blob: ffe62eb40aa90f5585a8d518b796bb1897ae3dfe [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "call/rtp_payload_params.h"
#include <stddef.h>
#include <algorithm>
#include <cstdint>
#include <optional>
#include "absl/container/inlined_vector.h"
#include "absl/strings/match.h"
#include "absl/types/variant.h"
#include "api/field_trials_view.h"
#include "api/transport/rtp/dependency_descriptor.h"
#include "api/video/encoded_image.h"
#include "api/video/render_resolution.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_codec_type.h"
#include "api/video/video_frame_type.h"
#include "api/video/video_timing.h"
#include "call/rtp_config.h"
#include "common_video/generic_frame_descriptor/generic_frame_info.h"
#include "modules/rtp_rtcp/source/rtp_generic_frame_descriptor.h"
#include "modules/rtp_rtcp/source/rtp_video_header.h"
#include "modules/video_coding/codecs/h264/include/h264_globals.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/codecs/vp8/include/vp8_globals.h"
#include "modules/video_coding/codecs/vp9/include/vp9_globals.h"
#include "modules/video_coding/frame_dependencies_calculator.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/random.h"
#include "rtc_base/time_utils.h"
namespace webrtc {
namespace {
constexpr int kMaxSimulatedSpatialLayers = 3;
void PopulateRtpWithCodecSpecifics(const CodecSpecificInfo& info,
std::optional<int> spatial_index,
RTPVideoHeader* rtp) {
rtp->codec = info.codecType;
rtp->is_last_frame_in_picture = info.end_of_picture;
rtp->frame_instrumentation_data = info.frame_instrumentation_data;
switch (info.codecType) {
case kVideoCodecVP8: {
auto& vp8_header = rtp->video_type_header.emplace<RTPVideoHeaderVP8>();
vp8_header.InitRTPVideoHeaderVP8();
vp8_header.nonReference = info.codecSpecific.VP8.nonReference;
vp8_header.temporalIdx = info.codecSpecific.VP8.temporalIdx;
vp8_header.layerSync = info.codecSpecific.VP8.layerSync;
vp8_header.keyIdx = info.codecSpecific.VP8.keyIdx;
return;
}
case kVideoCodecVP9: {
auto& vp9_header = rtp->video_type_header.emplace<RTPVideoHeaderVP9>();
vp9_header.InitRTPVideoHeaderVP9();
vp9_header.inter_pic_predicted =
info.codecSpecific.VP9.inter_pic_predicted;
vp9_header.flexible_mode = info.codecSpecific.VP9.flexible_mode;
vp9_header.ss_data_available = info.codecSpecific.VP9.ss_data_available;
vp9_header.non_ref_for_inter_layer_pred =
info.codecSpecific.VP9.non_ref_for_inter_layer_pred;
vp9_header.temporal_idx = info.codecSpecific.VP9.temporal_idx;
vp9_header.temporal_up_switch = info.codecSpecific.VP9.temporal_up_switch;
vp9_header.inter_layer_predicted =
info.codecSpecific.VP9.inter_layer_predicted;
vp9_header.gof_idx = info.codecSpecific.VP9.gof_idx;
vp9_header.num_spatial_layers = info.codecSpecific.VP9.num_spatial_layers;
vp9_header.first_active_layer = info.codecSpecific.VP9.first_active_layer;
if (vp9_header.num_spatial_layers > 1) {
vp9_header.spatial_idx = spatial_index.value_or(kNoSpatialIdx);
} else {
vp9_header.spatial_idx = kNoSpatialIdx;
}
if (info.codecSpecific.VP9.ss_data_available) {
vp9_header.spatial_layer_resolution_present =
info.codecSpecific.VP9.spatial_layer_resolution_present;
if (info.codecSpecific.VP9.spatial_layer_resolution_present) {
for (size_t i = 0; i < info.codecSpecific.VP9.num_spatial_layers;
++i) {
vp9_header.width[i] = info.codecSpecific.VP9.width[i];
vp9_header.height[i] = info.codecSpecific.VP9.height[i];
}
}
vp9_header.gof.CopyGofInfoVP9(info.codecSpecific.VP9.gof);
}
vp9_header.num_ref_pics = info.codecSpecific.VP9.num_ref_pics;
for (int i = 0; i < info.codecSpecific.VP9.num_ref_pics; ++i) {
vp9_header.pid_diff[i] = info.codecSpecific.VP9.p_diff[i];
}
vp9_header.end_of_picture = info.end_of_picture;
return;
}
case kVideoCodecH264: {
auto& h264_header = rtp->video_type_header.emplace<RTPVideoHeaderH264>();
h264_header.packetization_mode =
info.codecSpecific.H264.packetization_mode;
return;
}
// These codec types do not have codec-specifics.
