conv)
: PseudoTcp(notify, conv) {}
bool isReceiveBufferFull() const { return PseudoTcp::isReceiveBufferFull(); }
void disableWindowScale() { PseudoTcp::disableWindowScale(); }
};
class PseudoTcpTestBase : public ::testing::Test,
public rtc::MessageHandler,
public cricket::IPseudoTcpNotify {
public:
PseudoTcpTestBase()
: local_(this, 1),
remote_(this, 1),
have_connected_(false),
have_disconnected_(false),
local_mtu_(65535),
remote_mtu_(65535),
delay_(0),
loss_(0) {
// Set use of the test RNG to get predictable loss patterns. Otherwise,
// this test would occasionally get really unlucky loss and time out.
rtc::SetRandomTestMode(true);
}
~PseudoTcpTestBase() {
// Put it back for the next test.
rtc::SetRandomTestMode(false);
}
// If true, both endpoints will send the "connect" segment simultaneously,
// rather than |local_| sending it followed by a response from |remote_|.
// Note that this is what chromoting ends up doing.
void SetSimultaneousOpen(bool enabled) { simultaneous_open_ = enabled; }
void SetLocalMtu(int mtu) {
local_.NotifyMTU(mtu);
local_mtu_ = mtu;
}
void SetRemoteMtu(int mtu) {
remote_.NotifyMTU(mtu);
remote_mtu_ = mtu;
}
void SetDelay(int delay) { delay_ = delay; }
void SetLoss(int percent) { loss_ = percent; }
// Used to cause the initial "connect" segment to be lost, needed for a
// regression test.
void DropNextPacket() { drop_next_packet_ = true; }
void SetOptNagling(bool enable_nagles) {
local_.SetOption(PseudoTcp::OPT_NODELAY, !enable_nagles);
remote_.SetOption(PseudoTcp::OPT_NODELAY, !enable_nagles);
}
void SetOptAckDelay(int ack_delay) {
local_.SetOption(PseudoTcp::OPT_ACKDELAY, ack_delay);
remote_.SetOption(PseudoTcp::OPT_ACKDELAY, ack_delay);
}
void SetOptSndBuf(int size) {
local_.SetOption(PseudoTcp::OPT_SNDBUF, size);
remote_.SetOption(PseudoTcp::OPT_SNDBUF, size);
}
void SetRemoteOptRcvBuf(int size) {
remote_.SetOption(PseudoTcp::OPT_RCVBUF, size);
}
void SetLocalOptRcvBuf(int size) {
local_.SetOption(PseudoTcp::OPT_RCVBUF, size);
}
void DisableRemoteWindowScale() { remote_.disableWindowScale(); }
void DisableLocalWindowScale() { local_.disableWindowScale(); }
protected:
int Connect() {
int ret = local_.Connect();
if (ret == 0) {
UpdateLocalClock();
}
if (simultaneous_open_) {
ret = remote_.Connect();
if (ret == 0) {
UpdateRemoteClock();
}
}
return ret;
}
void Close() {
local_.Close(false);
UpdateLocalClock();
}
enum {
MSG_LPACKET,
MSG_RPACKET,
MSG_LCLOCK,
MSG_RCLOCK,
MSG_IOCOMPLETE,
MSG_WRITE
};
virtual void OnTcpOpen(PseudoTcp* tcp) {
// Consider ourselves connected when the local side gets OnTcpOpen.
// OnTcpWriteable isn't fired at open, so we trigger it now.
RTC_LOG(LS_VERBOSE) << "Opened";
if (tcp == &local_) {
have_connected_ = true;
OnTcpWriteable(tcp);
}
}
// Test derived from the base should override
// virtual void OnTcpReadable(PseudoTcp* tcp)
// and
// virtual void OnTcpWritable(PseudoTcp* tcp)
virtual void OnTcpClosed(PseudoTcp* tcp, uint32_t error) {
// Consider ourselves closed when the remote side gets OnTcpClosed.
