|  | /* | 
|  | *  Copyright 2016 The WebRTC Project Authors. All rights reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "rtc_base/timestamp_aligner.h" | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <limits> | 
|  |  | 
|  | #include "rtc_base/random.h" | 
|  | #include "rtc_base/time_utils.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace rtc { | 
|  |  | 
|  | namespace { | 
|  | // Computes the difference x_k - mean(x), when x_k is the linear sequence x_k = | 
|  | // k, and the "mean" is plain mean for the first `window_size` samples, followed | 
|  | // by exponential averaging with weight 1 / `window_size` for each new sample. | 
|  | // This is needed to predict the effect of camera clock drift on the timestamp | 
|  | // translation. See the comment on TimestampAligner::UpdateOffset for more | 
|  | // context. | 
|  | double MeanTimeDifference(int nsamples, int window_size) { | 
|  | if (nsamples <= window_size) { | 
|  | // Plain averaging. | 
|  | return nsamples / 2.0; | 
|  | } else { | 
|  | // Exponential convergence towards | 
|  | // interval_error * (window_size - 1) | 
|  | double alpha = 1.0 - 1.0 / window_size; | 
|  |  | 
|  | return ((window_size - 1) - | 
|  | (window_size / 2.0 - 1) * pow(alpha, nsamples - window_size)); | 
|  | } | 
|  | } | 
|  |  | 
|  | class TimestampAlignerForTest : public TimestampAligner { | 
|  | // Make internal methods accessible to testing. | 
|  | public: | 
|  | using TimestampAligner::ClipTimestamp; | 
|  | using TimestampAligner::UpdateOffset; | 
|  | }; | 
|  |  | 
|  | void TestTimestampFilter(double rel_freq_error) { | 
|  | TimestampAlignerForTest timestamp_aligner_for_test; | 
|  | TimestampAligner timestamp_aligner; | 
|  | const int64_t kEpoch = 10000; | 
|  | const int64_t kJitterUs = 5000; | 
|  | const int64_t kIntervalUs = 33333;  // 30 FPS | 
|  | const int kWindowSize = 100; | 
|  | const int kNumFrames = 3 * kWindowSize; | 
|  |  | 
|  | int64_t interval_error_us = kIntervalUs * rel_freq_error; | 
|  | int64_t system_start_us = rtc::TimeMicros(); | 
|  | webrtc::Random random(17); | 
|  |  | 
|  | int64_t prev_translated_time_us = system_start_us; | 
|  |  | 
|  | for (int i = 0; i < kNumFrames; i++) { | 
|  | // Camera time subject to drift. | 
|  | int64_t camera_time_us = kEpoch + i * (kIntervalUs + interval_error_us); | 
|  | int64_t system_time_us = system_start_us + i * kIntervalUs; | 
|  | // And system time readings are subject to jitter. | 
|  | int64_t system_measured_us = system_time_us + random.Rand(kJitterUs); | 
|  |  | 
|  | int64_t offset_us = timestamp_aligner_for_test.UpdateOffset( | 
|  | camera_time_us, system_measured_us); | 
|  |  | 
|  | int64_t filtered_time_us = camera_time_us + offset_us; | 
|  | int64_t translated_time_us = timestamp_aligner_for_test.ClipTimestamp( | 
|  | filtered_time_us, system_measured_us); | 
|  |  | 
|  | // Check that we get identical result from the all-in-one helper method. | 
|  | ASSERT_EQ(translated_time_us, timestamp_aligner.TranslateTimestamp( | 
|  | camera_time_us, system_measured_us)); | 
|  |  | 
|  | EXPECT_LE(translated_time_us, system_measured_us); | 
|  | EXPECT_GE(translated_time_us, | 
|  | prev_translated_time_us + rtc::kNumMicrosecsPerMillisec); | 
|  |  | 
|  | // The relative frequency error contributes to the expected error | 
|  | // by a factor which is the difference between the current time | 
|  | // and the average of earlier sample times. | 
|  | int64_t expected_error_us = | 
|  | kJitterUs / 2 + | 
|  | rel_freq_error * kIntervalUs * MeanTimeDifference(i, kWindowSize); | 
|  |  | 
|  | int64_t bias_us = filtered_time_us - translated_time_us; | 
|  | EXPECT_GE(bias_us, 0); | 
|  |  | 
|  | if (i == 0) { | 
|  | EXPECT_EQ(translated_time_us, system_measured_us); | 
|  | } else { | 
|  | EXPECT_NEAR(filtered_time_us, system_time_us + expected_error_us, | 
|  | 2.0 * kJitterUs / sqrt(std::max(i, kWindowSize))); | 
|  | } | 
|  | // If the camera clock runs too fast (rel_freq_error > 0.0), The | 
|  | // bias is expected to roughly cancel the expected error from the | 
|  | // clock drift, as this grows. Otherwise, it reflects the | 
|  | // measurement noise. The tolerances here were selected after some | 