case kVideoCodecGeneric:
case kVideoCodecH265:
case kVideoCodecAV1:
return;
}
}
void SetVideoTiming(const EncodedImage& image, VideoSendTiming* timing) {
if (image.timing_.flags == VideoSendTiming::TimingFrameFlags::kInvalid ||
image.timing_.flags == VideoSendTiming::TimingFrameFlags::kNotTriggered) {
timing->flags = VideoSendTiming::TimingFrameFlags::kInvalid;
return;
}
timing->encode_start_delta_ms = VideoSendTiming::GetDeltaCappedMs(
image.capture_time_ms_, image.timing_.encode_start_ms);
timing->encode_finish_delta_ms = VideoSendTiming::GetDeltaCappedMs(
image.capture_time_ms_, image.timing_.encode_finish_ms);
timing->packetization_finish_delta_ms = 0;
timing->pacer_exit_delta_ms = 0;
timing->network_timestamp_delta_ms = 0;
timing->network2_timestamp_delta_ms = 0;
timing->flags = image.timing_.flags;
}
// Returns structure that aligns with simulated generic info. The templates
// allow to produce valid dependency descriptor for any stream where
// `num_spatial_layers` * `num_temporal_layers` <= 32 (limited by
// https://aomediacodec.github.io/av1-rtp-spec/#a82-syntax, see
// template_fdiffs()). The set of the templates is not tuned for any paricular
// structure thus dependency descriptor would use more bytes on the wire than
// with tuned templates.
FrameDependencyStructure MinimalisticStructure(int num_spatial_layers,
int num_temporal_layers) {
RTC_DCHECK_LE(num_spatial_layers, DependencyDescriptor::kMaxSpatialIds);
RTC_DCHECK_LE(num_temporal_layers, DependencyDescriptor::kMaxTemporalIds);
RTC_DCHECK_LE(num_spatial_layers * num_temporal_layers, 32);
FrameDependencyStructure structure;
structure.num_decode_targets = num_spatial_layers * num_temporal_layers;
structure.num_chains = num_spatial_layers;
structure.templates.reserve(num_spatial_layers * num_temporal_layers);
for (int sid = 0; sid < num_spatial_layers; ++sid) {
for (int tid = 0; tid < num_temporal_layers; ++tid) {
FrameDependencyTemplate a_template;
a_template.spatial_id = sid;
a_template.temporal_id = tid;
for (int s = 0; s < num_spatial_layers; ++s) {
for (int t = 0; t < num_temporal_layers; ++t) {
// Prefer kSwitch indication for frames that is part of the decode
// target because dependency descriptor information generated in this
// class use kSwitch indications more often that kRequired, increasing
// the chance of a good (or complete) template match.