// TODO(?): OnTcpClosed is only ever notified in case of error in
// the current implementation. Solicited close is not (yet) supported.
RTC_LOG(LS_VERBOSE) << "Closed";
EXPECT_EQ(0U, error);
if (tcp == &remote_) {
have_disconnected_ = true;
}
}
virtual WriteResult TcpWritePacket(PseudoTcp* tcp,
const char* buffer,
size_t len) {
// Drop a packet if the test called DropNextPacket.
if (drop_next_packet_) {
drop_next_packet_ = false;
RTC_LOG(LS_VERBOSE) << "Dropping packet due to DropNextPacket, size="
<< len;
return WR_SUCCESS;
}
// Randomly drop the desired percentage of packets.
if (rtc::CreateRandomId() % 100 < static_cast<uint32_t>(loss_)) {
RTC_LOG(LS_VERBOSE) << "Randomly dropping packet, size=" << len;
return WR_SUCCESS;
}
// Also drop packets that are larger than the configured MTU.
if (len > static_cast<size_t>(std::min(local_mtu_, remote_mtu_))) {
RTC_LOG(LS_VERBOSE) << "Dropping packet that exceeds path MTU, size="
<< len;
return WR_SUCCESS;
}
int id = (tcp == &local_) ? MSG_RPACKET : MSG_LPACKET;
std::string packet(buffer, len);
rtc::Thread::Current()->PostDelayed(RTC_FROM_HERE, delay_, this, id,
rtc::WrapMessageData(packet));
return WR_SUCCESS;
}
void UpdateLocalClock() { UpdateClock(&local_, MSG_LCLOCK); }
void UpdateRemoteClock() { UpdateClock(&remote_, MSG_RCLOCK); }
void UpdateClock(PseudoTcp* tcp, uint32_t message) {
long interval = 0; // NOLINT
tcp->GetNextClock(PseudoTcp::Now(), interval);
interval = std::max<int>(interval, 0L); // sometimes interval is < 0
rtc::Thread::Current()->Clear(this, message);
rtc::Thread::Current()->PostDelayed(RTC_FROM_HERE, interval, this, message);
}
virtual void OnMessage(rtc::Message* message) {
switch (message->message_id) {
case MSG_LPACKET: {
const std::string& s(rtc::UseMessageData<std::string>(message->pdata));
local_.NotifyPacket(s.c_str(), s.size());
UpdateLocalClock();
break;
}
case MSG_RPACKET: {
const std::string& s(rtc::UseMessageData<std::string>(message->pdata));
remote_.NotifyPacket(s.c_str(), s.size());
UpdateRemoteClock();
break;
}
case MSG_LCLOCK:
local_.NotifyClock(PseudoTcp::Now());
UpdateLocalClock();
break;
case MSG_RCLOCK:
remote_.NotifyClock(PseudoTcp::Now());
UpdateRemoteClock();
break;
default:
break;
}
delete message->pdata;
}
PseudoTcpForTest local_;
PseudoTcpForTest remote_;
rtc::MemoryStream send_stream_;
rtc::MemoryStream recv_stream_;
bool have_connected_;
bool have_disconnected_;
int local_mtu_;
int remote_mtu_;
int delay_;
int loss_;
bool drop_next_packet_ = false;
bool simultaneous_open_ = false;
};
class PseudoTcpTest : public PseudoTcpTestBase {
public:
void TestTransfer(int size) {
uint32_t start;
int32_t elapsed;
size_t received;
// Create some dummy data to send.
send_stream_.ReserveSize(size);
for (int i = 0; i < size; ++i) {
char ch = static_cast<char>(i);
send_stream_.Write(&ch, 1, NULL, NULL);
}
send_stream_.Rewind();
// Prepare the receive stream.
recv_stream_.ReserveSize(size);
// Connect and wait until connected.
start = rtc::Time32();
EXPECT_EQ(0, Connect());
EXPECT_TRUE_WAIT(have_connected_, kConnectTimeoutMs);
// Sending will start from OnTcpWriteable and complete when all data has
// been received.
