|  | /* | 
|  | *  Copyright 2004 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  | #include "rtc_base/physical_socket_server.h" | 
|  |  | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  |  | 
|  | #if defined(_MSC_VER) && _MSC_VER < 1300 | 
|  | #pragma warning(disable : 4786) | 
|  | #endif | 
|  |  | 
|  | #ifdef MEMORY_SANITIZER | 
|  | #include <sanitizer/msan_interface.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_POSIX) | 
|  | #include <fcntl.h> | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | // "poll" will be used to wait for the signal dispatcher. | 
|  | #include <poll.h> | 
|  | #elif defined(WEBRTC_USE_POLL) | 
|  | #include <poll.h> | 
|  | #endif | 
|  | #include <sys/ioctl.h> | 
|  | #include <sys/select.h> | 
|  | #include <unistd.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | #include <windows.h> | 
|  | #include <winsock2.h> | 
|  | #include <ws2tcpip.h> | 
|  |  | 
|  | #undef SetPort | 
|  | #endif | 
|  |  | 
|  | #include <errno.h> | 
|  |  | 
|  | #include "rtc_base/async_dns_resolver.h" | 
|  | #include "rtc_base/checks.h" | 
|  | #include "rtc_base/event.h" | 
|  | #include "rtc_base/ip_address.h" | 
|  | #include "rtc_base/logging.h" | 
|  | #include "rtc_base/network_monitor.h" | 
|  | #include "rtc_base/synchronization/mutex.h" | 
|  | #include "rtc_base/time_utils.h" | 
|  | #include "system_wrappers/include/field_trial.h" | 
|  |  | 
|  | #if defined(WEBRTC_LINUX) | 
|  | #include <linux/sockios.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | #define LAST_SYSTEM_ERROR (::GetLastError()) | 
|  | #elif defined(__native_client__) && __native_client__ | 
|  | #define LAST_SYSTEM_ERROR (0) | 
|  | #elif defined(WEBRTC_POSIX) | 
|  | #define LAST_SYSTEM_ERROR (errno) | 
|  | #endif  // WEBRTC_WIN | 
|  |  | 
|  | #if defined(WEBRTC_POSIX) | 
|  | #include <netinet/tcp.h>  // for TCP_NODELAY | 
|  |  | 
|  | #define IP_MTU 14  // Until this is integrated from linux/in.h to netinet/in.h | 
|  | typedef void* SockOptArg; | 
|  |  | 
|  | #endif  // WEBRTC_POSIX | 
|  |  | 
|  | #if defined(WEBRTC_POSIX) && !defined(WEBRTC_MAC) && !defined(__native_client__) | 
|  |  | 
|  | int64_t GetSocketRecvTimestamp(int socket) { | 
|  | struct timeval tv_ioctl; | 
|  | int ret = ioctl(socket, SIOCGSTAMP, &tv_ioctl); | 
|  | if (ret != 0) | 
|  | return -1; | 
|  | int64_t timestamp = | 
|  | rtc::kNumMicrosecsPerSec * static_cast<int64_t>(tv_ioctl.tv_sec) + | 
|  | static_cast<int64_t>(tv_ioctl.tv_usec); | 
|  | return timestamp; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | int64_t GetSocketRecvTimestamp(int socket) { | 
|  | return -1; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | typedef char* SockOptArg; | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | // POLLRDHUP / EPOLLRDHUP are only defined starting with Linux 2.6.17. | 
|  | #if !defined(POLLRDHUP) | 
|  | #define POLLRDHUP 0x2000 | 
|  | #endif | 
|  | #if !defined(EPOLLRDHUP) | 
|  | #define EPOLLRDHUP 0x2000 | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | namespace { | 
|  | class ScopedSetTrue { | 
|  | public: | 
|  | ScopedSetTrue(bool* value) : value_(value) { | 
|  | RTC_DCHECK(!*value_); | 
|  | *value_ = true; | 
|  | } | 
|  | ~ScopedSetTrue() { *value_ = false; } | 
|  |  | 
|  | private: | 
|  | bool* value_; | 
|  | }; | 
|  |  | 
|  | // Returns true if the experiement "WebRTC-SCM-Timestamp" is explicitly | 
|  | // disabled. | 
|  | bool IsScmTimeStampExperimentDisabled() { | 
|  | return webrtc::field_trial::IsDisabled("WebRTC-SCM-Timestamp"); | 
|  | } | 
|  | }  // namespace | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | PhysicalSocket::PhysicalSocket(PhysicalSocketServer* ss, SOCKET s) | 
|  | : ss_(ss), | 
|  | s_(s), | 
|  | error_(0), | 
|  | state_((s == INVALID_SOCKET) ? CS_CLOSED : CS_CONNECTED), | 
|  | resolver_(nullptr), | 
|  | read_scm_timestamp_experiment_(!IsScmTimeStampExperimentDisabled()) { | 
|  | if (s_ != INVALID_SOCKET) { | 
|  | SetEnabledEvents(DE_READ | DE_WRITE); | 
|  |  | 
|  | int type = SOCK_STREAM; | 
|  | socklen_t len = sizeof(type); | 
|  | const int res = | 
|  | getsockopt(s_, SOL_SOCKET, SO_TYPE, (SockOptArg)&type, &len); | 
|  | RTC_DCHECK_EQ(0, res); | 
|  | udp_ = (SOCK_DGRAM == type); | 
|  | } | 
|  | } | 
|  |  | 
|  | PhysicalSocket::~PhysicalSocket() { | 
|  | Close(); | 
|  | } | 
|  |  | 
|  | bool PhysicalSocket::Create(int family, int type) { | 
|  | Close(); | 
|  | s_ = ::socket(family, type, 0); | 
|  | udp_ = (SOCK_DGRAM == type); | 
|  | family_ = family; | 
|  | UpdateLastError(); | 
|  | if (udp_) { | 
|  | SetEnabledEvents(DE_READ | DE_WRITE); | 
|  | } | 
|  | return s_ != INVALID_SOCKET; | 
|  | } | 
|  |  | 
|  | SocketAddress PhysicalSocket::GetLocalAddress() const { | 
|  | sockaddr_storage addr_storage = {}; | 
|  | socklen_t addrlen = sizeof(addr_storage); | 
|  | sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
|  | int result = ::getsockname(s_, addr, &addrlen); | 
|  | SocketAddress address; | 
|  | if (result >= 0) { | 
|  | SocketAddressFromSockAddrStorage(addr_storage, &address); | 
|  | } else { | 
|  | RTC_LOG(LS_WARNING) << "GetLocalAddress: unable to get local addr, socket=" | 
|  | << s_; | 
|  | } | 
|  | return address; | 
|  | } | 
|  |  | 
|  | SocketAddress PhysicalSocket::GetRemoteAddress() const { | 
|  | sockaddr_storage addr_storage = {}; | 
|  | socklen_t addrlen = sizeof(addr_storage); | 
|  | sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
|  | int result = ::getpeername(s_, addr, &addrlen); | 
|  | SocketAddress address; | 
|  | if (result >= 0) { | 
|  | SocketAddressFromSockAddrStorage(addr_storage, &address); | 
|  | } else { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "GetRemoteAddress: unable to get remote addr, socket=" << s_; | 
|  | } | 
|  | return address; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::Bind(const SocketAddress& bind_addr) { | 
|  | SocketAddress copied_bind_addr = bind_addr; | 
|  | // If a network binder is available, use it to bind a socket to an interface | 
|  | // instead of bind(), since this is more reliable on an OS with a weak host | 
|  | // model. | 
|  | if (ss_->network_binder() && !bind_addr.IsAnyIP()) { | 
|  | NetworkBindingResult result = | 
|  | ss_->network_binder()->BindSocketToNetwork(s_, bind_addr.ipaddr()); | 
|  | if (result == NetworkBindingResult::SUCCESS) { | 
|  | // Since the network binder handled binding the socket to the desired | 
|  | // network interface, we don't need to (and shouldn't) include an IP in | 
|  | // the bind() call; bind() just needs to assign a port. | 
|  | copied_bind_addr.SetIP(GetAnyIP(copied_bind_addr.ipaddr().family())); | 
|  | } else if (result == NetworkBindingResult::NOT_IMPLEMENTED) { | 
|  | RTC_LOG(LS_INFO) << "Can't bind socket to network because " | 
|  | "network binding is not implemented for this OS."; | 
|  | } else { | 
|  | if (bind_addr.IsLoopbackIP()) { | 
|  | // If we couldn't bind to a loopback IP (which should only happen in | 
|  | // test scenarios), continue on. This may be expected behavior. | 
|  | RTC_LOG(LS_VERBOSE) << "Binding socket to loopback address" | 
|  | << " failed; result: " << static_cast<int>(result); | 
|  | } else { | 
|  | RTC_LOG(LS_WARNING) << "Binding socket to network address" | 
|  | << " failed; result: " << static_cast<int>(result); | 
|  | // If a network binding was attempted and failed, we should stop here | 
|  | // and not try to use the socket. Otherwise, we may end up sending | 
|  | // packets with an invalid source address. | 
|  | // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7026 | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  | sockaddr_storage addr_storage; | 
|  | size_t len = copied_bind_addr.ToSockAddrStorage(&addr_storage); | 
|  | sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
|  | int err = ::bind(s_, addr, static_cast<int>(len)); | 
|  | UpdateLastError(); | 
|  | #if !defined(NDEBUG) | 
|  | if (0 == err) { | 
|  | dbg_addr_ = "Bound @ "; | 
|  | dbg_addr_.append(GetLocalAddress().ToString()); | 
|  | } | 
|  | #endif | 