a_template.decode_target_indications.push_back(
sid <= s && tid <= t ? DecodeTargetIndication::kSwitch
: DecodeTargetIndication::kNotPresent);
}
}
a_template.frame_diffs.push_back(tid == 0 ? num_spatial_layers *
num_temporal_layers
: num_spatial_layers);
a_template.chain_diffs.assign(structure.num_chains, 1);
structure.templates.push_back(a_template);
structure.decode_target_protected_by_chain.push_back(sid);
}
}
return structure;
}
} // namespace
RtpPayloadParams::RtpPayloadParams(const uint32_t ssrc,
const RtpPayloadState* state,
const FieldTrialsView& trials)
: ssrc_(ssrc),
generic_picture_id_experiment_(
absl::StartsWith(trials.Lookup("WebRTC-GenericPictureId"),
"Enabled")),
simulate_generic_structure_(absl::StartsWith(
trials.Lookup("WebRTC-GenericCodecDependencyDescriptor"),
"Enabled")) {
for (auto& spatial_layer : last_frame_id_)
spatial_layer.fill(-1);
chain_last_frame_id_.fill(-1);
buffer_id_to_frame_id_.fill(-1);
Random random(rtc::TimeMicros());
state_.picture_id =
state ? state->picture_id : (random.Rand<int16_t>() & 0x7FFF);
state_.tl0_pic_idx = state ? state->tl0_pic_idx : (random.Rand<uint8_t>());
state_.frame_id = state ? state->frame_id : random.Rand<uint16_t>();
}
RtpPayloadParams::RtpPayloadParams(const RtpPayloadParams& other) = default;
RtpPayloadParams::~RtpPayloadParams() {}
RTPVideoHeader RtpPayloadParams::GetRtpVideoHeader(
const EncodedImage& image,
const CodecSpecificInfo* codec_specific_info,
std::optional<int64_t> shared_frame_id) {
int64_t frame_id;
if (shared_frame_id) {
frame_id = *shared_frame_id;
} else {
frame_id = state_.frame_id++;
}
RTPVideoHeader rtp_video_header;
if (codec_specific_info) {
PopulateRtpWithCodecSpecifics(*codec_specific_info, image.SpatialIndex(),
&rtp_video_header);
}
rtp_video_header.simulcastIdx = image.SimulcastIndex().value_or(0);
rtp_video_header.frame_type = image._frameType;
rtp_video_header.rotation = image.rotation_;
rtp_video_header.content_type = image.content_type_;
rtp_video_header.playout_delay = image.PlayoutDelay();
rtp_video_header.width = image._encodedWidth;
rtp_video_header.height = image._encodedHeight;
rtp_video_header.color_space = image.ColorSpace()
? std::make_optional(*image.ColorSpace())
: std::nullopt;
rtp_video_header.video_frame_tracking_id = image.VideoFrameTrackingId();
SetVideoTiming(image, &rtp_video_header.video_timing);
const bool is_keyframe = image._frameType == VideoFrameType::kVideoFrameKey;
const bool first_frame_in_picture =
(codec_specific_info && codec_specific_info->codecType == kVideoCodecVP9)
? codec_specific_info->codecSpecific.VP9.first_frame_in_picture
: true;
SetCodecSpecific(&rtp_video_header, first_frame_in_picture);
SetGeneric(codec_specific_info, frame_id, is_keyframe, &rtp_video_header);
return rtp_video_header;
}
uint32_t RtpPayloadParams::ssrc() const {
return ssrc_;
}
RtpPayloadState RtpPayloadParams::state() const {
return state_;
}
void RtpPayloadParams::SetCodecSpecific(RTPVideoHeader* rtp_video_header,
bool first_frame_in_picture) {
// Always set picture id. Set tl0_pic_idx iff temporal index is set.
if (first_frame_in_picture) {
state_.picture_id = (static_cast<uint16_t>(state_.picture_id) + 1) & 0x7FFF;
}
if (rtp_video_header->codec == kVideoCodecVP8) {
auto& vp8_header =
absl::get<RTPVideoHeaderVP8>(rtp_video_header->video_type_header);
vp8_header.pictureId = state_.picture_id;
if (vp8_header.temporalIdx != kNoTemporalIdx) {
if (vp8_header.temporalIdx == 0) {
++state_.tl0_pic_idx;
}
vp8_header.tl0PicIdx = state_.tl0_pic_idx;
}
}
if (rtp_video_header->codec == kVideoCodecVP9) {
auto& vp9_header =
absl::get<RTPVideoHeaderVP9>(rtp_video_header->video_type_header);
vp9_header.picture_id = state_.picture_id;
// Note that in the case that we have no temporal layers but we do have
// spatial layers, packets will carry layering info with a temporal_idx of
// zero, and we then have to set and increment tl0_pic_idx.
