blob: 06cff38bf61f54f59c7b6db5982098571ad17402 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include "webrtc/video/overuse_frame_detector.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/system_wrappers/include/clock.h"
#include "webrtc/video_frame.h"
namespace webrtc {
namespace {
const int kWidth = 640;
const int kHeight = 480;
const int kFrameInterval33ms = 33;
const int kProcessIntervalMs = 5000;
const int kProcessTime5ms = 5;
} // namespace
class MockCpuOveruseObserver : public CpuOveruseObserver {
public:
MockCpuOveruseObserver() {}
virtual ~MockCpuOveruseObserver() {}
MOCK_METHOD0(OveruseDetected, void());
MOCK_METHOD0(NormalUsage, void());
};
class CpuOveruseObserverImpl : public CpuOveruseObserver {
public:
CpuOveruseObserverImpl() :
overuse_(0),
normaluse_(0) {}
virtual ~CpuOveruseObserverImpl() {}
void OveruseDetected() { ++overuse_; }
void NormalUsage() { ++normaluse_; }
int overuse_;
int normaluse_;
};
class OveruseFrameDetectorTest : public ::testing::Test,
public CpuOveruseMetricsObserver {
protected:
virtual void SetUp() {
clock_.reset(new SimulatedClock(1234));
observer_.reset(new MockCpuOveruseObserver());
options_.min_process_count = 0;
ReinitializeOveruseDetector();
}
void ReinitializeOveruseDetector() {
overuse_detector_.reset(new OveruseFrameDetector(
clock_.get(), options_, observer_.get(), nullptr, this));
}
void OnEncodedFrameTimeMeasured(int encode_time_ms,
const CpuOveruseMetrics& metrics) override {
metrics_ = metrics;
}
int InitialUsage() {
return ((options_.low_encode_usage_threshold_percent +
options_.high_encode_usage_threshold_percent) / 2.0f) + 0.5;
}
void InsertAndSendFramesWithInterval(int num_frames,
int interval_ms,
int width,
int height,
int delay_ms) {
VideoFrame frame;
frame.CreateEmptyFrame(width, height, width, width / 2, width / 2);
uint32_t timestamp = 0;
while (num_frames-- > 0) {
frame.set_timestamp(timestamp);
overuse_detector_->FrameCaptured(frame);
clock_->AdvanceTimeMilliseconds(delay_ms);
overuse_detector_->FrameSent(timestamp);
clock_->AdvanceTimeMilliseconds(interval_ms - delay_ms);
timestamp += interval_ms * 90;
}
}
void ForceUpdate(int width, int height) {
// Insert one frame, wait a second and then put in another to force update
// the usage. From the tests where these are used, adding another sample
// doesn't affect the expected outcome (this is mainly to check initial
// values and whether the overuse detector has been reset or not).
InsertAndSendFramesWithInterval(2, 1000, width, height, kFrameInterval33ms);
}
void TriggerOveruse(int num_times) {
const int kDelayMs = 32;
for (int i = 0; i < num_times; ++i) {
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kDelayMs);
overuse_detector_->Process();
}
}
void TriggerUnderuse() {
const int kDelayMs1 = 5;
const int kDelayMs2 = 6;
InsertAndSendFramesWithInterval(
1300, kFrameInterval33ms, kWidth, kHeight, kDelayMs1);
InsertAndSendFramesWithInterval(
1, kFrameInterval33ms, kWidth, kHeight, kDelayMs2);
overuse_detector_->Process();
}
int UsagePercent() { return metrics_.encode_usage_percent; }
CpuOveruseOptions options_;
std::unique_ptr<SimulatedClock> clock_;
std::unique_ptr<MockCpuOveruseObserver> observer_;
std::unique_ptr<OveruseFrameDetector> overuse_detector_;
CpuOveruseMetrics metrics_;
};
// UsagePercent() > high_encode_usage_threshold_percent => overuse.
// UsagePercent() < low_encode_usage_threshold_percent => underuse.