EXPECT_TRUE_WAIT(have_disconnected_, kTransferTimeoutMs);
elapsed = rtc::Time32() - start;
recv_stream_.GetSize(&received);
// Ensure we closed down OK and we got the right data.
// TODO(?): Ensure the errors are cleared properly.
// EXPECT_EQ(0, local_.GetError());
// EXPECT_EQ(0, remote_.GetError());
EXPECT_EQ(static_cast<size_t>(size), received);
EXPECT_EQ(0,
memcmp(send_stream_.GetBuffer(), recv_stream_.GetBuffer(), size));
RTC_LOG(LS_INFO) << "Transferred " << received << " bytes in " << elapsed
<< " ms (" << size * 8 / elapsed << " Kbps)";
}
private:
// IPseudoTcpNotify interface
virtual void OnTcpReadable(PseudoTcp* tcp) {
// Stream bytes to the recv stream as they arrive.
if (tcp == &remote_) {
ReadData();
// TODO(?): OnTcpClosed() is currently only notified on error -
// there is no on-the-wire equivalent of TCP FIN.
// So we fake the notification when all the data has been read.
size_t received, required;
recv_stream_.GetPosition(&received);
send_stream_.GetSize(&required);
if (received == required)
OnTcpClosed(&remote_, 0);
}
}
virtual void OnTcpWriteable(PseudoTcp* tcp) {
// Write bytes from the send stream when we can.
// Shut down when we've sent everything.
if (tcp == &local_) {
RTC_LOG(LS_VERBOSE) << "Flow Control Lifted";
bool done;
WriteData(&done);
if (done) {
Close();
}
}
}
void ReadData() {
char block[kBlockSize];
size_t position;
int rcvd;
do {
rcvd = remote_.Recv(block, sizeof(block));
if (rcvd != -1) {
recv_stream_.Write(block, rcvd, NULL, NULL);
recv_stream_.GetPosition(&position);
RTC_LOG(LS_VERBOSE) << "Received: " << position;
}
} while (rcvd > 0);
}
void WriteData(bool* done) {
size_t position, tosend;
int sent;
char block[kBlockSize];
do {
send_stream_.GetPosition(&position);
if (send_stream_.Read(block, sizeof(block), &tosend, NULL) !=
rtc::SR_EOS) {
sent = local_.Send(block, tosend);
UpdateLocalClock();
if (sent != -1) {
send_stream_.SetPosition(position + sent);
RTC_LOG(LS_VERBOSE) << "Sent: " << position + sent;
} else {
send_stream_.SetPosition(position);
RTC_LOG(LS_VERBOSE) << "Flow Controlled";
}
} else {
sent = static_cast<int>(tosend = 0);
}
} while (sent > 0);
*done = (tosend == 0);
}
private:
rtc::MemoryStream send_stream_;
rtc::MemoryStream recv_stream_;
};
class PseudoTcpTestPingPong : public PseudoTcpTestBase {
public:
PseudoTcpTestPingPong()
: iterations_remaining_(0),
sender_(NULL),
receiver_(NULL),
bytes_per_send_(0) {}
void SetBytesPerSend(int bytes) { bytes_per_send_ = bytes; }
void TestPingPong(int size, int iterations) {
uint32_t start, elapsed;
iterations_remaining_ = iterations;
receiver_ = &remote_;
sender_ = &local_;
// Create some dummy data to send.
send_stream_.ReserveSize(size);
for (int i = 0; i < size; ++i) {
char ch = static_cast<char>(i);
send_stream_.Write(&ch, 1, NULL, NULL);
}
send_stream_.Rewind();
// Prepare the receive stream.
recv_stream_.ReserveSize(size);
// Connect and wait until connected.
start = rtc::Time32();
EXPECT_EQ(0, Connect());
EXPECT_TRUE_WAIT(have_connected_, kConnectTimeoutMs);
// Sending will start from OnTcpWriteable and stop when the required
// number of iterations have completed.