|  | return err; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::Connect(const SocketAddress& addr) { | 
|  | // TODO(pthatcher): Implicit creation is required to reconnect... | 
|  | // ...but should we make it more explicit? | 
|  | if (state_ != CS_CLOSED) { | 
|  | SetError(EALREADY); | 
|  | return SOCKET_ERROR; | 
|  | } | 
|  | if (addr.IsUnresolvedIP()) { | 
|  | RTC_LOG(LS_VERBOSE) << "Resolving addr in PhysicalSocket::Connect"; | 
|  | resolver_ = std::make_unique<webrtc::AsyncDnsResolver>(); | 
|  | resolver_->Start(addr, [this] { OnResolveResult(resolver_->result()); }); | 
|  | state_ = CS_CONNECTING; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return DoConnect(addr); | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::DoConnect(const SocketAddress& connect_addr) { | 
|  | if ((s_ == INVALID_SOCKET) && !Create(connect_addr.family(), SOCK_STREAM)) { | 
|  | return SOCKET_ERROR; | 
|  | } | 
|  | sockaddr_storage addr_storage; | 
|  | size_t len = connect_addr.ToSockAddrStorage(&addr_storage); | 
|  | sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
|  | int err = ::connect(s_, addr, static_cast<int>(len)); | 
|  | UpdateLastError(); | 
|  | uint8_t events = DE_READ | DE_WRITE; | 
|  | if (err == 0) { | 
|  | state_ = CS_CONNECTED; | 
|  | } else if (IsBlockingError(GetError())) { | 
|  | state_ = CS_CONNECTING; | 
|  | events |= DE_CONNECT; | 
|  | } else { | 
|  | return SOCKET_ERROR; | 
|  | } | 
|  |  | 
|  | EnableEvents(events); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::GetError() const { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | return error_; | 
|  | } | 
|  |  | 
|  | void PhysicalSocket::SetError(int error) { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | error_ = error; | 
|  | } | 
|  |  | 
|  | Socket::ConnState PhysicalSocket::GetState() const { | 
|  | return state_; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::GetOption(Option opt, int* value) { | 
|  | int slevel; | 
|  | int sopt; | 
|  | if (TranslateOption(opt, &slevel, &sopt) == -1) | 
|  | return -1; | 
|  | socklen_t optlen = sizeof(*value); | 
|  | int ret = ::getsockopt(s_, slevel, sopt, (SockOptArg)value, &optlen); | 
|  | if (ret == -1) { | 
|  | return -1; | 
|  | } | 
|  | if (opt == OPT_DONTFRAGMENT) { | 
|  | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
|  | *value = (*value != IP_PMTUDISC_DONT) ? 1 : 0; | 
|  | #endif | 
|  | } else if (opt == OPT_DSCP) { | 
|  | #if defined(WEBRTC_POSIX) | 
|  | // unshift DSCP value to get six most significant bits of IP DiffServ field | 
|  | *value >>= 2; | 
|  | #endif | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::SetOption(Option opt, int value) { | 
|  | int slevel; | 
|  | int sopt; | 
|  | if (TranslateOption(opt, &slevel, &sopt) == -1) | 
|  | return -1; | 
|  | if (opt == OPT_DONTFRAGMENT) { | 
|  | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
|  | value = (value) ? IP_PMTUDISC_DO : IP_PMTUDISC_DONT; | 
|  | #endif | 
|  | } else if (opt == OPT_DSCP) { | 
|  | #if defined(WEBRTC_POSIX) | 
|  | // shift DSCP value to fit six most significant bits of IP DiffServ field | 
|  | value <<= 2; | 
|  | #endif | 
|  | } | 
|  | #if defined(WEBRTC_POSIX) | 
|  | if (sopt == IPV6_TCLASS) { | 
|  | // Set the IPv4 option in all cases to support dual-stack sockets. | 
|  | // Don't bother checking the return code, as this is expected to fail if | 
|  | // it's not actually dual-stack. | 
|  | ::setsockopt(s_, IPPROTO_IP, IP_TOS, (SockOptArg)&value, sizeof(value)); | 
|  | } | 
|  | #endif | 
|  | int result = | 
|  | ::setsockopt(s_, slevel, sopt, (SockOptArg)&value, sizeof(value)); | 
|  | if (result != 0) { | 
|  | UpdateLastError(); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::Send(const void* pv, size_t cb) { | 
|  | int sent = DoSend( | 
|  | s_, reinterpret_cast<const char*>(pv), static_cast<int>(cb), | 
|  | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
|  | // Suppress SIGPIPE. Without this, attempting to send on a socket whose | 
|  | // other end is closed will result in a SIGPIPE signal being raised to | 
|  | // our process, which by default will terminate the process, which we | 
|  | // don't want. By specifying this flag, we'll just get the error EPIPE | 
|  | // instead and can handle the error gracefully. | 
|  | MSG_NOSIGNAL | 
|  | #else | 
|  | 0 | 
|  | #endif | 
|  | ); | 
|  | UpdateLastError(); | 
|  | MaybeRemapSendError(); | 
|  | // We have seen minidumps where this may be false. | 
|  | RTC_DCHECK(sent <= static_cast<int>(cb)); | 
|  | if ((sent > 0 && sent < static_cast<int>(cb)) || | 
|  | (sent < 0 && IsBlockingError(GetError()))) { | 
|  | EnableEvents(DE_WRITE); | 
|  | } | 
|  | return sent; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::SendTo(const void* buffer, | 
|  | size_t length, | 
|  | const SocketAddress& addr) { | 
|  | sockaddr_storage saddr; | 
|  | size_t len = addr.ToSockAddrStorage(&saddr); | 
|  | int sent = | 
|  | DoSendTo(s_, static_cast<const char*>(buffer), static_cast<int>(length), | 
|  | #if defined(WEBRTC_LINUX) && !defined(WEBRTC_ANDROID) | 
|  | // Suppress SIGPIPE. See above for explanation. | 
|  | MSG_NOSIGNAL, | 
|  | #else | 
|  | 0, | 
|  | #endif | 
|  | reinterpret_cast<sockaddr*>(&saddr), static_cast<int>(len)); | 
|  | UpdateLastError(); | 
|  | MaybeRemapSendError(); | 
|  | // We have seen minidumps where this may be false. | 
|  | RTC_DCHECK(sent <= static_cast<int>(length)); | 
|  | if ((sent > 0 && sent < static_cast<int>(length)) || | 
|  | (sent < 0 && IsBlockingError(GetError()))) { | 
|  | EnableEvents(DE_WRITE); | 
|  | } | 
|  | return sent; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::Recv(void* buffer, size_t length, int64_t* timestamp) { | 
|  | int received = | 
|  | DoReadFromSocket(buffer, length, /*out_addr*/ nullptr, timestamp); | 
|  | if ((received == 0) && (length != 0)) { | 
|  | // Note: on graceful shutdown, recv can return 0.  In this case, we | 
|  | // pretend it is blocking, and then signal close, so that simplifying | 
|  | // assumptions can be made about Recv. | 
|  | RTC_LOG(LS_WARNING) << "EOF from socket; deferring close event"; | 
|  | // Must turn this back on so that the select() loop will notice the close | 
|  | // event. | 
|  | EnableEvents(DE_READ); | 
|  | SetError(EWOULDBLOCK); | 
|  | return SOCKET_ERROR; | 
|  | } | 
|  |  | 
|  | UpdateLastError(); | 
|  | int error = GetError(); | 
|  | bool success = (received >= 0) || IsBlockingError(error); | 
|  | if (udp_ || success) { | 
|  | EnableEvents(DE_READ); | 
|  | } | 
|  | if (!success) { | 
|  | RTC_LOG_F(LS_VERBOSE) << "Error = " << error; | 
|  | } | 
|  | return received; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::RecvFrom(void* buffer, | 
|  | size_t length, | 
|  | SocketAddress* out_addr, | 
|  | int64_t* timestamp) { | 
|  | int received = DoReadFromSocket(buffer, length, out_addr, timestamp); | 
|  | UpdateLastError(); | 
|  | int error = GetError(); | 
|  | bool success = (received >= 0) || IsBlockingError(error); | 
|  | if (udp_ || success) { | 
|  | EnableEvents(DE_READ); | 
|  | } | 
|  | if (!success) { | 
|  | RTC_LOG_F(LS_VERBOSE) << "Error = " << error; | 
|  | } | 
|  | return received; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::DoReadFromSocket(void* buffer, | 
|  | size_t length, | 
|  | SocketAddress* out_addr, | 
|  | int64_t* timestamp) { | 
|  | sockaddr_storage addr_storage; | 
|  | socklen_t addr_len = sizeof(addr_storage); | 
|  | sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
|  |  | 
|  | #if defined(WEBRTC_POSIX) | 
|  | int received = 0; | 
|  | if (read_scm_timestamp_experiment_) { | 
|  | iovec iov = {.iov_base = buffer, .iov_len = length}; | 
|  | msghdr msg = {.msg_iov = &iov, .msg_iovlen = 1}; | 
|  | if (out_addr) { | 
|  | out_addr->Clear(); | 
|  | msg.msg_name = addr; | 
|  | msg.msg_namelen = addr_len; | 
|  | } | 
|  | char control[CMSG_SPACE(sizeof(struct timeval))] = {}; | 
|  | if (timestamp) { | 
|  | *timestamp = -1; | 
|  | msg.msg_control = &control; | 
|  | msg.msg_controllen = sizeof(control); | 
|  | } | 
|  | received = ::recvmsg(s_, &msg, 0); | 
|  | if (received <= 0) { | 
|  | // An error occured or shut down. | 
