blob: 6053adafbcac31d76412b7321a932b61d16a4732 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/congestion_controller/goog_cc/trendline_estimator.h"
#include <math.h>
#include <algorithm>
#include <string>
#include "absl/types/optional.h"
#include "modules/remote_bitrate_estimator/include/bwe_defines.h"
#include "modules/remote_bitrate_estimator/test/bwe_test_logging.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
namespace webrtc {
namespace {
// Parameters for linear least squares fit of regression line to noisy data.
constexpr size_t kDefaultTrendlineWindowSize = 20;
constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
constexpr double kDefaultTrendlineThresholdGain = 4.0;
const char kBweWindowSizeInPacketsExperiment[] =
"WebRTC-BweWindowSizeInPackets";
size_t ReadTrendlineFilterWindowSize(
const WebRtcKeyValueConfig* key_value_config) {
std::string experiment_string =
key_value_config->Lookup(kBweWindowSizeInPacketsExperiment);
size_t window_size;
int parsed_values =
sscanf(experiment_string.c_str(), "Enabled-%zu", &window_size);
if (parsed_values == 1) {
if (window_size > 1)
return window_size;
RTC_LOG(WARNING) << "Window size must be greater than 1.";
}
RTC_LOG(LS_WARNING) << "Failed to parse parameters for BweWindowSizeInPackets"
" experiment from field trial string. Using default.";
return kDefaultTrendlineWindowSize;
}
absl::optional<double> LinearFitSlope(
const std::deque<std::pair<double, double>>& points) {
RTC_DCHECK(points.size() >= 2);
// Compute the "center of mass".
double sum_x = 0;
double sum_y = 0;
for (const auto& point : points) {
sum_x += point.first;
sum_y += point.second;
}
double x_avg = sum_x / points.size();
double y_avg = sum_y / points.size();
// Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
double numerator = 0;
double denominator = 0;
for (const auto& point : points) {
numerator += (point.first - x_avg) * (point.second - y_avg);
denominator += (point.first - x_avg) * (point.first - x_avg);
}
if (denominator == 0)
return absl::nullopt;
return numerator / denominator;
}
constexpr double kMaxAdaptOffsetMs = 15.0;
constexpr double kOverUsingTimeThreshold = 10;
constexpr int kMinNumDeltas = 60;
constexpr int kDeltaCounterMax = 1000;
} // namespace
TrendlineEstimator::TrendlineEstimator(
const WebRtcKeyValueConfig* key_value_config,
NetworkStatePredictor* network_state_predictor)
: TrendlineEstimator(
key_value_config->Lookup(kBweWindowSizeInPacketsExperiment)
.find("Enabled") == 0
? ReadTrendlineFilterWindowSize(key_value_config)
: kDefaultTrendlineWindowSize,
kDefaultTrendlineSmoothingCoeff,
kDefaultTrendlineThresholdGain,
network_state_predictor) {}
TrendlineEstimator::TrendlineEstimator(
size_t window_size,
double smoothing_coef,
double threshold_gain,
NetworkStatePredictor* network_state_predictor)
: window_size_(window_size),
smoothing_coef_(smoothing_coef),
threshold_gain_(threshold_gain),
num_of_deltas_(0),
first_arrival_time_ms_(-1),
accumulated_delay_(0),
smoothed_delay_(0),
delay_hist_(),
k_up_(0.0087),
k_down_(0.039),
overusing_time_threshold_(kOverUsingTimeThreshold),
threshold_(12.5),
prev_modified_trend_(NAN),
last_update_ms_(-1),
prev_trend_(0.0),
time_over_using_(-1),
overuse_counter_(0),
hypothesis_(BandwidthUsage::kBwNormal),
hypothesis_predicted_(BandwidthUsage::kBwNormal),
network_state_predictor_(network_state_predictor) {
RTC_LOG(LS_INFO)
<< "Using Trendline filter for delay change estimation with window size "
<< window_size_;
}
TrendlineEstimator::~TrendlineEstimator() {}
void TrendlineEstimator::Update(double recv_delta_ms,
double send_delta_ms,
int64_t send_time_ms,
int64_t arrival_time_ms,
bool calculated_deltas) {
if (calculated_deltas) {
const double delta_ms = recv_delta_ms - send_delta_ms;
++num_of_deltas_;
num_of_deltas_ = std::min(num_of_deltas_, kDeltaCounterMax);
if (first_arrival_time_ms_ == -1)
first_arrival_time_ms_ = arrival_time_ms;
// Exponential backoff filter.
