| /* |
| * Copyright 2015 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #ifndef API_OPTIONAL_H_ |
| #define API_OPTIONAL_H_ |
| |
| #include <algorithm> |
| #include <memory> |
| #include <utility> |
| |
| #ifdef UNIT_TEST |
| #include <iomanip> |
| #include <ostream> |
| #endif // UNIT_TEST |
| |
| #include "api/array_view.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/sanitizer.h" |
| |
| namespace rtc { |
| |
| namespace optional_internal { |
| |
| #if RTC_HAS_ASAN |
| |
| // This is a non-inlined function. The optimizer can't see inside it. It |
| // prevents the compiler from generating optimized code that reads value_ even |
| // if it is unset. Although safe, this causes memory sanitizers to complain. |
| void* FunctionThatDoesNothingImpl(void*); |
| |
| template <typename T> |
| inline T* FunctionThatDoesNothing(T* x) { |
| return reinterpret_cast<T*>( |
| FunctionThatDoesNothingImpl(reinterpret_cast<void*>(x))); |
| } |
| |
| #else |
| |
| template <typename T> |
| inline T* FunctionThatDoesNothing(T* x) { |
| return x; |
| } |
| |
| #endif |
| |
| struct NulloptArg; |
| |
| } // namespace optional_internal |
| |
| // nullopt_t must be a non-aggregate literal type with a constexpr constructor |
| // that takes some implementation-defined literal type. It mustn't have a |
| // default constructor nor an initializer-list constructor. |
| // See: |
| // http://en.cppreference.com/w/cpp/utility/optional/nullopt_t |
| // That page uses int, though this seems to confuse older versions of GCC. |
| struct nullopt_t { |
| constexpr explicit nullopt_t(rtc::optional_internal::NulloptArg&) {} |
| }; |
| |
| // Specification: |
| // http://en.cppreference.com/w/cpp/utility/optional/nullopt |
| extern const nullopt_t nullopt; |
| |
| // Simple std::optional-wannabe. It either contains a T or not. |
| // |
| // A moved-from Optional<T> may only be destroyed, and assigned to if T allows |
| // being assigned to after having been moved from. Specifically, you may not |
| // assume that it just doesn't contain a value anymore. |
| // |
| // Examples of good places to use Optional: |
| // |
| // - As a class or struct member, when the member doesn't always have a value: |
| // struct Prisoner { |
| // std::string name; |
| // Optional<int> cell_number; // Empty if not currently incarcerated. |
| // }; |
| // |
| // - As a return value for functions that may fail to return a value on all |
| // allowed inputs. For example, a function that searches an array might |
| // return an Optional<size_t> (the index where it found the element, or |
| // nothing if it didn't find it); and a function that parses numbers might |
| // return Optional<double> (the parsed number, or nothing if parsing failed). |
| // |
| // Examples of bad places to use Optional: |
| // |
| // - As a return value for functions that may fail because of disallowed |
| // inputs. For example, a string length function should not return |
| // Optional<size_t> so that it can return nothing in case the caller passed |
| // it a null pointer; the function should probably use RTC_[D]CHECK instead, |
| // and return plain size_t. |
| // |
| // - As a return value for functions that may fail to return a value on all |
| // allowed inputs, but need to tell the caller what went wrong. Returning |
| // Optional<double> when parsing a single number as in the example above |
| // might make sense, but any larger parse job is probably going to need to |
| // tell the caller what the problem was, not just that there was one. |
| // |
| // - As a non-mutable function argument. When you want to pass a value of a |
| // type T that can fail to be there, const T* is almost always both fastest |
| // and cleanest. (If you're *sure* that the the caller will always already |
| // have an Optional<T>, const Optional<T>& is slightly faster than const T*, |
| // but this is a micro-optimization. In general, stick to const T*.) |
| // |
| // TODO(kwiberg): Get rid of this class when the standard library has |
| // std::optional (and we're allowed to use it). |
| template <typename T> |
| class Optional final { |
| public: |
| // Construct an empty Optional. |
| Optional() : has_value_(false), empty_('\0') { PoisonValue(); } |
| |
| Optional(rtc::nullopt_t) // NOLINT(runtime/explicit) |
| : Optional() {} |
| |
| // Construct an Optional that contains a value. |
| Optional(const T& value) // NOLINT(runtime/explicit) |
| : has_value_(true) { |
| new (&value_) T(value); |
| } |
| Optional(T&& value) // NOLINT(runtime/explicit) |
| : has_value_(true) { |
| new (&value_) T(std::move(value)); |
| } |
| |
| // Copy constructor: copies the value from m if it has one. |
| Optional(const Optional& m) : has_value_(m.has_value_) { |