TEST_F(OveruseFrameDetectorTest, TriggerOveruse) {
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecover) {
// usage > high => overuse
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
TriggerOveruse(options_.high_threshold_consecutive_count);
// usage < low => underuse
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, OveruseAndRecoverWithNoObserver) {
overuse_detector_.reset(
new OveruseFrameDetector(clock_.get(), options_, nullptr, nullptr, this));
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, DoubleOveruseAndRecover) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(2);
TriggerOveruse(options_.high_threshold_consecutive_count);
TriggerOveruse(options_.high_threshold_consecutive_count);
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(testing::AtLeast(1));
TriggerUnderuse();
}
TEST_F(OveruseFrameDetectorTest, TriggerUnderuseWithMinProcessCount) {
options_.min_process_count = 1;
CpuOveruseObserverImpl overuse_observer;
overuse_detector_.reset(new OveruseFrameDetector(
clock_.get(), options_, &overuse_observer, nullptr, this));
InsertAndSendFramesWithInterval(
1200, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
overuse_detector_->Process();
EXPECT_EQ(0, overuse_observer.normaluse_);
clock_->AdvanceTimeMilliseconds(kProcessIntervalMs);
overuse_detector_->Process();
EXPECT_EQ(1, overuse_observer.normaluse_);
}
TEST_F(OveruseFrameDetectorTest, ConstantOveruseGivesNoNormalUsage) {
EXPECT_CALL(*(observer_.get()), NormalUsage()).Times(0);
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(64);
for (size_t i = 0; i < 64; ++i) {
TriggerOveruse(options_.high_threshold_consecutive_count);
}
}
TEST_F(OveruseFrameDetectorTest, ConsecutiveCountTriggersOveruse) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(1);
options_.high_threshold_consecutive_count = 2;
ReinitializeOveruseDetector();
TriggerOveruse(2);
}
TEST_F(OveruseFrameDetectorTest, IncorrectConsecutiveCountTriggersNoOveruse) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(0);
options_.high_threshold_consecutive_count = 2;
ReinitializeOveruseDetector();
TriggerOveruse(1);
}
TEST_F(OveruseFrameDetectorTest, ProcessingUsage) {
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_EQ(kProcessTime5ms * 100 / kFrameInterval33ms, UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, ResetAfterResolutionChange) {
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset (with new width/height).
ForceUpdate(kWidth, kHeight + 1);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, ResetAfterFrameTimeout) {
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
1000, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_NE(InitialUsage(), UsagePercent());
InsertAndSendFramesWithInterval(
2, options_.frame_timeout_interval_ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_NE(InitialUsage(), UsagePercent());
// Verify reset.
InsertAndSendFramesWithInterval(
2, options_.frame_timeout_interval_ms + 1, kWidth, kHeight,
kProcessTime5ms);
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, MinFrameSamplesBeforeUpdating) {
options_.min_frame_samples = 40;
ReinitializeOveruseDetector();
InsertAndSendFramesWithInterval(
40, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_EQ(InitialUsage(), UsagePercent());
// Pass time far enough to digest all previous samples.
clock_->AdvanceTimeMilliseconds(1000);
InsertAndSendFramesWithInterval(1, kFrameInterval33ms, kWidth, kHeight,
kProcessTime5ms);
// The last sample has not been processed here.
EXPECT_EQ(InitialUsage(), UsagePercent());
// Pass time far enough to digest all previous samples, 41 in total.
clock_->AdvanceTimeMilliseconds(1000);
InsertAndSendFramesWithInterval(
1, kFrameInterval33ms, kWidth, kHeight, kProcessTime5ms);
EXPECT_NE(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, InitialProcessingUsage) {
ForceUpdate(kWidth, kHeight);
EXPECT_EQ(InitialUsage(), UsagePercent());
}
TEST_F(OveruseFrameDetectorTest, MeasuresMultipleConcurrentSamples) {
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(testing::AtLeast(1));
static const int kIntervalMs = 33;
static const size_t kNumFramesEncodingDelay = 3;
VideoFrame frame;
frame.CreateEmptyFrame(kWidth, kHeight, kWidth, kWidth / 2, kWidth / 2);
for (size_t i = 0; i < 1000; ++i) {
// Unique timestamps.
frame.set_timestamp(static_cast<uint32_t>(i));
overuse_detector_->FrameCaptured(frame);
clock_->AdvanceTimeMilliseconds(kIntervalMs);
if (i > kNumFramesEncodingDelay) {
overuse_detector_->FrameSent(
static_cast<uint32_t>(i - kNumFramesEncodingDelay));
}
overuse_detector_->Process();
}
}
TEST_F(OveruseFrameDetectorTest, UpdatesExistingSamples) {
// >85% encoding time should trigger overuse.
EXPECT_CALL(*(observer_.get()), OveruseDetected()).Times(testing::AtLeast(1));
static const int kIntervalMs = 33;
static const int kDelayMs = 30;
VideoFrame frame;
frame.CreateEmptyFrame(kWidth, kHeight, kWidth, kWidth / 2, kWidth / 2);
uint32_t timestamp = 0;
for (size_t i = 0; i < 1000; ++i) {
frame.set_timestamp(timestamp);
overuse_detector_->FrameCaptured(frame);
// Encode and send first parts almost instantly.
clock_->AdvanceTimeMilliseconds(1);
overuse_detector_->FrameSent(timestamp);
// Encode heavier part, resulting in >85% usage total.
clock_->AdvanceTimeMilliseconds(kDelayMs - 1);
overuse_detector_->FrameSent(timestamp);
clock_->AdvanceTimeMilliseconds(kIntervalMs - kDelayMs);
timestamp += kIntervalMs * 90;
overuse_detector_->Process();
}
}
} // namespace webrtc