EXPECT_TRUE_WAIT(have_disconnected_, kTransferTimeoutMs);
elapsed = rtc::TimeSince(start);
RTC_LOG(LS_INFO) << "Performed " << iterations << " pings in " << elapsed
<< " ms";
}
private:
// IPseudoTcpNotify interface
virtual void OnTcpReadable(PseudoTcp* tcp) {
if (tcp != receiver_) {
RTC_LOG_F(LS_ERROR) << "unexpected OnTcpReadable";
return;
}
// Stream bytes to the recv stream as they arrive.
ReadData();
// If we've received the desired amount of data, rewind things
// and send it back the other way!
size_t position, desired;
recv_stream_.GetPosition(&position);
send_stream_.GetSize(&desired);
if (position == desired) {
if (receiver_ == &local_ && --iterations_remaining_ == 0) {
Close();
// TODO(?): Fake OnTcpClosed() on the receiver for now.
OnTcpClosed(&remote_, 0);
return;
}
PseudoTcp* tmp = receiver_;
receiver_ = sender_;
sender_ = tmp;
recv_stream_.Rewind();
send_stream_.Rewind();
OnTcpWriteable(sender_);
}
}
virtual void OnTcpWriteable(PseudoTcp* tcp) {
if (tcp != sender_)
return;
// Write bytes from the send stream when we can.
// Shut down when we've sent everything.
RTC_LOG(LS_VERBOSE) << "Flow Control Lifted";
WriteData();
}
void ReadData() {
char block[kBlockSize];
size_t position;
int rcvd;
do {
rcvd = receiver_->Recv(block, sizeof(block));
if (rcvd != -1) {
recv_stream_.Write(block, rcvd, NULL, NULL);
recv_stream_.GetPosition(&position);
RTC_LOG(LS_VERBOSE) << "Received: " << position;
}
} while (rcvd > 0);
}
void WriteData() {
size_t position, tosend;
int sent;
char block[kBlockSize];
do {
send_stream_.GetPosition(&position);
tosend = bytes_per_send_ ? bytes_per_send_ : sizeof(block);
if (send_stream_.Read(block, tosend, &tosend, NULL) != rtc::SR_EOS) {
sent = sender_->Send(block, tosend);
UpdateLocalClock();
if (sent != -1) {
send_stream_.SetPosition(position + sent);
RTC_LOG(LS_VERBOSE) << "Sent: " << position + sent;
} else {
send_stream_.SetPosition(position);
RTC_LOG(LS_VERBOSE) << "Flow Controlled";
}
} else {
sent = static_cast<int>(tosend = 0);
}
} while (sent > 0);
}
private:
int iterations_remaining_;
PseudoTcp* sender_;
PseudoTcp* receiver_;
int bytes_per_send_;
};
// Fill the receiver window until it is full, drain it and then
// fill it with the same amount. This is to test that receiver window
// contracts and enlarges correctly.
class PseudoTcpTestReceiveWindow : public PseudoTcpTestBase {
public:
// Not all the data are transfered, |size| just need to be big enough
// to fill up the receiver window twice.
void TestTransfer(int size) {
// Create some dummy data to send.
send_stream_.ReserveSize(size);
for (int i = 0; i < size; ++i) {
char ch = static_cast<char>(i);
send_stream_.Write(&ch, 1, NULL, NULL);
}
send_stream_.Rewind();
// Prepare the receive stream.
recv_stream_.ReserveSize(size);
// Connect and wait until connected.