| if (has_value_) |
| new (&value_) T(m.value_); |
| else |
| PoisonValue(); |
| } |
| |
| // Move constructor: if m has a value, moves the value from m, leaving m |
| // still in a state where it has a value, but a moved-from one (the |
| // properties of which depends on T; the only general guarantee is that we |
| // can destroy m). |
| Optional(Optional&& m) : has_value_(m.has_value_) { |
| if (has_value_) |
| new (&value_) T(std::move(m.value_)); |
| else |
| PoisonValue(); |
| } |
| |
| ~Optional() { |
| if (has_value_) |
| value_.~T(); |
| else |
| UnpoisonValue(); |
| } |
| |
| Optional& operator=(rtc::nullopt_t) { |
| reset(); |
| return *this; |
| } |
| |
| // Copy assignment. Uses T's copy assignment if both sides have a value, T's |
| // copy constructor if only the right-hand side has a value. |
| Optional& operator=(const Optional& m) { |
| if (m.has_value_) { |
| if (has_value_) { |
| value_ = m.value_; // T's copy assignment. |
| } else { |
| UnpoisonValue(); |
| new (&value_) T(m.value_); // T's copy constructor. |
| has_value_ = true; |
| } |
| } else { |
| reset(); |
| } |
| return *this; |
| } |
| |
| // Move assignment. Uses T's move assignment if both sides have a value, T's |
| // move constructor if only the right-hand side has a value. The state of m |
| // after it's been moved from is as for the move constructor. |
| Optional& operator=(Optional&& m) { |
| if (m.has_value_) { |
| if (has_value_) { |
| value_ = std::move(m.value_); // T's move assignment. |
| } else { |
| UnpoisonValue(); |
| new (&value_) T(std::move(m.value_)); // T's move constructor. |
| has_value_ = true; |
| } |
| } else { |
| reset(); |
| } |
| return *this; |
| } |
| |
| // Swap the values if both m1 and m2 have values; move the value if only one |
| // of them has one. |
| friend void swap(Optional& m1, Optional& m2) { |
| if (m1.has_value_) { |
| if (m2.has_value_) { |
| // Both have values: swap. |
| using std::swap; |
| swap(m1.value_, m2.value_); |
| } else { |
| // Only m1 has a value: move it to m2. |
| m2.UnpoisonValue(); |
| new (&m2.value_) T(std::move(m1.value_)); |
| m1.value_.~T(); // Destroy the moved-from value. |
| m1.has_value_ = false; |
| m2.has_value_ = true; |
| m1.PoisonValue(); |
| } |
| } else if (m2.has_value_) { |
| // Only m2 has a value: move it to m1. |
| m1.UnpoisonValue(); |
| new (&m1.value_) T(std::move(m2.value_)); |
| m2.value_.~T(); // Destroy the moved-from value. |
| m1.has_value_ = true; |
| m2.has_value_ = false; |
| m2.PoisonValue(); |
| } |
| } |
| |
| // Destroy any contained value. Has no effect if we have no value. |
| void reset() { |
| if (!has_value_) |
| return; |
| value_.~T(); |
| has_value_ = false; |
| PoisonValue(); |
| } |
| |
| template <class... Args> |
| void emplace(Args&&... args) { |
| if (has_value_) |
| value_.~T(); |
| else |
| UnpoisonValue(); |
| new (&value_) T(std::forward<Args>(args)...); |
| has_value_ = true; |
| } |
| |
| // Conversion to bool to test if we have a value. |
| explicit operator bool() const { return has_value_; } |
| bool has_value() const { return has_value_; } |
| |
| // Dereferencing. Only allowed if we have a value. |
| const T* operator->() const { |
| RTC_DCHECK(has_value_); |
| return &value_; |
| } |
| T* operator->() { |
| RTC_DCHECK(has_value_); |
| return &value_; |
| } |
| const T& operator*() const { |
| RTC_DCHECK(has_value_); |
| return value_; |
| } |
| T& operator*() { |
| RTC_DCHECK(has_value_); |
| return value_; |
| } |
| const T& value() const { |
| RTC_DCHECK(has_value_); |
| return value_; |
| } |
| T& value() { |
| RTC_DCHECK(has_value_); |
| return value_; |
| } |
| |
| // Dereference with a default value in case we don't have a value. |
| const T& value_or(const T& default_val) const { |
| // The no-op call prevents the compiler from generating optimized code that |
| // reads value_ even if !has_value_, but only if FunctionThatDoesNothing is |
| // not completely inlined; see its declaration.). |
| return has_value_ ? *optional_internal::FunctionThatDoesNothing(&value_) |
| : default_val; |
| } |
| |
| // Dereference and move value. |
| T MoveValue() { |
| RTC_DCHECK(has_value_); |
| return std::move(value_); |
| } |
| |
| // Equality tests. Two Optionals are equal if they contain equivalent values, |
| // or if they're both empty. |
| friend bool operator==(const Optional& m1, const Optional& m2) { |
| return m1.has_value_ && m2.has_value_ ? m1.value_ == m2.value_ |
| : m1.has_value_ == m2.has_value_; |
| } |
| friend bool operator==(const Optional& opt, const T& value) { |
| return opt.has_value_ && opt.value_ == value; |
| } |
| friend bool operator==(const T& value, const Optional& opt) { |
| return opt.has_value_ && value == opt.value_; |
| } |
| |