|  | return received; | 
|  | } | 
|  | if (timestamp) { | 
|  | struct cmsghdr* cmsg; | 
|  | for (cmsg = CMSG_FIRSTHDR(&msg); cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) { | 
|  | if (cmsg->cmsg_level != SOL_SOCKET) | 
|  | continue; | 
|  | if (cmsg->cmsg_type == SCM_TIMESTAMP) { | 
|  | timeval* ts = reinterpret_cast<timeval*>(CMSG_DATA(cmsg)); | 
|  | *timestamp = | 
|  | rtc::kNumMicrosecsPerSec * static_cast<int64_t>(ts->tv_sec) + | 
|  | static_cast<int64_t>(ts->tv_usec); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (out_addr) { | 
|  | SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
|  | } | 
|  | } else {  // !read_scm_timestamp_experiment_ | 
|  | if (out_addr) { | 
|  | received = ::recvfrom(s_, static_cast<char*>(buffer), | 
|  | static_cast<int>(length), 0, addr, &addr_len); | 
|  | SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
|  | } else { | 
|  | received = | 
|  | ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0); | 
|  | } | 
|  | if (timestamp) { | 
|  | *timestamp = GetSocketRecvTimestamp(s_); | 
|  | } | 
|  | } | 
|  | return received; | 
|  |  | 
|  | #else | 
|  | int received = 0; | 
|  | if (out_addr) { | 
|  | received = ::recvfrom(s_, static_cast<char*>(buffer), | 
|  | static_cast<int>(length), 0, addr, &addr_len); | 
|  | SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
|  | } else { | 
|  | received = | 
|  | ::recv(s_, static_cast<char*>(buffer), static_cast<int>(length), 0); | 
|  | } | 
|  | if (timestamp) { | 
|  | *timestamp = -1; | 
|  | } | 
|  | return received; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::Listen(int backlog) { | 
|  | int err = ::listen(s_, backlog); | 
|  | UpdateLastError(); | 
|  | if (err == 0) { | 
|  | state_ = CS_CONNECTING; | 
|  | EnableEvents(DE_ACCEPT); | 
|  | #if !defined(NDEBUG) | 
|  | dbg_addr_ = "Listening @ "; | 
|  | dbg_addr_.append(GetLocalAddress().ToString()); | 
|  | #endif | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | Socket* PhysicalSocket::Accept(SocketAddress* out_addr) { | 
|  | // Always re-subscribe DE_ACCEPT to make sure new incoming connections will | 
|  | // trigger an event even if DoAccept returns an error here. | 
|  | EnableEvents(DE_ACCEPT); | 
|  | sockaddr_storage addr_storage; | 
|  | socklen_t addr_len = sizeof(addr_storage); | 
|  | sockaddr* addr = reinterpret_cast<sockaddr*>(&addr_storage); | 
|  | SOCKET s = DoAccept(s_, addr, &addr_len); | 
|  | UpdateLastError(); | 
|  | if (s == INVALID_SOCKET) | 
|  | return nullptr; | 
|  | if (out_addr != nullptr) | 
|  | SocketAddressFromSockAddrStorage(addr_storage, out_addr); | 
|  | return ss_->WrapSocket(s); | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::Close() { | 
|  | if (s_ == INVALID_SOCKET) | 
|  | return 0; | 
|  | int err = ::closesocket(s_); | 
|  | UpdateLastError(); | 
|  | s_ = INVALID_SOCKET; | 
|  | state_ = CS_CLOSED; | 
|  | SetEnabledEvents(0); | 
|  | if (resolver_) { | 
|  | resolver_.reset(); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | SOCKET PhysicalSocket::DoAccept(SOCKET socket, | 
|  | sockaddr* addr, | 
|  | socklen_t* addrlen) { | 
|  | return ::accept(socket, addr, addrlen); | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::DoSend(SOCKET socket, const char* buf, int len, int flags) { | 
|  | return ::send(socket, buf, len, flags); | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::DoSendTo(SOCKET socket, | 
|  | const char* buf, | 
|  | int len, | 
|  | int flags, | 
|  | const struct sockaddr* dest_addr, | 
|  | socklen_t addrlen) { | 
|  | return ::sendto(socket, buf, len, flags, dest_addr, addrlen); | 
|  | } | 
|  |  | 
|  | void PhysicalSocket::OnResolveResult( | 
|  | const webrtc::AsyncDnsResolverResult& result) { | 
|  | int error = result.GetError(); | 
|  | if (error == 0) { | 
|  | SocketAddress address; | 
|  | if (result.GetResolvedAddress(AF_INET, &address)) { | 
|  | error = DoConnect(address); | 
|  | } else { | 
|  | Close(); | 
|  | } | 
|  | } else { | 
|  | Close(); | 
|  | } | 
|  |  | 
|  | if (error) { | 
|  | SetError(error); | 
|  | SignalCloseEvent(this, error); | 
|  | } | 
|  | } | 
|  |  | 
|  | void PhysicalSocket::UpdateLastError() { | 
|  | SetError(LAST_SYSTEM_ERROR); | 
|  | } | 
|  |  | 
|  | void PhysicalSocket::MaybeRemapSendError() { | 
|  | #if defined(WEBRTC_MAC) | 
|  | // https://developer.apple.com/library/mac/documentation/Darwin/ | 
|  | // Reference/ManPages/man2/sendto.2.html | 
|  | // ENOBUFS - The output queue for a network interface is full. | 
|  | // This generally indicates that the interface has stopped sending, | 
|  | // but may be caused by transient congestion. | 
|  | if (GetError() == ENOBUFS) { | 
|  | SetError(EWOULDBLOCK); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void PhysicalSocket::SetEnabledEvents(uint8_t events) { | 
|  | enabled_events_ = events; | 
|  | } | 
|  |  | 
|  | void PhysicalSocket::EnableEvents(uint8_t events) { | 
|  | enabled_events_ |= events; | 
|  | } | 
|  |  | 
|  | void PhysicalSocket::DisableEvents(uint8_t events) { | 
|  | enabled_events_ &= ~events; | 
|  | } | 
|  |  | 
|  | int PhysicalSocket::TranslateOption(Option opt, int* slevel, int* sopt) { | 
|  | switch (opt) { | 
|  | case OPT_DONTFRAGMENT: | 
|  | #if defined(WEBRTC_WIN) | 
|  | *slevel = IPPROTO_IP; | 
|  | *sopt = IP_DONTFRAGMENT; | 
|  | break; | 
|  | #elif defined(WEBRTC_MAC) || defined(BSD) || defined(__native_client__) | 
|  | RTC_LOG(LS_WARNING) << "Socket::OPT_DONTFRAGMENT not supported."; | 
|  | return -1; | 
|  | #elif defined(WEBRTC_POSIX) | 
|  | *slevel = IPPROTO_IP; | 
|  | *sopt = IP_MTU_DISCOVER; | 
|  | break; | 
|  | #endif | 
|  | case OPT_RCVBUF: | 
|  | *slevel = SOL_SOCKET; | 
|  | *sopt = SO_RCVBUF; | 
|  | break; | 
|  | case OPT_SNDBUF: | 
|  | *slevel = SOL_SOCKET; | 
|  | *sopt = SO_SNDBUF; | 
|  | break; | 
|  | case OPT_NODELAY: | 
|  | *slevel = IPPROTO_TCP; | 
|  | *sopt = TCP_NODELAY; | 
|  | break; | 
|  | case OPT_DSCP: | 
|  | #if defined(WEBRTC_POSIX) | 
|  | if (family_ == AF_INET6) { | 
|  | *slevel = IPPROTO_IPV6; | 
|  | *sopt = IPV6_TCLASS; | 
|  | } else { | 
|  | *slevel = IPPROTO_IP; | 
|  | *sopt = IP_TOS; | 
|  | } | 
|  | break; | 
|  | #else | 
|  | RTC_LOG(LS_WARNING) << "Socket::OPT_DSCP not supported."; | 
|  | return -1; | 
|  | #endif | 
|  | case OPT_RTP_SENDTIME_EXTN_ID: | 
|  | return -1;  // No logging is necessary as this not a OS socket option. | 
|  | default: | 
|  | RTC_DCHECK_NOTREACHED(); | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | SocketDispatcher::SocketDispatcher(PhysicalSocketServer* ss) | 
|  | #if defined(WEBRTC_WIN) | 
|  | : PhysicalSocket(ss), | 
|  | id_(0), | 
|  | signal_close_(false) | 
|  | #else | 
|  | : PhysicalSocket(ss) | 
|  | #endif | 
|  | { | 
|  | } | 
|  |  | 
|  | SocketDispatcher::SocketDispatcher(SOCKET s, PhysicalSocketServer* ss) | 
|  | #if defined(WEBRTC_WIN) | 
|  | : PhysicalSocket(ss, s), | 
|  | id_(0), | 
|  | signal_close_(false) | 
|  | #else | 
|  | : PhysicalSocket(ss, s) | 
|  | #endif | 
|  | { | 
|  | } | 
|  |  | 
|  | SocketDispatcher::~SocketDispatcher() { | 
|  | Close(); | 
|  | } | 
|  |  | 
|  | bool SocketDispatcher::Initialize() { | 
|  | RTC_DCHECK(s_ != INVALID_SOCKET); | 
|  | // Must be a non-blocking | 
|  | #if defined(WEBRTC_WIN) | 
|  | u_long argp = 1; | 
|  | ioctlsocket(s_, FIONBIO, &argp); | 
|  | #elif defined(WEBRTC_POSIX) | 
|  | fcntl(s_, F_SETFL, fcntl(s_, F_GETFL, 0) | O_NONBLOCK); | 
|  | if (!IsScmTimeStampExperimentDisabled()) { | 
|  | int value = 1; | 
|  | // Attempt to get receive packet timestamp from the socket. | 
|  | if (::setsockopt(s_, SOL_SOCKET, SO_TIMESTAMP, &value, sizeof(value)) != | 
|  | 0) { | 
|  | RTC_DLOG(LS_ERROR) << "::setsockopt failed. errno: " << LAST_SYSTEM_ERROR; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(WEBRTC_IOS) | 
|  | // iOS may kill sockets when the app is moved to the background | 
|  | // (specifically, if the app doesn't use the "voip" UIBackgroundMode). When | 
|  | // we attempt to write to such a socket, SIGPIPE will be raised, which by | 
|  | // default will terminate the process, which we don't want. By specifying | 