EXPECT_EQ(0, Connect());
EXPECT_TRUE_WAIT(have_connected_, kConnectTimeoutMs);
rtc::Thread::Current()->Post(RTC_FROM_HERE, this, MSG_WRITE);
EXPECT_TRUE_WAIT(have_disconnected_, kTransferTimeoutMs);
ASSERT_EQ(2u, send_position_.size());
ASSERT_EQ(2u, recv_position_.size());
const size_t estimated_recv_window = EstimateReceiveWindowSize();
// The difference in consecutive send positions should equal the
// receive window size or match very closely. This verifies that receive
// window is open after receiver drained all the data.
const size_t send_position_diff = send_position_[1] - send_position_[0];
EXPECT_GE(1024u, estimated_recv_window - send_position_diff);
// Receiver drained the receive window twice.
EXPECT_EQ(2 * estimated_recv_window, recv_position_[1]);
}
virtual void OnMessage(rtc::Message* message) {
int message_id = message->message_id;
PseudoTcpTestBase::OnMessage(message);
switch (message_id) {
case MSG_WRITE: {
WriteData();
break;
}
default:
break;
}
}
uint32_t EstimateReceiveWindowSize() const {
return static_cast<uint32_t>(recv_position_[0]);
}
uint32_t EstimateSendWindowSize() const {
return static_cast<uint32_t>(send_position_[0] - recv_position_[0]);
}
private:
// IPseudoTcpNotify interface
virtual void OnTcpReadable(PseudoTcp* tcp) {}
virtual void OnTcpWriteable(PseudoTcp* tcp) {}
void ReadUntilIOPending() {
char block[kBlockSize];
size_t position;
int rcvd;
do {
rcvd = remote_.Recv(block, sizeof(block));
if (rcvd != -1) {
recv_stream_.Write(block, rcvd, NULL, NULL);
recv_stream_.GetPosition(&position);
RTC_LOG(LS_VERBOSE) << "Received: " << position;
}
} while (rcvd > 0);
recv_stream_.GetPosition(&position);
recv_position_.push_back(position);
// Disconnect if we have done two transfers.
if (recv_position_.size() == 2u) {
Close();
OnTcpClosed(&remote_, 0);
} else {
WriteData();
}
}
void WriteData() {
size_t position, tosend;
int sent;
char block[kBlockSize];
do {
send_stream_.GetPosition(&position);
if (send_stream_.Read(block, sizeof(block), &tosend, NULL) !=
rtc::SR_EOS) {
sent = local_.Send(block, tosend);
UpdateLocalClock();
if (sent != -1) {
send_stream_.SetPosition(position + sent);
RTC_LOG(LS_VERBOSE) << "Sent: " << position + sent;
} else {
send_stream_.SetPosition(position);
RTC_LOG(LS_VERBOSE) << "Flow Controlled";
}
} else {
sent = static_cast<int>(tosend = 0);
}
} while (sent > 0);
// At this point, we've filled up the available space in the send queue.
int message_queue_size = static_cast<int>(rtc::Thread::Current()->size());
// The message queue will always have at least 2 messages, an RCLOCK and
// an LCLOCK, since they are added back on the delay queue at the same time
// they are pulled off and therefore are never really removed.
if (message_queue_size > 2) {
// If there are non-clock messages remaining, attempt to continue sending
// after giving those messages time to process, which should free up the
// send buffer.
rtc::Thread::Current()->PostDelayed(RTC_FROM_HERE, 10, this, MSG_WRITE);
} else {
if (!remote_.isReceiveBufferFull()) {
RTC_LOG(LS_ERROR) << "This shouldn't happen - the send buffer is full, "
"the receive buffer is not, and there are no "
"remaining messages to process.";
}
send_stream_.GetPosition(&position);
send_position_.push_back(position);
// Drain the receiver buffer.
ReadUntilIOPending();
}
}
private:
rtc::MemoryStream send_stream_;
rtc::MemoryStream recv_stream_;
std::vector<size_t> send_position_;
std::vector<size_t> recv_position_;
};
// Basic end-to-end data transfer tests
// Test the normal case of sending data from one side to the other.