if (vp9_header.temporal_idx != kNoTemporalIdx ||
vp9_header.spatial_idx != kNoSpatialIdx) {
if (first_frame_in_picture &&
(vp9_header.temporal_idx == 0 ||
vp9_header.temporal_idx == kNoTemporalIdx)) {
++state_.tl0_pic_idx;
}
vp9_header.tl0_pic_idx = state_.tl0_pic_idx;
}
}
if (generic_picture_id_experiment_ &&
rtp_video_header->codec == kVideoCodecGeneric) {
rtp_video_header->video_type_header.emplace<RTPVideoHeaderLegacyGeneric>()
.picture_id = state_.picture_id;
}
}
RTPVideoHeader::GenericDescriptorInfo
RtpPayloadParams::GenericDescriptorFromFrameInfo(
const GenericFrameInfo& frame_info,
int64_t frame_id) {
RTPVideoHeader::GenericDescriptorInfo generic;
generic.frame_id = frame_id;
generic.dependencies = dependencies_calculator_.FromBuffersUsage(
frame_id, frame_info.encoder_buffers);
generic.chain_diffs =
chains_calculator_.From(frame_id, frame_info.part_of_chain);
generic.spatial_index = frame_info.spatial_id;
generic.temporal_index = frame_info.temporal_id;
generic.decode_target_indications = frame_info.decode_target_indications;
generic.active_decode_targets = frame_info.active_decode_targets;
return generic;
}
void RtpPayloadParams::SetGeneric(const CodecSpecificInfo* codec_specific_info,
int64_t frame_id,
bool is_keyframe,
RTPVideoHeader* rtp_video_header) {
if (codec_specific_info && codec_specific_info->generic_frame_info &&
!codec_specific_info->generic_frame_info->encoder_buffers.empty()) {
if (is_keyframe) {
// Key frame resets all chains it is in.
chains_calculator_.Reset(
codec_specific_info->generic_frame_info->part_of_chain);
}
rtp_video_header->generic = GenericDescriptorFromFrameInfo(
*codec_specific_info->generic_frame_info, frame_id);
return;
}
switch (rtp_video_header->codec) {
case VideoCodecType::kVideoCodecGeneric:
GenericToGeneric(frame_id, is_keyframe, rtp_video_header);
return;
case VideoCodecType::kVideoCodecVP8:
if (codec_specific_info) {
Vp8ToGeneric(codec_specific_info->codecSpecific.VP8, frame_id,
is_keyframe, rtp_video_header);
}
return;
case VideoCodecType::kVideoCodecVP9:
if (codec_specific_info != nullptr) {
Vp9ToGeneric(codec_specific_info->codecSpecific.VP9, frame_id,
*rtp_video_header);
}
return;
case VideoCodecType::kVideoCodecAV1:
// Codec-specifics is not supported for AV1. We convert from the
// generic_frame_info.
return;
case VideoCodecType::kVideoCodecH264:
if (codec_specific_info) {
H264ToGeneric(codec_specific_info->codecSpecific.H264, frame_id,
is_keyframe, rtp_video_header);
}
return;
case VideoCodecType::kVideoCodecH265:
// Codec-specifics is not supported for H.265. We convert from the
// generic_frame_info.
return;
}
RTC_DCHECK_NOTREACHED() << "Unsupported codec.";
}
std::optional<FrameDependencyStructure> RtpPayloadParams::GenericStructure(
const CodecSpecificInfo* codec_specific_info) {
if (codec_specific_info == nullptr) {
return std::nullopt;
}
// This helper shouldn't be used when template structure is specified
// explicetly.