| friend bool operator==(const Optional& opt, rtc::nullopt_t) { |
| return !opt.has_value_; |
| } |
| |
| friend bool operator==(rtc::nullopt_t, const Optional& opt) { |
| return !opt.has_value_; |
| } |
| |
| friend bool operator!=(const Optional& m1, const Optional& m2) { |
| return m1.has_value_ && m2.has_value_ ? m1.value_ != m2.value_ |
| : m1.has_value_ != m2.has_value_; |
| } |
| friend bool operator!=(const Optional& opt, const T& value) { |
| return !opt.has_value_ || opt.value_ != value; |
| } |
| friend bool operator!=(const T& value, const Optional& opt) { |
| return !opt.has_value_ || value != opt.value_; |
| } |
| |
| friend bool operator!=(const Optional& opt, rtc::nullopt_t) { |
| return opt.has_value_; |
| } |
| |
| friend bool operator!=(rtc::nullopt_t, const Optional& opt) { |
| return opt.has_value_; |
| } |
| |
| private: |
| // Tell sanitizers that value_ shouldn't be touched. |
| void PoisonValue() { |
| rtc::AsanPoison(rtc::MakeArrayView(&value_, 1)); |
| rtc::MsanMarkUninitialized(rtc::MakeArrayView(&value_, 1)); |
| } |
| |
| // Tell sanitizers that value_ is OK to touch again. |
| void UnpoisonValue() { rtc::AsanUnpoison(rtc::MakeArrayView(&value_, 1)); } |
| |
| bool has_value_; // True iff value_ contains a live value. |
| union { |
| // empty_ exists only to make it possible to initialize the union, even when |
| // it doesn't contain any data. If the union goes uninitialized, it may |
| // trigger compiler warnings. |
| char empty_; |
| // By placing value_ in a union, we get to manage its construction and |
| // destruction manually: the Optional constructors won't automatically |
| // construct it, and the Optional destructor won't automatically destroy |
| // it. Basically, this just allocates a properly sized and aligned block of |
| // memory in which we can manually put a T with placement new. |
| T value_; |
| }; |
| }; |
| |
| #ifdef UNIT_TEST |
| namespace optional_internal { |
| |
| // Checks if there's a valid PrintTo(const T&, std::ostream*) call for T. |
| template <typename T> |
| struct HasPrintTo { |
| private: |
| struct No {}; |
| |
| template <typename T2> |
| static auto Test(const T2& obj) |
| -> decltype(PrintTo(obj, std::declval<std::ostream*>())); |
| |
| template <typename> |
| static No Test(...); |
| |
| public: |
| static constexpr bool value = |
| !std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value; |
| }; |
| |
| // Checks if there's a valid operator<<(std::ostream&, const T&) call for T. |
| template <typename T> |
| struct HasOstreamOperator { |
| private: |
| struct No {}; |
| |
| template <typename T2> |
| static auto Test(const T2& obj) |
| -> decltype(std::declval<std::ostream&>() << obj); |
| |
| template <typename> |
| static No Test(...); |
| |
| public: |
| static constexpr bool value = |
| !std::is_same<decltype(Test<T>(std::declval<const T&>())), No>::value; |
| }; |
| |
| // Prefer using PrintTo to print the object. |
| template <typename T> |
| typename std::enable_if<HasPrintTo<T>::value, void>::type OptionalPrintToHelper( |
| const T& value, |
| std::ostream* os) { |
| PrintTo(value, os); |
| } |
| |
| // Fall back to operator<<(std::ostream&, ...) if it exists. |
| template <typename T> |
| typename std::enable_if<HasOstreamOperator<T>::value && !HasPrintTo<T>::value, |
| void>::type |
| OptionalPrintToHelper(const T& value, std::ostream* os) { |
| *os << value; |
| } |
| |
| inline void OptionalPrintObjectBytes(const unsigned char* bytes, |
| size_t size, |
| std::ostream* os) { |
| *os << "<optional with " << size << "-byte object ["; |
| for (size_t i = 0; i != size; ++i) { |
| *os << (i == 0 ? "" : ((i & 1) ? "-" : " ")); |
| *os << std::hex << std::setw(2) << std::setfill('0') |
| << static_cast<int>(bytes[i]); |
| } |
| *os << "]>"; |
| } |
| |
| // As a final back-up, just print the contents of the objcets byte-wise. |
| template <typename T> |
| typename std::enable_if<!HasOstreamOperator<T>::value && !HasPrintTo<T>::value, |
| void>::type |
| OptionalPrintToHelper(const T& value, std::ostream* os) { |
| OptionalPrintObjectBytes(reinterpret_cast<const unsigned char*>(&value), |
| sizeof(value), os); |
| } |
| |
| } // namespace optional_internal |
| |
| // PrintTo is used by gtest to print out the results of tests. We want to ensure |
| // the object contained in an Optional can be printed out if it's set, while |
| // avoiding touching the object's storage if it is undefined. |
| template <typename T> |
| void PrintTo(const rtc::Optional<T>& opt, std::ostream* os) { |
| if (opt) { |
| optional_internal::OptionalPrintToHelper(*opt, os); |
| } else { |
| *os << "<empty optional>"; |
| } |
| } |
| |
| #endif // UNIT_TEST |
| |
| } // namespace rtc |
| |
| #endif // API_OPTIONAL_H_ |