|  | // trial and error. | 
|  | if (i < 10 || rel_freq_error <= 0.0) { | 
|  | EXPECT_LE(bias_us, 3000); | 
|  | } else { | 
|  | EXPECT_NEAR(bias_us, expected_error_us, 1500); | 
|  | } | 
|  | prev_translated_time_us = translated_time_us; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // Anonymous namespace | 
|  |  | 
|  | TEST(TimestampAlignerTest, AttenuateTimestampJitterNoDrift) { | 
|  | TestTimestampFilter(0.0); | 
|  | } | 
|  |  | 
|  | // 100 ppm is a worst case for a reasonable crystal. | 
|  | TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallPosDrift) { | 
|  | TestTimestampFilter(0.0001); | 
|  | } | 
|  |  | 
|  | TEST(TimestampAlignerTest, AttenuateTimestampJitterSmallNegDrift) { | 
|  | TestTimestampFilter(-0.0001); | 
|  | } | 
|  |  | 
|  | // 3000 ppm, 3 ms / s, is the worst observed drift, see | 
|  | // https://bugs.chromium.org/p/webrtc/issues/detail?id=5456 | 
|  | TEST(TimestampAlignerTest, AttenuateTimestampJitterLargePosDrift) { | 
|  | TestTimestampFilter(0.003); | 
|  | } | 
|  |  | 
|  | TEST(TimestampAlignerTest, AttenuateTimestampJitterLargeNegDrift) { | 
|  | TestTimestampFilter(-0.003); | 
|  | } | 
|  |  | 
|  | // Exhibits a mostly hypothetical problem, where certain inputs to the | 
|  | // TimestampAligner.UpdateOffset filter result in non-monotonous | 
|  | // translated timestamps. This test verifies that the ClipTimestamp | 
|  | // logic handles this case correctly. | 
|  | TEST(TimestampAlignerTest, ClipToMonotonous) { | 
|  | TimestampAlignerForTest timestamp_aligner; | 
|  |  | 
|  | // For system time stamps { 0, s1, s1 + s2 }, and camera timestamps | 
|  | // {0, c1, c1 + c2}, we exhibit non-monotonous behaviour if and only | 
|  | // if c1 > s1 + 2 s2 + 4 c2. | 
|  | const int kNumSamples = 3; | 
|  | const int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001}; | 
|  | const int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000}; | 
|  | const int64_t expected_offset_us[kNumSamples] = {0, -35000, -46667}; | 
|  |  | 
|  | // Non-monotonic translated timestamps can happen when only for | 
|  | // translated timestamps in the future. Which is tolerated if | 
|  | // `timestamp_aligner.clip_bias_us` is large enough. Instead of | 
|  | // changing that private member for this test, just add the bias to | 
|  | // `kSystemTimeUs` when calling ClipTimestamp. | 
|  | const int64_t kClipBiasUs = 100000; | 
|  |  | 
|  | bool did_clip = false; | 
|  | int64_t prev_timestamp_us = std::numeric_limits<int64_t>::min(); | 
|  | for (int i = 0; i < kNumSamples; i++) { | 
|  | int64_t offset_us = | 
|  | timestamp_aligner.UpdateOffset(kCaptureTimeUs[i], kSystemTimeUs[i]); | 
|  | EXPECT_EQ(offset_us, expected_offset_us[i]); | 
|  |  | 
|  | int64_t translated_timestamp_us = kCaptureTimeUs[i] + offset_us; | 
|  | int64_t clip_timestamp_us = timestamp_aligner.ClipTimestamp( | 
|  | translated_timestamp_us, kSystemTimeUs[i] + kClipBiasUs); | 
|  | if (translated_timestamp_us <= prev_timestamp_us) { | 
|  | did_clip = true; | 
|  | EXPECT_EQ(clip_timestamp_us, | 
|  | prev_timestamp_us + rtc::kNumMicrosecsPerMillisec); | 
|  | } else { | 
|  | // No change from clipping. | 
|  | EXPECT_EQ(clip_timestamp_us, translated_timestamp_us); | 
|  | } | 
|  | prev_timestamp_us = clip_timestamp_us; | 
|  | } | 
|  | EXPECT_TRUE(did_clip); | 
|  | } | 
|  |  | 
|  | TEST(TimestampAlignerTest, TranslateTimestampWithoutStateUpdate) { | 
|  | TimestampAligner timestamp_aligner; | 
|  |  | 
|  | constexpr int kNumSamples = 4; | 
|  | constexpr int64_t kCaptureTimeUs[kNumSamples] = {0, 80000, 90001, 100000}; | 
|  | constexpr int64_t kSystemTimeUs[kNumSamples] = {0, 10000, 20000, 30000}; | 
|  | constexpr int64_t kQueryCaptureTimeOffsetUs[kNumSamples] = {0, 123, -321, | 
|  | 345}; | 
|  |  | 
|  | for (int i = 0; i < kNumSamples; i++) { | 
|  | int64_t reference_timestamp = timestamp_aligner.TranslateTimestamp( | 
|  | kCaptureTimeUs[i], kSystemTimeUs[i]); | 
|  | EXPECT_EQ(reference_timestamp - kQueryCaptureTimeOffsetUs[i], | 
|  | timestamp_aligner.TranslateTimestamp( | 
|  | kCaptureTimeUs[i] - kQueryCaptureTimeOffsetUs[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace rtc |