|  | // this socket option, SIGPIPE will be disabled for the socket. | 
|  | int value = 1; | 
|  | if (::setsockopt(s_, SOL_SOCKET, SO_NOSIGPIPE, &value, sizeof(value)) != 0) { | 
|  | RTC_DLOG(LS_ERROR) << "::setsockopt failed. errno: " << LAST_SYSTEM_ERROR; | 
|  | } | 
|  | #endif | 
|  | ss_->Add(this); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SocketDispatcher::Create(int type) { | 
|  | return Create(AF_INET, type); | 
|  | } | 
|  |  | 
|  | bool SocketDispatcher::Create(int family, int type) { | 
|  | // Change the socket to be non-blocking. | 
|  | if (!PhysicalSocket::Create(family, type)) | 
|  | return false; | 
|  |  | 
|  | if (!Initialize()) | 
|  | return false; | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | do { | 
|  | id_ = ++next_id_; | 
|  | } while (id_ == 0); | 
|  | #endif | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  |  | 
|  | WSAEVENT SocketDispatcher::GetWSAEvent() { | 
|  | return WSA_INVALID_EVENT; | 
|  | } | 
|  |  | 
|  | SOCKET SocketDispatcher::GetSocket() { | 
|  | return s_; | 
|  | } | 
|  |  | 
|  | bool SocketDispatcher::CheckSignalClose() { | 
|  | if (!signal_close_) | 
|  | return false; | 
|  |  | 
|  | char ch; | 
|  | if (recv(s_, &ch, 1, MSG_PEEK) > 0) | 
|  | return false; | 
|  |  | 
|  | state_ = CS_CLOSED; | 
|  | signal_close_ = false; | 
|  | SignalCloseEvent(this, signal_err_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | int SocketDispatcher::next_id_ = 0; | 
|  |  | 
|  | #elif defined(WEBRTC_POSIX) | 
|  |  | 
|  | int SocketDispatcher::GetDescriptor() { | 
|  | return s_; | 
|  | } | 
|  |  | 
|  | bool SocketDispatcher::IsDescriptorClosed() { | 
|  | if (udp_) { | 
|  | // The MSG_PEEK trick doesn't work for UDP, since (at least in some | 
|  | // circumstances) it requires reading an entire UDP packet, which would be | 
|  | // bad for performance here. So, just check whether `s_` has been closed, | 
|  | // which should be sufficient. | 
|  | return s_ == INVALID_SOCKET; | 
|  | } | 
|  | // We don't have a reliable way of distinguishing end-of-stream | 
|  | // from readability.  So test on each readable call.  Is this | 
|  | // inefficient?  Probably. | 
|  | char ch; | 
|  | ssize_t res; | 
|  | // Retry if the system call was interrupted. | 
|  | do { | 
|  | res = ::recv(s_, &ch, 1, MSG_PEEK); | 
|  | } while (res < 0 && errno == EINTR); | 
|  | if (res > 0) { | 
|  | // Data available, so not closed. | 
|  | return false; | 
|  | } else if (res == 0) { | 
|  | // EOF, so closed. | 
|  | return true; | 
|  | } else {  // error | 
|  | switch (errno) { | 
|  | // Returned if we've already closed s_. | 
|  | case EBADF: | 
|  | // This is dangerous: if we keep attempting to access a FD after close, | 
|  | // it could be reopened by something else making us think it's still | 
|  | // open. Note that this is only a DCHECK. | 
|  | RTC_DCHECK_NOTREACHED(); | 
|  | return true; | 
|  | // Returned during ungraceful peer shutdown. | 
|  | case ECONNRESET: | 
|  | return true; | 
|  | case ECONNABORTED: | 
|  | return true; | 
|  | case EPIPE: | 
|  | return true; | 
|  | // The normal blocking error; don't log anything. | 
|  | case EWOULDBLOCK: | 
|  | return false; | 
|  | default: | 
|  | // Assume that all other errors are just blocking errors, meaning the | 
|  | // connection is still good but we just can't read from it right now. | 
|  | // This should only happen when connecting (and at most once), because | 
|  | // in all other cases this function is only called if the file | 
|  | // descriptor is already known to be in the readable state. However, | 
|  | // it's not necessary a problem if we spuriously interpret a | 
|  | // "connection lost"-type error as a blocking error, because typically | 
|  | // the next recv() will get EOF, so we'll still eventually notice that | 
|  | // the socket is closed. | 
|  | RTC_LOG_ERR(LS_WARNING) << "Assuming benign blocking error"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // WEBRTC_POSIX | 
|  |  | 
|  | uint32_t SocketDispatcher::GetRequestedEvents() { | 
|  | return enabled_events(); | 
|  | } | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  |  | 
|  | void SocketDispatcher::OnEvent(uint32_t ff, int err) { | 
|  | if ((ff & DE_CONNECT) != 0) | 
|  | state_ = CS_CONNECTED; | 
|  |  | 
|  | // We set CS_CLOSED from CheckSignalClose. | 
|  |  | 
|  | int cache_id = id_; | 
|  | // Make sure we deliver connect/accept first. Otherwise, consumers may see | 
|  | // something like a READ followed by a CONNECT, which would be odd. | 
|  | if (((ff & DE_CONNECT) != 0) && (id_ == cache_id)) { | 
|  | if (ff != DE_CONNECT) | 
|  | RTC_LOG(LS_VERBOSE) << "Signalled with DE_CONNECT: " << ff; | 
|  | DisableEvents(DE_CONNECT); | 
|  | #if !defined(NDEBUG) | 
|  | dbg_addr_ = "Connected @ "; | 
|  | dbg_addr_.append(GetRemoteAddress().ToString()); | 
|  | #endif | 
|  | SignalConnectEvent(this); | 
|  | } | 
|  | if (((ff & DE_ACCEPT) != 0) && (id_ == cache_id)) { | 
|  | DisableEvents(DE_ACCEPT); | 
|  | SignalReadEvent(this); | 
|  | } | 
|  | if ((ff & DE_READ) != 0) { | 
|  | DisableEvents(DE_READ); | 
|  | SignalReadEvent(this); | 
|  | } | 
|  | if (((ff & DE_WRITE) != 0) && (id_ == cache_id)) { | 
|  | DisableEvents(DE_WRITE); | 
|  | SignalWriteEvent(this); | 
|  | } | 
|  | if (((ff & DE_CLOSE) != 0) && (id_ == cache_id)) { | 
|  | signal_close_ = true; | 
|  | signal_err_ = err; | 
|  | } | 
|  | } | 
|  |  | 
|  | #elif defined(WEBRTC_POSIX) | 
|  |  | 
|  | void SocketDispatcher::OnEvent(uint32_t ff, int err) { | 
|  | if ((ff & DE_CONNECT) != 0) | 
|  | state_ = CS_CONNECTED; | 
|  |  | 
|  | if ((ff & DE_CLOSE) != 0) | 
|  | state_ = CS_CLOSED; | 
|  |  | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | // Remember currently enabled events so we can combine multiple changes | 
|  | // into one update call later. | 
|  | // The signal handlers might re-enable events disabled here, so we can't | 
|  | // keep a list of events to disable at the end of the method. This list | 
|  | // would not be updated with the events enabled by the signal handlers. | 
|  | StartBatchedEventUpdates(); | 
|  | #endif | 
|  | // Make sure we deliver connect/accept first. Otherwise, consumers may see | 
|  | // something like a READ followed by a CONNECT, which would be odd. | 
|  | if ((ff & DE_CONNECT) != 0) { | 
|  | DisableEvents(DE_CONNECT); | 
|  | SignalConnectEvent(this); | 
|  | } | 
|  | if ((ff & DE_ACCEPT) != 0) { | 
|  | DisableEvents(DE_ACCEPT); | 
|  | SignalReadEvent(this); | 
|  | } | 
|  | if ((ff & DE_READ) != 0) { | 
|  | DisableEvents(DE_READ); | 
|  | SignalReadEvent(this); | 
|  | } | 
|  | if ((ff & DE_WRITE) != 0) { | 
|  | DisableEvents(DE_WRITE); | 
|  | SignalWriteEvent(this); | 
|  | } | 
|  | if ((ff & DE_CLOSE) != 0) { | 
|  | // The socket is now dead to us, so stop checking it. | 
|  | SetEnabledEvents(0); | 
|  | SignalCloseEvent(this, err); | 
|  | } | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | FinishBatchedEventUpdates(); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif  // WEBRTC_POSIX | 
|  |  | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  |  | 
|  | inline static int GetEpollEvents(uint32_t ff) { | 
|  | int events = 0; | 
|  | if (ff & (DE_READ | DE_ACCEPT)) { | 
|  | events |= EPOLLIN; | 
|  | } | 
|  | if (ff & (DE_WRITE | DE_CONNECT)) { | 
|  | events |= EPOLLOUT; | 
|  | } | 
|  | return events; | 
|  | } | 
|  |  | 
|  | void SocketDispatcher::StartBatchedEventUpdates() { | 
|  | RTC_DCHECK_EQ(saved_enabled_events_, -1); | 
|  | saved_enabled_events_ = enabled_events(); | 
|  | } | 
|  |  | 
|  | void SocketDispatcher::FinishBatchedEventUpdates() { | 
|  | RTC_DCHECK_NE(saved_enabled_events_, -1); | 
|  | uint8_t old_events = static_cast<uint8_t>(saved_enabled_events_); | 
|  | saved_enabled_events_ = -1; | 
|  | MaybeUpdateDispatcher(old_events); | 
|  | } | 
|  |  | 
|  | void SocketDispatcher::MaybeUpdateDispatcher(uint8_t old_events) { | 
|  | if (GetEpollEvents(enabled_events()) != GetEpollEvents(old_events) && | 
|  | saved_enabled_events_ == -1) { | 