TEST_F(PseudoTcpTest, TestSend) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
TestTransfer(1000000);
}
// Test sending data with a 50 ms RTT. Transmission should take longer due
// to a slower ramp-up in send rate.
TEST_F(PseudoTcpTest, TestSendWithDelay) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetDelay(50);
TestTransfer(1000000);
}
// Test sending data with packet loss. Transmission should take much longer due
// to send back-off when loss occurs.
TEST_F(PseudoTcpTest, TestSendWithLoss) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetLoss(10);
TestTransfer(100000); // less data so test runs faster
}
// Test sending data with a 50 ms RTT and 10% packet loss. Transmission should
// take much longer due to send back-off and slower detection of loss.
TEST_F(PseudoTcpTest, TestSendWithDelayAndLoss) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetDelay(50);
SetLoss(10);
TestTransfer(100000); // less data so test runs faster
}
// Test sending data with 10% packet loss and Nagling disabled. Transmission
// should take about the same time as with Nagling enabled.
TEST_F(PseudoTcpTest, TestSendWithLossAndOptNaglingOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetLoss(10);
SetOptNagling(false);
TestTransfer(100000); // less data so test runs faster
}
// Regression test for bugs.webrtc.org/9208.
//
// This bug resulted in corrupted data if a "connect" segment was received after
// a data segment. This is only possible if:
//
// * The initial "connect" segment is lost, and retransmitted later.
// * Both sides send "connect"s simultaneously, such that the local side thinks
// a connection is established even before its "connect" has been
// acknowledged.
// * Nagle algorithm disabled, allowing a data segment to be sent before the
// "connect" has been acknowledged.
TEST_F(PseudoTcpTest,
TestSendWhenFirstPacketLostWithOptNaglingOffAndSimultaneousOpen) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
DropNextPacket();
SetOptNagling(false);
SetSimultaneousOpen(true);
TestTransfer(10000);
}
// Test sending data with 10% packet loss and Delayed ACK disabled.
// Transmission should be slightly faster than with it enabled.
TEST_F(PseudoTcpTest, TestSendWithLossAndOptAckDelayOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetLoss(10);
SetOptAckDelay(0);
TestTransfer(100000);
}
// Test sending data with 50ms delay and Nagling disabled.
TEST_F(PseudoTcpTest, TestSendWithDelayAndOptNaglingOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetDelay(50);
SetOptNagling(false);
TestTransfer(100000); // less data so test runs faster
}
// Test sending data with 50ms delay and Delayed ACK disabled.
TEST_F(PseudoTcpTest, TestSendWithDelayAndOptAckDelayOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetDelay(50);
SetOptAckDelay(0);
TestTransfer(100000); // less data so test runs faster
}
// Test a large receive buffer with a sender that doesn't support scaling.
TEST_F(PseudoTcpTest, TestSendRemoteNoWindowScale) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetLocalOptRcvBuf(100000);
DisableRemoteWindowScale();
TestTransfer(1000000);
}
// Test a large sender-side receive buffer with a receiver that doesn't support
// scaling.
TEST_F(PseudoTcpTest, TestSendLocalNoWindowScale) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(100000);
DisableLocalWindowScale();
TestTransfer(1000000);
}
// Test when both sides use window scaling.
TEST_F(PseudoTcpTest, TestSendBothUseWindowScale) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(100000);
SetLocalOptRcvBuf(100000);
TestTransfer(1000000);
}
// Test using a large window scale value.
TEST_F(PseudoTcpTest, TestSendLargeInFlight) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(100000);
SetLocalOptRcvBuf(100000);
SetOptSndBuf(150000);
TestTransfer(1000000);
}
TEST_F(PseudoTcpTest, TestSendBothUseLargeWindowScale) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(1000000);
SetLocalOptRcvBuf(1000000);
TestTransfer(10000000);
}
// Test using a small receive buffer.
