blob: e751013a5db8e2cc76b6df8683eae876fffe0759 [file] [log] [blame]
/*
* Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/test/gtest.h"
#include "webrtc/base/constructormagic.h"
#include "webrtc/modules/pacing/paced_sender.h"
#include "webrtc/modules/congestion_controller/delay_based_bwe.h"
#include "webrtc/modules/congestion_controller/delay_based_bwe_unittest_helper.h"
#include "webrtc/system_wrappers/include/clock.h"
namespace webrtc {
namespace {
constexpr int kNumProbes = 5;
} // namespace
TEST_F(DelayBasedBweTest, ProbeDetection) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(10);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 0);
}
EXPECT_TRUE(bitrate_observer_.updated());
// Second burst sent at 8 * 1000 / 5 = 1600 kbps.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_GT(bitrate_observer_.latest_bitrate(), 1500000u);
}
TEST_F(DelayBasedBweTest, ProbeDetectionNonPacedPackets) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps, but with every other packet
// not being paced which could mess things up.
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(5);
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, now_ms, seq_num++, 1000, 0);
// Non-paced packet, arriving 5 ms after.
clock_.AdvanceTimeMilliseconds(5);
IncomingFeedback(now_ms, now_ms, seq_num++,
PacedSender::kMinProbePacketSize + 1,
PacketInfo::kNotAProbe);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_GT(bitrate_observer_.latest_bitrate(), 800000u);
}
TEST_F(DelayBasedBweTest, ProbeDetectionFasterArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 10 = 800 kbps.
// Arriving at 8 * 1000 / 5 = 1600 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(1);
send_time_ms += 10;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 0);
}
EXPECT_FALSE(bitrate_observer_.updated());
}
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrival) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// First burst sent at 8 * 1000 / 5 = 1600 kbps.
// Arriving at 8 * 1000 / 7 = 1142 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(7);
send_time_ms += 5;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(), 1140000u, 10000u);
}
TEST_F(DelayBasedBweTest, ProbeDetectionSlowerArrivalHighBitrate) {
int64_t now_ms = clock_.TimeInMilliseconds();
uint16_t seq_num = 0;
// Burst sent at 8 * 1000 / 1 = 8000 kbps.
// Arriving at 8 * 1000 / 2 = 4000 kbps.
int64_t send_time_ms = 0;
for (int i = 0; i < kNumProbes; ++i) {
clock_.AdvanceTimeMilliseconds(2);
send_time_ms += 1;
now_ms = clock_.TimeInMilliseconds();
IncomingFeedback(now_ms, send_time_ms, seq_num++, 1000, 1);
}
EXPECT_TRUE(bitrate_observer_.updated());
EXPECT_NEAR(bitrate_observer_.latest_bitrate(), 4000000u, 10000u);
}
TEST_F(DelayBasedBweTest, InitialBehavior) {
InitialBehaviorTestHelper(674840);
}
TEST_F(DelayBasedBweTest, RateIncreaseReordering) {
RateIncreaseReorderingTestHelper(674840);
}
TEST_F(DelayBasedBweTest, RateIncreaseRtpTimestamps) {
RateIncreaseRtpTimestampsTestHelper(1240);
}
TEST_F(DelayBasedBweTest, CapacityDropOneStream) {
CapacityDropTestHelper(1, false, 633, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropPosOffsetChange) {
CapacityDropTestHelper(1, false, 200, 30000);
}
TEST_F(DelayBasedBweTest, CapacityDropNegOffsetChange) {
CapacityDropTestHelper(1, false, 733, -30000);
}
TEST_F(DelayBasedBweTest, CapacityDropOneStreamWrap) {
CapacityDropTestHelper(1, true, 633, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropTwoStreamsWrap) {
CapacityDropTestHelper(2, true, 767, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropThreeStreamsWrap) {
CapacityDropTestHelper(3, true, 633, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropThirteenStreamsWrap) {
CapacityDropTestHelper(13, true, 733, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropNineteenStreamsWrap) {
CapacityDropTestHelper(19, true, 667, 0);
}
TEST_F(DelayBasedBweTest, CapacityDropThirtyStreamsWrap) {
CapacityDropTestHelper(30, true, 667, 0);
}
TEST_F(DelayBasedBweTest, TestTimestampGrouping) {
TestTimestampGroupingTestHelper();
}
TEST_F(DelayBasedBweTest, TestShortTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after 35 seconds. This
// will make abs send time wrap, so if streams aren't timed out properly
// the next 30 seconds of packets will be out of order.
TestWrappingHelper(35);
}
TEST_F(DelayBasedBweTest, TestLongTimeoutAndWrap) {
// Simulate a client leaving and rejoining the call after some multiple of
// 64 seconds later. This will cause a zero difference in abs send times due
// to the wrap, but a big difference in arrival time, if streams aren't
// properly timed out.
TestWrappingHelper(10 * 64);
}
} // namespace webrtc