|  | ss_->Update(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SocketDispatcher::SetEnabledEvents(uint8_t events) { | 
|  | uint8_t old_events = enabled_events(); | 
|  | PhysicalSocket::SetEnabledEvents(events); | 
|  | MaybeUpdateDispatcher(old_events); | 
|  | } | 
|  |  | 
|  | void SocketDispatcher::EnableEvents(uint8_t events) { | 
|  | uint8_t old_events = enabled_events(); | 
|  | PhysicalSocket::EnableEvents(events); | 
|  | MaybeUpdateDispatcher(old_events); | 
|  | } | 
|  |  | 
|  | void SocketDispatcher::DisableEvents(uint8_t events) { | 
|  | uint8_t old_events = enabled_events(); | 
|  | PhysicalSocket::DisableEvents(events); | 
|  | MaybeUpdateDispatcher(old_events); | 
|  | } | 
|  |  | 
|  | #endif  // WEBRTC_USE_EPOLL | 
|  |  | 
|  | int SocketDispatcher::Close() { | 
|  | if (s_ == INVALID_SOCKET) | 
|  | return 0; | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | id_ = 0; | 
|  | signal_close_ = false; | 
|  | #endif | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | // If we're batching events, the socket can be closed and reopened | 
|  | // during the batch. Set saved_enabled_events_ to 0 here so the new | 
|  | // socket, if any, has the correct old events bitfield | 
|  | if (saved_enabled_events_ != -1) { | 
|  | saved_enabled_events_ = 0; | 
|  | } | 
|  | #endif | 
|  | ss_->Remove(this); | 
|  | return PhysicalSocket::Close(); | 
|  | } | 
|  |  | 
|  | #if defined(WEBRTC_POSIX) | 
|  | // Sets the value of a boolean value to false when signaled. | 
|  | class Signaler : public Dispatcher { | 
|  | public: | 
|  | Signaler(PhysicalSocketServer* ss, bool& flag_to_clear) | 
|  | : ss_(ss), | 
|  | afd_([] { | 
|  | std::array<int, 2> afd = {-1, -1}; | 
|  |  | 
|  | if (pipe(afd.data()) < 0) { | 
|  | RTC_LOG(LS_ERROR) << "pipe failed"; | 
|  | } | 
|  | return afd; | 
|  | }()), | 
|  | fSignaled_(false), | 
|  | flag_to_clear_(flag_to_clear) { | 
|  | ss_->Add(this); | 
|  | } | 
|  |  | 
|  | ~Signaler() override { | 
|  | ss_->Remove(this); | 
|  | close(afd_[0]); | 
|  | close(afd_[1]); | 
|  | } | 
|  |  | 
|  | virtual void Signal() { | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | if (!fSignaled_) { | 
|  | const uint8_t b[1] = {0}; | 
|  | const ssize_t res = write(afd_[1], b, sizeof(b)); | 
|  | RTC_DCHECK_EQ(1, res); | 
|  | fSignaled_ = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t GetRequestedEvents() override { return DE_READ; } | 
|  |  | 
|  | void OnEvent(uint32_t ff, int err) override { | 
|  | // It is not possible to perfectly emulate an auto-resetting event with | 
|  | // pipes.  This simulates it by resetting before the event is handled. | 
|  |  | 
|  | webrtc::MutexLock lock(&mutex_); | 
|  | if (fSignaled_) { | 
|  | uint8_t b[4];  // Allow for reading more than 1 byte, but expect 1. | 
|  | const ssize_t res = read(afd_[0], b, sizeof(b)); | 
|  | RTC_DCHECK_EQ(1, res); | 
|  | fSignaled_ = false; | 
|  | } | 
|  | flag_to_clear_ = false; | 
|  | } | 
|  |  | 
|  | int GetDescriptor() override { return afd_[0]; } | 
|  |  | 
|  | bool IsDescriptorClosed() override { return false; } | 
|  |  | 
|  | private: | 
|  | PhysicalSocketServer* const ss_; | 
|  | const std::array<int, 2> afd_; | 
|  | bool fSignaled_ RTC_GUARDED_BY(mutex_); | 
|  | webrtc::Mutex mutex_; | 
|  | bool& flag_to_clear_; | 
|  | }; | 
|  |  | 
|  | #endif  // WEBRTC_POSIX | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | static uint32_t FlagsToEvents(uint32_t events) { | 
|  | uint32_t ffFD = FD_CLOSE; | 
|  | if (events & DE_READ) | 
|  | ffFD |= FD_READ; | 
|  | if (events & DE_WRITE) | 
|  | ffFD |= FD_WRITE; | 
|  | if (events & DE_CONNECT) | 
|  | ffFD |= FD_CONNECT; | 
|  | if (events & DE_ACCEPT) | 
|  | ffFD |= FD_ACCEPT; | 
|  | return ffFD; | 
|  | } | 
|  |  | 
|  | // Sets the value of a boolean value to false when signaled. | 
|  | class Signaler : public Dispatcher { | 
|  | public: | 
|  | Signaler(PhysicalSocketServer* ss, bool& flag_to_clear) | 
|  | : ss_(ss), flag_to_clear_(flag_to_clear) { | 
|  | hev_ = WSACreateEvent(); | 
|  | if (hev_) { | 
|  | ss_->Add(this); | 
|  | } | 
|  | } | 
|  |  | 
|  | ~Signaler() override { | 
|  | if (hev_ != nullptr) { | 
|  | ss_->Remove(this); | 
|  | WSACloseEvent(hev_); | 
|  | hev_ = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual void Signal() { | 
|  | if (hev_ != nullptr) | 
|  | WSASetEvent(hev_); | 
|  | } | 
|  |  | 
|  | uint32_t GetRequestedEvents() override { return 0; } | 
|  |  | 
|  | void OnEvent(uint32_t ff, int err) override { | 
|  | WSAResetEvent(hev_); | 
|  | flag_to_clear_ = false; | 
|  | } | 
|  |  | 
|  | WSAEVENT GetWSAEvent() override { return hev_; } | 
|  |  | 
|  | SOCKET GetSocket() override { return INVALID_SOCKET; } | 
|  |  | 
|  | bool CheckSignalClose() override { return false; } | 
|  |  | 
|  | private: | 
|  | PhysicalSocketServer* ss_; | 
|  | WSAEVENT hev_; | 
|  | bool& flag_to_clear_; | 
|  | }; | 
|  | #endif  // WEBRTC_WIN | 
|  |  | 
|  | PhysicalSocketServer::PhysicalSocketServer() | 
|  | : | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | // Since Linux 2.6.8, the size argument is ignored, but must be greater | 
|  | // than zero. Before that the size served as hint to the kernel for the | 
|  | // amount of space to initially allocate in internal data structures. | 
|  | epoll_fd_(epoll_create(FD_SETSIZE)), | 
|  | #endif | 
|  | #if defined(WEBRTC_WIN) | 
|  | socket_ev_(WSACreateEvent()), | 
|  | #endif | 
|  | fWait_(false) { | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | if (epoll_fd_ == -1) { | 
|  | // Not an error, will fall back to "select" below. | 
|  | RTC_LOG_E(LS_WARNING, EN, errno) << "epoll_create"; | 
|  | // Note that -1 == INVALID_SOCKET, the alias used by later checks. | 
|  | } | 
|  | #endif | 
|  | // The `fWait_` flag to be cleared by the Signaler. | 
|  | signal_wakeup_ = new Signaler(this, fWait_); | 
|  | } | 
|  |  | 
|  | PhysicalSocketServer::~PhysicalSocketServer() { | 
|  | #if defined(WEBRTC_WIN) | 
|  | WSACloseEvent(socket_ev_); | 
|  | #endif | 
|  | delete signal_wakeup_; | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | if (epoll_fd_ != INVALID_SOCKET) { | 
|  | close(epoll_fd_); | 
|  | } | 
|  | #endif | 
|  | RTC_DCHECK(dispatcher_by_key_.empty()); | 
|  | RTC_DCHECK(key_by_dispatcher_.empty()); | 
|  | } | 
|  |  | 
|  | void PhysicalSocketServer::WakeUp() { | 
|  | signal_wakeup_->Signal(); | 
|  | } | 
|  |  | 
|  | Socket* PhysicalSocketServer::CreateSocket(int family, int type) { | 
|  | SocketDispatcher* dispatcher = new SocketDispatcher(this); | 
|  | if (dispatcher->Create(family, type)) { | 
|  | return dispatcher; | 
|  | } else { | 
|  | delete dispatcher; | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Socket* PhysicalSocketServer::WrapSocket(SOCKET s) { | 
|  | SocketDispatcher* dispatcher = new SocketDispatcher(s, this); | 
|  | if (dispatcher->Initialize()) { | 
|  | return dispatcher; | 
|  | } else { | 
|  | delete dispatcher; | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PhysicalSocketServer::Add(Dispatcher* pdispatcher) { | 
|  | CritScope cs(&crit_); | 
|  | if (key_by_dispatcher_.count(pdispatcher)) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "PhysicalSocketServer asked to add a duplicate dispatcher."; | 
|  | return; | 
|  | } | 
|  | uint64_t key = next_dispatcher_key_++; | 
|  | dispatcher_by_key_.emplace(key, pdispatcher); | 
|  | key_by_dispatcher_.emplace(pdispatcher, key); | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | if (epoll_fd_ != INVALID_SOCKET) { | 
|  | AddEpoll(pdispatcher, key); | 
|  | } | 
|  | #endif  // WEBRTC_USE_EPOLL | 
|  | } | 
|  |  | 
|  | void PhysicalSocketServer::Remove(Dispatcher* pdispatcher) { | 
|  | CritScope cs(&crit_); | 
|  | if (!key_by_dispatcher_.count(pdispatcher)) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "PhysicalSocketServer asked to remove a unknown " | 
|  | "dispatcher, potentially from a duplicate call to Add."; | 
|  | return; | 
|  | } | 
|  | uint64_t key = key_by_dispatcher_.at(pdispatcher); | 
|  | key_by_dispatcher_.erase(pdispatcher); | 
|  | dispatcher_by_key_.erase(key); | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | if (epoll_fd_ != INVALID_SOCKET) { | 