accumulated_delay_ += delta_ms;
BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms,
accumulated_delay_);
smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
(1 - smoothing_coef_) * accumulated_delay_;
BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms,
smoothed_delay_);
// Simple linear regression.
delay_hist_.push_back(std::make_pair(
static_cast<double>(arrival_time_ms - first_arrival_time_ms_),
smoothed_delay_));
if (delay_hist_.size() > window_size_)
delay_hist_.pop_front();
double trend = prev_trend_;
if (delay_hist_.size() == window_size_) {
// Update trend_ if it is possible to fit a line to the data. The delay
// trend can be seen as an estimate of (send_rate - capacity)/capacity.
// 0 < trend < 1 -> the delay increases, queues are filling up
// trend == 0 -> the delay does not change
// trend < 0 -> the delay decreases, queues are being emptied
trend = LinearFitSlope(delay_hist_).value_or(trend);
}
BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trend);
Detect(trend, send_delta_ms, arrival_time_ms);
}
if (network_state_predictor_) {
hypothesis_predicted_ = network_state_predictor_->Update(
send_time_ms, arrival_time_ms, hypothesis_);
}
}
BandwidthUsage TrendlineEstimator::State() const {
return network_state_predictor_ ? hypothesis_predicted_ : hypothesis_;
}
void TrendlineEstimator::Detect(double trend, double ts_delta, int64_t now_ms) {
if (num_of_deltas_ < 2) {
hypothesis_ = BandwidthUsage::kBwNormal;
return;
}
const double modified_trend =
std::min(num_of_deltas_, kMinNumDeltas) * trend * threshold_gain_;
prev_modified_trend_ = modified_trend;
BWE_TEST_LOGGING_PLOT(1, "T", now_ms, modified_trend);
BWE_TEST_LOGGING_PLOT(1, "threshold", now_ms, threshold_);
if (modified_trend > threshold_) {
if (time_over_using_ == -1) {
// Initialize the timer. Assume that we've been
// over-using half of the time since the previous
// sample.
time_over_using_ = ts_delta / 2;
} else {
// Increment timer
time_over_using_ += ts_delta;
}
overuse_counter_++;
if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) {
if (trend >= prev_trend_) {
time_over_using_ = 0;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwOverusing;
}
}
} else if (modified_trend < -threshold_) {
time_over_using_ = -1;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwUnderusing;
} else {
time_over_using_ = -1;
overuse_counter_ = 0;
hypothesis_ = BandwidthUsage::kBwNormal;
}
prev_trend_ = trend;
UpdateThreshold(modified_trend, now_ms);
}
void TrendlineEstimator::UpdateThreshold(double modified_trend,
int64_t now_ms) {
if (last_update_ms_ == -1)
last_update_ms_ = now_ms;
if (fabs(modified_trend) > threshold_ + kMaxAdaptOffsetMs) {
// Avoid adapting the threshold to big latency spikes, caused e.g.,
// by a sudden capacity drop.
last_update_ms_ = now_ms;
return;
}
const double k = fabs(modified_trend) < threshold_ ? k_down_ : k_up_;
const int64_t kMaxTimeDeltaMs = 100;
int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs);
threshold_ += k * (fabs(modified_trend) - threshold_) * time_delta_ms;
threshold_ = rtc::SafeClamp(threshold_, 6.f, 600.f);
last_update_ms_ = now_ms;
}
} // namespace webrtc