RTC_DCHECK(!codec_specific_info->template_structure.has_value());
switch (codec_specific_info->codecType) {
case VideoCodecType::kVideoCodecGeneric:
if (simulate_generic_structure_) {
return MinimalisticStructure(/*num_spatial_layers=*/1,
/*num_temporal_layer=*/1);
}
return std::nullopt;
case VideoCodecType::kVideoCodecVP8:
return MinimalisticStructure(/*num_spatial_layers=*/1,
/*num_temporal_layer=*/kMaxTemporalStreams);
case VideoCodecType::kVideoCodecVP9: {
std::optional<FrameDependencyStructure> structure = MinimalisticStructure(
/*num_spatial_layers=*/kMaxSimulatedSpatialLayers,
/*num_temporal_layer=*/kMaxTemporalStreams);
const CodecSpecificInfoVP9& vp9 = codec_specific_info->codecSpecific.VP9;
if (vp9.ss_data_available && vp9.spatial_layer_resolution_present) {
RenderResolution first_valid;
RenderResolution last_valid;
for (size_t i = 0; i < vp9.num_spatial_layers; ++i) {
RenderResolution r(vp9.width[i], vp9.height[i]);
if (r.Valid()) {
if (!first_valid.Valid()) {
first_valid = r;
}
last_valid = r;
}
structure->resolutions.push_back(r);
}
if (!last_valid.Valid()) {
// No valid resolution found. Do not send resolutions.
structure->resolutions.clear();
} else {
structure->resolutions.resize(kMaxSimulatedSpatialLayers, last_valid);
// VP9 encoder wrapper may disable first few spatial layers by
// setting invalid resolution (0,0). `structure->resolutions`
// doesn't support invalid resolution, so reset them to something
// valid.
for (RenderResolution& r : structure->resolutions) {
if (!r.Valid()) {
r = first_valid;
}
}
}
}
return structure;
}
case VideoCodecType::kVideoCodecH264:
return MinimalisticStructure(
/*num_spatial_layers=*/1,
/*num_temporal_layers=*/kMaxTemporalStreams);
case VideoCodecType::kVideoCodecAV1:
case VideoCodecType::kVideoCodecH265:
return std::nullopt;
}
RTC_DCHECK_NOTREACHED() << "Unsupported codec.";
}
void RtpPayloadParams::GenericToGeneric(int64_t frame_id,
bool is_keyframe,
RTPVideoHeader* rtp_video_header) {
RTPVideoHeader::GenericDescriptorInfo& generic =
rtp_video_header->generic.emplace();
generic.frame_id = frame_id;
generic.decode_target_indications.push_back(DecodeTargetIndication::kSwitch);
if (is_keyframe) {
generic.chain_diffs.push_back(0);
last_frame_id_[0].fill(-1);
} else {
int64_t last_frame_id = last_frame_id_[0][0];
RTC_DCHECK_NE(last_frame_id, -1);
RTC_DCHECK_LT(last_frame_id, frame_id);
generic.chain_diffs.push_back(frame_id - last_frame_id);
generic.dependencies.push_back(last_frame_id);
}
last_frame_id_[0][0] = frame_id;
}
void RtpPayloadParams::H264ToGeneric(const CodecSpecificInfoH264& h264_info,
int64_t frame_id,
bool is_keyframe,
RTPVideoHeader* rtp_video_header) {
const int temporal_index =
h264_info.temporal_idx != kNoTemporalIdx ? h264_info.temporal_idx : 0;
if (temporal_index >= RtpGenericFrameDescriptor::kMaxTemporalLayers) {
RTC_LOG(LS_WARNING) << "Temporal and/or spatial index is too high to be "
"used with generic frame descriptor.";
return;
}
RTPVideoHeader::GenericDescriptorInfo& generic =
rtp_video_header->generic.emplace();
generic.frame_id = frame_id;
generic.temporal_index = temporal_index;
// Generate decode target indications.