|  | RemoveEpoll(pdispatcher); | 
|  | } | 
|  | #endif  // WEBRTC_USE_EPOLL | 
|  | } | 
|  |  | 
|  | void PhysicalSocketServer::Update(Dispatcher* pdispatcher) { | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | if (epoll_fd_ == INVALID_SOCKET) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Don't update dispatchers that haven't yet been added. | 
|  | CritScope cs(&crit_); | 
|  | if (!key_by_dispatcher_.count(pdispatcher)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | UpdateEpoll(pdispatcher, key_by_dispatcher_.at(pdispatcher)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | int PhysicalSocketServer::ToCmsWait(webrtc::TimeDelta max_wait_duration) { | 
|  | return max_wait_duration == Event::kForever | 
|  | ? kForeverMs | 
|  | : max_wait_duration.RoundUpTo(webrtc::TimeDelta::Millis(1)).ms(); | 
|  | } | 
|  |  | 
|  | #if defined(WEBRTC_POSIX) | 
|  |  | 
|  | bool PhysicalSocketServer::Wait(webrtc::TimeDelta max_wait_duration, | 
|  | bool process_io) { | 
|  | // We don't support reentrant waiting. | 
|  | RTC_DCHECK(!waiting_); | 
|  | ScopedSetTrue s(&waiting_); | 
|  | const int cmsWait = ToCmsWait(max_wait_duration); | 
|  |  | 
|  | #if defined(WEBRTC_USE_POLL) | 
|  | return WaitPoll(cmsWait, process_io); | 
|  | #else | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  | // We don't keep a dedicated "epoll" descriptor containing only the non-IO | 
|  | // (i.e. signaling) dispatcher, so "poll" will be used instead of the default | 
|  | // "select" to support sockets larger than FD_SETSIZE. | 
|  | if (!process_io) { | 
|  | return WaitPollOneDispatcher(cmsWait, signal_wakeup_); | 
|  | } else if (epoll_fd_ != INVALID_SOCKET) { | 
|  | return WaitEpoll(cmsWait); | 
|  | } | 
|  | #endif | 
|  | return WaitSelect(cmsWait, process_io); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // `error_event` is true if we are responding to an event where we know an | 
|  | // error has occurred, which is possible with the poll/epoll implementations | 
|  | // but not the select implementation. | 
|  | // | 
|  | // `check_error` is true if there is the possibility of an error. | 
|  | static void ProcessEvents(Dispatcher* dispatcher, | 
|  | bool readable, | 
|  | bool writable, | 
|  | bool error_event, | 
|  | bool check_error) { | 
|  | RTC_DCHECK(!(error_event && !check_error)); | 
|  | int errcode = 0; | 
|  | if (check_error) { | 
|  | socklen_t len = sizeof(errcode); | 
|  | int res = ::getsockopt(dispatcher->GetDescriptor(), SOL_SOCKET, SO_ERROR, | 
|  | &errcode, &len); | 
|  | if (res < 0) { | 
|  | // If we are sure an error has occurred, or if getsockopt failed for a | 
|  | // socket descriptor, make sure we set the error code to a nonzero value. | 
|  | if (error_event || errno != ENOTSOCK) { | 
|  | errcode = EBADF; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Most often the socket is writable or readable or both, so make a single | 
|  | // virtual call to get requested events | 
|  | const uint32_t requested_events = dispatcher->GetRequestedEvents(); | 
|  | uint32_t ff = 0; | 
|  |  | 
|  | // Check readable descriptors. If we're waiting on an accept, signal | 
|  | // that. Otherwise we're waiting for data, check to see if we're | 
|  | // readable or really closed. | 
|  | // TODO(pthatcher): Only peek at TCP descriptors. | 
|  | if (readable) { | 
|  | if (errcode || dispatcher->IsDescriptorClosed()) { | 
|  | ff |= DE_CLOSE; | 
|  | } else if (requested_events & DE_ACCEPT) { | 
|  | ff |= DE_ACCEPT; | 
|  | } else { | 
|  | ff |= DE_READ; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check writable descriptors. If we're waiting on a connect, detect | 
|  | // success versus failure by the reaped error code. | 
|  | if (writable) { | 
|  | if (requested_events & DE_CONNECT) { | 
|  | if (!errcode) { | 
|  | ff |= DE_CONNECT; | 
|  | } | 
|  | } else { | 
|  | ff |= DE_WRITE; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we report any errors regardless of whether readable or writable. | 
|  | if (errcode) { | 
|  | ff |= DE_CLOSE; | 
|  | } | 
|  |  | 
|  | // Tell the descriptor about the event. | 
|  | if (ff != 0) { | 
|  | dispatcher->OnEvent(ff, errcode); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if defined(WEBRTC_USE_POLL) || defined(WEBRTC_USE_EPOLL) | 
|  | static void ProcessPollEvents(Dispatcher* dispatcher, const pollfd& pfd) { | 
|  | bool readable = (pfd.revents & (POLLIN | POLLPRI)); | 
|  | bool writable = (pfd.revents & POLLOUT); | 
|  | bool error = (pfd.revents & (POLLRDHUP | POLLERR | POLLHUP)); | 
|  |  | 
|  | ProcessEvents(dispatcher, readable, writable, error, error); | 
|  | } | 
|  |  | 
|  | static pollfd DispatcherToPollfd(Dispatcher* dispatcher) { | 
|  | pollfd fd{ | 
|  | .fd = dispatcher->GetDescriptor(), | 
|  | .events = 0, | 
|  | .revents = 0, | 
|  | }; | 
|  |  | 
|  | uint32_t ff = dispatcher->GetRequestedEvents(); | 
|  | if (ff & (DE_READ | DE_ACCEPT)) { | 
|  | fd.events |= POLLIN; | 
|  | } | 
|  | if (ff & (DE_WRITE | DE_CONNECT)) { | 
|  | fd.events |= POLLOUT; | 
|  | } | 
|  |  | 
|  | return fd; | 
|  | } | 
|  | #endif  // WEBRTC_USE_POLL || WEBRTC_USE_EPOLL | 
|  |  | 
|  | bool PhysicalSocketServer::WaitSelect(int cmsWait, bool process_io) { | 
|  | // Calculate timing information | 
|  |  | 
|  | struct timeval* ptvWait = nullptr; | 
|  | struct timeval tvWait; | 
|  | int64_t stop_us; | 
|  | if (cmsWait != kForeverMs) { | 
|  | // Calculate wait timeval | 
|  | tvWait.tv_sec = cmsWait / 1000; | 
|  | tvWait.tv_usec = (cmsWait % 1000) * 1000; | 
|  | ptvWait = &tvWait; | 
|  |  | 
|  | // Calculate when to return | 
|  | stop_us = rtc::TimeMicros() + cmsWait * 1000; | 
|  | } | 
|  |  | 
|  | fd_set fdsRead; | 
|  | fd_set fdsWrite; | 
|  | // Explicitly unpoison these FDs on MemorySanitizer which doesn't handle the | 
|  | // inline assembly in FD_ZERO. | 
|  | // http://crbug.com/344505 | 
|  | #ifdef MEMORY_SANITIZER | 
|  | __msan_unpoison(&fdsRead, sizeof(fdsRead)); | 
|  | __msan_unpoison(&fdsWrite, sizeof(fdsWrite)); | 
|  | #endif | 
|  |  | 
|  | fWait_ = true; | 
|  |  | 
|  | while (fWait_) { | 
|  | // Zero all fd_sets. Although select() zeros the descriptors not signaled, | 
|  | // we may need to do this for dispatchers that were deleted while | 
|  | // iterating. | 
|  | FD_ZERO(&fdsRead); | 
|  | FD_ZERO(&fdsWrite); | 
|  | int fdmax = -1; | 
|  | { | 
|  | CritScope cr(&crit_); | 
|  | current_dispatcher_keys_.clear(); | 
|  | for (auto const& kv : dispatcher_by_key_) { | 
|  | uint64_t key = kv.first; | 
|  | Dispatcher* pdispatcher = kv.second; | 
|  | if (!process_io && (pdispatcher != signal_wakeup_)) | 
|  | continue; | 
|  | current_dispatcher_keys_.push_back(key); | 
|  | int fd = pdispatcher->GetDescriptor(); | 
|  | // "select"ing a file descriptor that is equal to or larger than | 
|  | // FD_SETSIZE will result in undefined behavior. | 
|  | RTC_DCHECK_LT(fd, FD_SETSIZE); | 
|  | if (fd > fdmax) | 
|  | fdmax = fd; | 
|  |  | 
|  | uint32_t ff = pdispatcher->GetRequestedEvents(); | 
|  | if (ff & (DE_READ | DE_ACCEPT)) | 
|  | FD_SET(fd, &fdsRead); | 
|  | if (ff & (DE_WRITE | DE_CONNECT)) | 
|  | FD_SET(fd, &fdsWrite); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait then call handlers as appropriate | 
|  | // < 0 means error | 
|  | // 0 means timeout | 
|  | // > 0 means count of descriptors ready | 
|  | int n = select(fdmax + 1, &fdsRead, &fdsWrite, nullptr, ptvWait); | 
|  |  | 
|  | // If error, return error. | 
|  | if (n < 0) { | 
|  | if (errno != EINTR) { | 
|  | RTC_LOG_E(LS_ERROR, EN, errno) << "select"; | 
|  | return false; | 
|  | } | 
|  | // Else ignore the error and keep going. If this EINTR was for one of the | 
|  | // signals managed by this PhysicalSocketServer, the | 
|  | // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
|  | // iteration. | 
|  | } else if (n == 0) { | 
|  | // If timeout, return success | 
|  | return true; | 
|  | } else { | 
|  | // We have signaled descriptors | 
|  | CritScope cr(&crit_); | 
|  | // Iterate only on the dispatchers whose file descriptors were passed into | 