TEST_F(PseudoTcpTest, TestSendSmallReceiveBuffer) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(10000);
SetLocalOptRcvBuf(10000);
TestTransfer(1000000);
}
// Test using a very small receive buffer.
TEST_F(PseudoTcpTest, TestSendVerySmallReceiveBuffer) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetRemoteOptRcvBuf(100);
SetLocalOptRcvBuf(100);
TestTransfer(100000);
}
// Ping-pong (request/response) tests
// Test sending <= 1x MTU of data in each ping/pong. Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPong1xMtu) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
TestPingPong(100, 100);
}
// Test sending 2x-3x MTU of data in each ping/pong. Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPong3xMtu) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
TestPingPong(400, 100);
}
// Test sending 1x-2x MTU of data in each ping/pong.
// Should take ~1s, due to interaction between Nagling and Delayed ACK.
TEST_F(PseudoTcpTestPingPong, TestPingPong2xMtu) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
TestPingPong(2000, 5);
}
// Test sending 1x-2x MTU of data in each ping/pong with Delayed ACK off.
// Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPong2xMtuWithAckDelayOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptAckDelay(0);
TestPingPong(2000, 100);
}
// Test sending 1x-2x MTU of data in each ping/pong with Nagling off.
// Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPong2xMtuWithNaglingOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
TestPingPong(2000, 5);
}
// Test sending a ping as pair of short (non-full) segments.
// Should take ~1s, due to Delayed ACK interaction with Nagling.
TEST_F(PseudoTcpTestPingPong, TestPingPongShortSegments) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptAckDelay(5000);
SetBytesPerSend(50); // i.e. two Send calls per payload
TestPingPong(100, 5);
}
// Test sending ping as a pair of short (non-full) segments, with Nagling off.
// Should take <10ms.
TEST_F(PseudoTcpTestPingPong, TestPingPongShortSegmentsWithNaglingOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
SetBytesPerSend(50); // i.e. two Send calls per payload
TestPingPong(100, 5);
}
// Test sending <= 1x MTU of data ping/pong, in two segments, no Delayed ACK.
// Should take ~1s.
TEST_F(PseudoTcpTestPingPong, TestPingPongShortSegmentsWithAckDelayOff) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetBytesPerSend(50); // i.e. two Send calls per payload
SetOptAckDelay(0);
TestPingPong(100, 5);
}
// Test that receive window expands and contract correctly.
TEST_F(PseudoTcpTestReceiveWindow, TestReceiveWindow) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
SetOptAckDelay(0);
TestTransfer(1024 * 1000);
}
// Test setting send window size to a very small value.
TEST_F(PseudoTcpTestReceiveWindow, TestSetVerySmallSendWindowSize) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
SetOptAckDelay(0);
SetOptSndBuf(900);
TestTransfer(1024 * 1000);
EXPECT_EQ(900u, EstimateSendWindowSize());
}
// Test setting receive window size to a value other than default.
TEST_F(PseudoTcpTestReceiveWindow, TestSetReceiveWindowSize) {
SetLocalMtu(1500);
SetRemoteMtu(1500);
SetOptNagling(false);
SetOptAckDelay(0);
SetRemoteOptRcvBuf(100000);
SetLocalOptRcvBuf(100000);
TestTransfer(1024 * 1000);
EXPECT_EQ(100000u, EstimateReceiveWindowSize());
}
/* Test sending data with mismatched MTUs. We should detect this and reduce
// our packet size accordingly.
// TODO(?): This doesn't actually work right now. The current code
// doesn't detect if the MTU is set too high on either side.
TEST_F(PseudoTcpTest, TestSendWithMismatchedMtus) {
SetLocalMtu(1500);
SetRemoteMtu(1280);
TestTransfer(1000000);
}
*/