RTC_DCHECK_LT(temporal_index, kMaxTemporalStreams);
generic.decode_target_indications.resize(kMaxTemporalStreams);
auto it = std::fill_n(generic.decode_target_indications.begin(),
temporal_index, DecodeTargetIndication::kNotPresent);
std::fill(it, generic.decode_target_indications.end(),
DecodeTargetIndication::kSwitch);
generic.chain_diffs = {
(is_keyframe || last_frame_id_[0][0] < 0)
? 0
: static_cast<int>(frame_id - last_frame_id_[0][0])};
if (is_keyframe) {
RTC_DCHECK_EQ(temporal_index, 0);
last_frame_id_[/*spatial index*/ 0].fill(-1);
last_frame_id_[/*spatial index*/ 0][temporal_index] = frame_id;
return;
}
if (h264_info.base_layer_sync) {
int64_t tl0_frame_id = last_frame_id_[/*spatial index*/ 0][0];
for (int i = 1; i < RtpGenericFrameDescriptor::kMaxTemporalLayers; ++i) {
if (last_frame_id_[/*spatial index*/ 0][i] < tl0_frame_id) {
last_frame_id_[/*spatial index*/ 0][i] = -1;
}
}
RTC_DCHECK_GE(tl0_frame_id, 0);
RTC_DCHECK_LT(tl0_frame_id, frame_id);
generic.dependencies.push_back(tl0_frame_id);
} else {
for (int i = 0; i <= temporal_index; ++i) {
int64_t last_frame_id = last_frame_id_[/*spatial index*/ 0][i];
if (last_frame_id != -1) {
RTC_DCHECK_LT(last_frame_id, frame_id);
generic.dependencies.push_back(last_frame_id);
}
}
}
last_frame_id_[/*spatial_index*/ 0][temporal_index] = frame_id;
}
void RtpPayloadParams::Vp8ToGeneric(const CodecSpecificInfoVP8& vp8_info,
int64_t frame_id,
bool is_keyframe,
RTPVideoHeader* rtp_video_header) {
const auto& vp8_header =
absl::get<RTPVideoHeaderVP8>(rtp_video_header->video_type_header);
const int spatial_index = 0;
const int temporal_index =
vp8_header.temporalIdx != kNoTemporalIdx ? vp8_header.temporalIdx : 0;
if (temporal_index >= RtpGenericFrameDescriptor::kMaxTemporalLayers ||
spatial_index >= RtpGenericFrameDescriptor::kMaxSpatialLayers) {
RTC_LOG(LS_WARNING) << "Temporal and/or spatial index is too high to be "
"used with generic frame descriptor.";
return;
}
RTPVideoHeader::GenericDescriptorInfo& generic =
rtp_video_header->generic.emplace();
generic.frame_id = frame_id;
generic.spatial_index = spatial_index;
generic.temporal_index = temporal_index;
// Generate decode target indications.
RTC_DCHECK_LT(temporal_index, kMaxTemporalStreams);
generic.decode_target_indications.resize(kMaxTemporalStreams);
auto it = std::fill_n(generic.decode_target_indications.begin(),
temporal_index, DecodeTargetIndication::kNotPresent);
std::fill(it, generic.decode_target_indications.end(),
DecodeTargetIndication::kSwitch);
// Frame dependencies.
if (vp8_info.useExplicitDependencies) {
SetDependenciesVp8New(vp8_info, frame_id, is_keyframe, vp8_header.layerSync,
&generic);
} else {
SetDependenciesVp8Deprecated(vp8_info, frame_id, is_keyframe, spatial_index,
temporal_index, vp8_header.layerSync,
&generic);
}
// Calculate chains.
generic.chain_diffs = {
(is_keyframe || chain_last_frame_id_[0] < 0)
? 0
: static_cast<int>(frame_id - chain_last_frame_id_[0])};
if (temporal_index == 0) {
chain_last_frame_id_[0] = frame_id;
}
}
void RtpPayloadParams::Vp9ToGeneric(const CodecSpecificInfoVP9& /* vp9_info */,
int64_t frame_id,
RTPVideoHeader& rtp_video_header) {
const auto& vp9_header =
absl::get<RTPVideoHeaderVP9>(rtp_video_header.video_type_header);
const int num_spatial_layers = kMaxSimulatedSpatialLayers;
const int first_active_spatial_id = vp9_header.first_active_layer;
const int last_active_spatial_id = vp9_header.num_spatial_layers - 1;
const int num_temporal_layers = kMaxTemporalStreams;
static_assert(num_spatial_layers <=
RtpGenericFrameDescriptor::kMaxSpatialLayers);
static_assert(num_temporal_layers <=
RtpGenericFrameDescriptor::kMaxTemporalLayers);
static_assert(num_spatial_layers <= DependencyDescriptor::kMaxSpatialIds);
static_assert(num_temporal_layers <= DependencyDescriptor::kMaxTemporalIds);
int spatial_index =
vp9_header.spatial_idx != kNoSpatialIdx ? vp9_header.spatial_idx : 0;
int temporal_index =
vp9_header.temporal_idx != kNoTemporalIdx ? vp9_header.temporal_idx : 0;
if (!(temporal_index < num_temporal_layers &&
first_active_spatial_id <= spatial_index &&
spatial_index <= last_active_spatial_id &&
last_active_spatial_id < num_spatial_layers)) {
// Prefer to generate no generic layering than an inconsistent one.