|  | // select; this avoids the ABA problem (a socket being destroyed and a new | 
|  | // one created with the same file descriptor). | 
|  | for (uint64_t key : current_dispatcher_keys_) { | 
|  | if (!dispatcher_by_key_.count(key)) | 
|  | continue; | 
|  | Dispatcher* pdispatcher = dispatcher_by_key_.at(key); | 
|  |  | 
|  | int fd = pdispatcher->GetDescriptor(); | 
|  |  | 
|  | bool readable = FD_ISSET(fd, &fdsRead); | 
|  | if (readable) { | 
|  | FD_CLR(fd, &fdsRead); | 
|  | } | 
|  |  | 
|  | bool writable = FD_ISSET(fd, &fdsWrite); | 
|  | if (writable) { | 
|  | FD_CLR(fd, &fdsWrite); | 
|  | } | 
|  |  | 
|  | // The error code can be signaled through reads or writes. | 
|  | ProcessEvents(pdispatcher, readable, writable, /*error_event=*/false, | 
|  | readable || writable); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Recalc the time remaining to wait. Doing it here means it doesn't get | 
|  | // calced twice the first time through the loop | 
|  | if (ptvWait) { | 
|  | ptvWait->tv_sec = 0; | 
|  | ptvWait->tv_usec = 0; | 
|  | int64_t time_left_us = stop_us - rtc::TimeMicros(); | 
|  | if (time_left_us > 0) { | 
|  | ptvWait->tv_sec = time_left_us / rtc::kNumMicrosecsPerSec; | 
|  | ptvWait->tv_usec = time_left_us % rtc::kNumMicrosecsPerSec; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if defined(WEBRTC_USE_EPOLL) | 
|  |  | 
|  | void PhysicalSocketServer::AddEpoll(Dispatcher* pdispatcher, uint64_t key) { | 
|  | RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
|  | int fd = pdispatcher->GetDescriptor(); | 
|  | RTC_DCHECK(fd != INVALID_SOCKET); | 
|  | if (fd == INVALID_SOCKET) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | struct epoll_event event = {0}; | 
|  | event.events = GetEpollEvents(pdispatcher->GetRequestedEvents()); | 
|  | if (event.events == 0u) { | 
|  | // Don't add at all if we don't have any requested events. Could indicate a | 
|  | // closed socket. | 
|  | return; | 
|  | } | 
|  | event.data.u64 = key; | 
|  | int err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event); | 
|  | RTC_DCHECK_EQ(err, 0); | 
|  | if (err == -1) { | 
|  | RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PhysicalSocketServer::RemoveEpoll(Dispatcher* pdispatcher) { | 
|  | RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
|  | int fd = pdispatcher->GetDescriptor(); | 
|  | RTC_DCHECK(fd != INVALID_SOCKET); | 
|  | if (fd == INVALID_SOCKET) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | struct epoll_event event = {0}; | 
|  | int err = epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event); | 
|  | RTC_DCHECK(err == 0 || errno == ENOENT); | 
|  | // Ignore ENOENT, which could occur if this descriptor wasn't added due to | 
|  | // having no requested events. | 
|  | if (err == -1 && errno != ENOENT) { | 
|  | RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_DEL"; | 
|  | } | 
|  | } | 
|  |  | 
|  | void PhysicalSocketServer::UpdateEpoll(Dispatcher* pdispatcher, uint64_t key) { | 
|  | RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
|  | int fd = pdispatcher->GetDescriptor(); | 
|  | RTC_DCHECK(fd != INVALID_SOCKET); | 
|  | if (fd == INVALID_SOCKET) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | struct epoll_event event = {0}; | 
|  | event.events = GetEpollEvents(pdispatcher->GetRequestedEvents()); | 
|  | event.data.u64 = key; | 
|  | // Remove if we don't have any requested events. Could indicate a closed | 
|  | // socket. | 
|  | if (event.events == 0u) { | 
|  | epoll_ctl(epoll_fd_, EPOLL_CTL_DEL, fd, &event); | 
|  | } else { | 
|  | int err = epoll_ctl(epoll_fd_, EPOLL_CTL_MOD, fd, &event); | 
|  | RTC_DCHECK(err == 0 || errno == ENOENT); | 
|  | if (err == -1) { | 
|  | // Could have been removed earlier due to no requested events. | 
|  | if (errno == ENOENT) { | 
|  | err = epoll_ctl(epoll_fd_, EPOLL_CTL_ADD, fd, &event); | 
|  | if (err == -1) { | 
|  | RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_ADD"; | 
|  | } | 
|  | } else { | 
|  | RTC_LOG_E(LS_ERROR, EN, errno) << "epoll_ctl EPOLL_CTL_MOD"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PhysicalSocketServer::WaitEpoll(int cmsWait) { | 
|  | RTC_DCHECK(epoll_fd_ != INVALID_SOCKET); | 
|  | int64_t msWait = -1; | 
|  | int64_t msStop = -1; | 
|  | if (cmsWait != kForeverMs) { | 
|  | msWait = cmsWait; | 
|  | msStop = TimeAfter(cmsWait); | 
|  | } | 
|  |  | 
|  | fWait_ = true; | 
|  | while (fWait_) { | 
|  | // Wait then call handlers as appropriate | 
|  | // < 0 means error | 
|  | // 0 means timeout | 
|  | // > 0 means count of descriptors ready | 
|  | int n = epoll_wait(epoll_fd_, epoll_events_.data(), epoll_events_.size(), | 
|  | static_cast<int>(msWait)); | 
|  | if (n < 0) { | 
|  | if (errno != EINTR) { | 
|  | RTC_LOG_E(LS_ERROR, EN, errno) << "epoll"; | 
|  | return false; | 
|  | } | 
|  | // Else ignore the error and keep going. If this EINTR was for one of the | 
|  | // signals managed by this PhysicalSocketServer, the | 
|  | // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
|  | // iteration. | 
|  | } else if (n == 0) { | 
|  | // If timeout, return success | 
|  | return true; | 
|  | } else { | 
|  | // We have signaled descriptors | 
|  | CritScope cr(&crit_); | 
|  | for (int i = 0; i < n; ++i) { | 
|  | const epoll_event& event = epoll_events_[i]; | 
|  | uint64_t key = event.data.u64; | 
|  | if (!dispatcher_by_key_.count(key)) { | 
|  | // The dispatcher for this socket no longer exists. | 
|  | continue; | 
|  | } | 
|  | Dispatcher* pdispatcher = dispatcher_by_key_.at(key); | 
|  |  | 
|  | bool readable = (event.events & (EPOLLIN | EPOLLPRI)); | 
|  | bool writable = (event.events & EPOLLOUT); | 
|  | bool error = (event.events & (EPOLLRDHUP | EPOLLERR | EPOLLHUP)); | 
|  |  | 
|  | ProcessEvents(pdispatcher, readable, writable, error, error); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cmsWait != kForeverMs) { | 
|  | msWait = TimeDiff(msStop, TimeMillis()); | 
|  | if (msWait <= 0) { | 
|  | // Return success on timeout. | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PhysicalSocketServer::WaitPollOneDispatcher(int cmsWait, | 
|  | Dispatcher* dispatcher) { | 
|  | RTC_DCHECK(dispatcher); | 
|  | int64_t msWait = -1; | 
|  | int64_t msStop = -1; | 
|  | if (cmsWait != kForeverMs) { | 
|  | msWait = cmsWait; | 
|  | msStop = TimeAfter(cmsWait); | 
|  | } | 
|  |  | 
|  | fWait_ = true; | 
|  | const int fd = dispatcher->GetDescriptor(); | 
|  |  | 
|  | while (fWait_) { | 
|  | auto fds = DispatcherToPollfd(dispatcher); | 
|  |  | 
|  | // Wait then call handlers as appropriate | 
|  | // < 0 means error | 
|  | // 0 means timeout | 
|  | // > 0 means count of descriptors ready | 
|  | int n = poll(&fds, 1, static_cast<int>(msWait)); | 
|  | if (n < 0) { | 
|  | if (errno != EINTR) { | 
|  | RTC_LOG_E(LS_ERROR, EN, errno) << "poll"; | 
|  | return false; | 
|  | } | 
|  | // Else ignore the error and keep going. If this EINTR was for one of the | 
|  | // signals managed by this PhysicalSocketServer, the | 
|  | // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
|  | // iteration. | 
|  | } else if (n == 0) { | 
|  | // If timeout, return success | 
|  | return true; | 
|  | } else { | 
|  | // We have signaled descriptors (should only be the passed dispatcher). | 
|  | RTC_DCHECK_EQ(n, 1); | 
|  | RTC_DCHECK_EQ(fds.fd, fd); | 
|  | ProcessPollEvents(dispatcher, fds); | 
|  | } | 
|  |  | 
|  | if (cmsWait != kForeverMs) { | 
|  | msWait = TimeDiff(msStop, TimeMillis()); | 
|  | if (msWait < 0) { | 
|  | // Return success on timeout. | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #elif defined(WEBRTC_USE_POLL) | 
|  |  | 
|  | bool PhysicalSocketServer::WaitPoll(int cmsWait, bool process_io) { | 
|  | int64_t msWait = -1; | 
|  | int64_t msStop = -1; | 
|  | if (cmsWait != kForeverMs) { | 
|  | msWait = cmsWait; | 
|  | msStop = TimeAfter(cmsWait); | 
|  | } | 
|  |  | 
|  | std::vector<pollfd> pollfds; | 
|  | fWait_ = true; | 
|  |  | 
|  | while (fWait_) { | 
|  | { | 
|  | CritScope cr(&crit_); | 
|  | current_dispatcher_keys_.clear(); | 
|  | pollfds.clear(); | 
|  | pollfds.reserve(dispatcher_by_key_.size()); | 
|  |  | 
|  | for (auto const& kv : dispatcher_by_key_) { | 
|  | uint64_t key = kv.first; | 
|  | Dispatcher* pdispatcher = kv.second; | 
|  | if (!process_io && (pdispatcher != signal_wakeup_)) | 
|  | continue; | 
|  | current_dispatcher_keys_.push_back(key); | 
|  | pollfds.push_back(DispatcherToPollfd(pdispatcher)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Wait then call handlers as appropriate | 
|  | // < 0 means error | 
|  | // 0 means timeout | 
|  | // > 0 means count of descriptors ready | 
|  | int n = poll(pollfds.data(), pollfds.size(), static_cast<int>(msWait)); | 
|  | if (n < 0) { | 
|  | if (errno != EINTR) { | 
|  | RTC_LOG_E(LS_ERROR, EN, errno) << "poll"; | 
|  | return false; | 
|  | } | 
|  | // Else ignore the error and keep going. If this EINTR was for one of the | 
|  | // signals managed by this PhysicalSocketServer, the | 
|  | // PosixSignalDeliveryDispatcher will be in the signaled state in the next | 
|  | // iteration. | 
|  | } else if (n == 0) { | 
|  | // If timeout, return success | 
|  | return true; | 
|  | } else { | 
|  | // We have signaled descriptors | 
|  | CritScope cr(&crit_); | 
|  | // Iterate only on the dispatchers whose file descriptors were passed into | 
|  | // poll; this avoids the ABA problem (a socket being destroyed and a new | 
|  | // one created with the same file descriptor). | 
|  | for (size_t i = 0; i < current_dispatcher_keys_.size(); ++i) { | 
|  | uint64_t key = current_dispatcher_keys_[i]; | 
|  | if (!dispatcher_by_key_.count(key)) | 
|  | continue; | 
|  | ProcessPollEvents(dispatcher_by_key_.at(key), pollfds[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cmsWait != kForeverMs) { | 
|  | msWait = TimeDiff(msStop, TimeMillis()); | 
|  | if (msWait < 0) { | 
|  | // Return success on timeout. | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #endif  // WEBRTC_USE_EPOLL, WEBRTC_USE_POLL | 
|  |  | 
|  | #endif  // WEBRTC_POSIX | 
|  |  | 
|  | #if defined(WEBRTC_WIN) | 
|  | bool PhysicalSocketServer::Wait(webrtc::TimeDelta max_wait_duration, | 
|  | bool process_io) { | 
|  | // We don't support reentrant waiting. | 
|  | RTC_DCHECK(!waiting_); | 
|  | ScopedSetTrue s(&waiting_); | 
|  |  | 
|  | int cmsWait = ToCmsWait(max_wait_duration); | 
|  | int64_t cmsTotal = cmsWait; | 
|  | int64_t cmsElapsed = 0; | 
|  | int64_t msStart = Time(); | 
|  |  | 
|  | fWait_ = true; | 
|  | while (fWait_) { | 
|  | std::vector<WSAEVENT> events; | 
|  | std::vector<uint64_t> event_owners; | 
|  |  | 
|  | events.push_back(socket_ev_); | 
|  |  | 
|  | { | 
|  | CritScope cr(&crit_); | 
|  | // Get a snapshot of all current dispatchers; this is used to avoid the | 
|  | // ABA problem (see later comment) and avoids the dispatcher_by_key_ | 
|  | // iterator being invalidated by calling CheckSignalClose, which may | 
|  | // remove the dispatcher from the list. | 
|  | current_dispatcher_keys_.clear(); | 
|  | for (auto const& kv : dispatcher_by_key_) { | 
|  | current_dispatcher_keys_.push_back(kv.first); | 
|  | } | 
|  | for (uint64_t key : current_dispatcher_keys_) { | 
|  | if (!dispatcher_by_key_.count(key)) { | 
|  | continue; | 
|  | } | 
|  | Dispatcher* disp = dispatcher_by_key_.at(key); | 
|  | if (!disp) | 
|  | continue; | 
|  | if (!process_io && (disp != signal_wakeup_)) | 
|  | continue; | 
|  | SOCKET s = disp->GetSocket(); | 
|  | if (disp->CheckSignalClose()) { | 
|  | // We just signalled close, don't poll this socket. | 
|  | } else if (s != INVALID_SOCKET) { | 
|  | WSAEventSelect(s, events[0], | 
|  | FlagsToEvents(disp->GetRequestedEvents())); | 
|  | } else { | 
|  | events.push_back(disp->GetWSAEvent()); | 
|  | event_owners.push_back(key); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Which is shorter, the delay wait or the asked wait? | 
|  |  | 
|  | int64_t cmsNext; | 
|  | if (cmsWait == kForeverMs) { | 
|  | cmsNext = cmsWait; | 
|  | } else { | 
|  | cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed); | 
|  | } | 
|  |  | 
|  | // Wait for one of the events to signal | 
|  | DWORD dw = | 
|  | WSAWaitForMultipleEvents(static_cast<DWORD>(events.size()), &events[0], | 
|  | false, static_cast<DWORD>(cmsNext), false); | 
|  |  | 
|  | if (dw == WSA_WAIT_FAILED) { | 
|  | // Failed? | 
|  | // TODO(pthatcher): need a better strategy than this! | 
|  | WSAGetLastError(); | 
|  | RTC_DCHECK_NOTREACHED(); | 
|  | return false; | 
|  | } else if (dw == WSA_WAIT_TIMEOUT) { | 
|  | // Timeout? | 
|  | return true; | 
|  | } else { | 
|  | // Figure out which one it is and call it | 
|  | CritScope cr(&crit_); | 
|  | int index = dw - WSA_WAIT_EVENT_0; | 
|  | if (index > 0) { | 
|  | --index;  // The first event is the socket event | 
|  | uint64_t key = event_owners[index]; | 
|  | if (!dispatcher_by_key_.count(key)) { | 
|  | // The dispatcher could have been removed while waiting for events. | 
|  | continue; | 
|  | } | 
|  | Dispatcher* disp = dispatcher_by_key_.at(key); | 
|  | disp->OnEvent(0, 0); | 
|  | } else if (process_io) { | 
|  | // Iterate only on the dispatchers whose sockets were passed into | 
|  | // WSAEventSelect; this avoids the ABA problem (a socket being | 
|  | // destroyed and a new one created with the same SOCKET handle). | 
|  | for (uint64_t key : current_dispatcher_keys_) { | 
|  | if (!dispatcher_by_key_.count(key)) { | 
|  | continue; | 
|  | } | 
|  | Dispatcher* disp = dispatcher_by_key_.at(key); | 
|  | SOCKET s = disp->GetSocket(); | 
|  | if (s == INVALID_SOCKET) | 
|  | continue; | 
|  |  | 
|  | WSANETWORKEVENTS wsaEvents; | 
|  | int err = WSAEnumNetworkEvents(s, events[0], &wsaEvents); | 
|  | if (err == 0) { | 
|  | { | 
|  | if ((wsaEvents.lNetworkEvents & FD_READ) && | 
|  | wsaEvents.iErrorCode[FD_READ_BIT] != 0) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "PhysicalSocketServer got FD_READ_BIT error " | 
|  | << wsaEvents.iErrorCode[FD_READ_BIT]; | 
|  | } | 
|  | if ((wsaEvents.lNetworkEvents & FD_WRITE) && | 
|  | wsaEvents.iErrorCode[FD_WRITE_BIT] != 0) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "PhysicalSocketServer got FD_WRITE_BIT error " | 
|  | << wsaEvents.iErrorCode[FD_WRITE_BIT]; | 
|  | } | 
|  | if ((wsaEvents.lNetworkEvents & FD_CONNECT) && | 
|  | wsaEvents.iErrorCode[FD_CONNECT_BIT] != 0) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "PhysicalSocketServer got FD_CONNECT_BIT error " | 
|  | << wsaEvents.iErrorCode[FD_CONNECT_BIT]; | 
|  | } | 
|  | if ((wsaEvents.lNetworkEvents & FD_ACCEPT) && | 
|  | wsaEvents.iErrorCode[FD_ACCEPT_BIT] != 0) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "PhysicalSocketServer got FD_ACCEPT_BIT error " | 
|  | << wsaEvents.iErrorCode[FD_ACCEPT_BIT]; | 
|  | } | 
|  | if ((wsaEvents.lNetworkEvents & FD_CLOSE) && | 
|  | wsaEvents.iErrorCode[FD_CLOSE_BIT] != 0) { | 
|  | RTC_LOG(LS_WARNING) | 
|  | << "PhysicalSocketServer got FD_CLOSE_BIT error " | 
|  | << wsaEvents.iErrorCode[FD_CLOSE_BIT]; | 
|  | } | 
|  | } | 
|  | uint32_t ff = 0; | 
|  | int errcode = 0; | 
|  | if (wsaEvents.lNetworkEvents & FD_READ) | 
|  | ff |= DE_READ; | 
|  | if (wsaEvents.lNetworkEvents & FD_WRITE) | 
|  | ff |= DE_WRITE; | 
|  | if (wsaEvents.lNetworkEvents & FD_CONNECT) { | 
|  | if (wsaEvents.iErrorCode[FD_CONNECT_BIT] == 0) { | 
|  | ff |= DE_CONNECT; | 
|  | } else { | 
|  | ff |= DE_CLOSE; | 
|  | errcode = wsaEvents.iErrorCode[FD_CONNECT_BIT]; | 
|  | } | 
|  | } | 
|  | if (wsaEvents.lNetworkEvents & FD_ACCEPT) | 
|  | ff |= DE_ACCEPT; | 
|  | if (wsaEvents.lNetworkEvents & FD_CLOSE) { | 
|  | ff |= DE_CLOSE; | 
|  | errcode = wsaEvents.iErrorCode[FD_CLOSE_BIT]; | 
|  | } | 
|  | if (ff != 0) { | 
|  | disp->OnEvent(ff, errcode); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Reset the network event until new activity occurs | 
|  | WSAResetEvent(socket_ev_); | 
|  | } | 
|  |  | 
|  | // Break? | 
|  | if (!fWait_) | 
|  | break; | 
|  | cmsElapsed = TimeSince(msStart); | 
|  | if ((cmsWait != kForeverMs) && (cmsElapsed >= cmsWait)) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Done | 
|  | return true; | 
|  | } | 
|  | #endif  // WEBRTC_WIN | 
|  |  | 
|  | }  // namespace rtc |