RTC_LOG(LS_ERROR) << "Inconsistent layer id sid=" << spatial_index
<< ",tid=" << temporal_index
<< " in VP9 header. Active spatial ids: ["
<< first_active_spatial_id << ","
<< last_active_spatial_id << "]";
return;
}
RTPVideoHeader::GenericDescriptorInfo& result =
rtp_video_header.generic.emplace();
result.frame_id = frame_id;
result.spatial_index = spatial_index;
result.temporal_index = temporal_index;
result.decode_target_indications.reserve(num_spatial_layers *
num_temporal_layers);
for (int sid = 0; sid < num_spatial_layers; ++sid) {
for (int tid = 0; tid < num_temporal_layers; ++tid) {
DecodeTargetIndication dti;
if (sid < spatial_index || tid < temporal_index) {
dti = DecodeTargetIndication::kNotPresent;
} else if (spatial_index != sid &&
vp9_header.non_ref_for_inter_layer_pred) {
dti = DecodeTargetIndication::kNotPresent;
} else if (sid == spatial_index && tid == temporal_index) {
// Assume that if frame is decodable, all of its own layer is decodable.
dti = DecodeTargetIndication::kSwitch;
} else if (sid == spatial_index && vp9_header.temporal_up_switch) {
dti = DecodeTargetIndication::kSwitch;
} else if (!vp9_header.inter_pic_predicted) {
// Key frame or spatial upswitch
dti = DecodeTargetIndication::kSwitch;
} else {
// Make no other assumptions. That should be safe, though suboptimal.
// To provide more accurate dti, encoder wrapper should fill in
// CodecSpecificInfo::generic_frame_info
dti = DecodeTargetIndication::kRequired;
}
result.decode_target_indications.push_back(dti);
}
}
// Calculate frame dependencies.
static constexpr int kPictureDiffLimit = 128;
if (last_vp9_frame_id_.empty()) {
// Create the array only if it is ever used.
last_vp9_frame_id_.resize(kPictureDiffLimit);
}
if (vp9_header.flexible_mode) {
if (vp9_header.inter_layer_predicted && spatial_index > 0) {
result.dependencies.push_back(
last_vp9_frame_id_[vp9_header.picture_id % kPictureDiffLimit]
[spatial_index - 1]);
}
if (vp9_header.inter_pic_predicted) {
for (size_t i = 0; i < vp9_header.num_ref_pics; ++i) {
// picture_id is 15 bit number that wraps around. Though undeflow may
// produce picture that exceeds 2^15, it is ok because in this
// code block only last 7 bits of the picture_id are used.
uint16_t depend_on = vp9_header.picture_id - vp9_header.pid_diff[i];
result.dependencies.push_back(
last_vp9_frame_id_[depend_on % kPictureDiffLimit][spatial_index]);
}
}
last_vp9_frame_id_[vp9_header.picture_id % kPictureDiffLimit]
[spatial_index] = frame_id;
} else {
// Implementing general conversion logic for non-flexible mode requires some
// work and we will almost certainly never need it, so for now support only
// non-layerd streams.
if (spatial_index > 0 || temporal_index > 0) {
// Prefer to generate no generic layering than an inconsistent one.
rtp_video_header.generic.reset();
return;
}
if (vp9_header.inter_pic_predicted) {
// Since we only support non-scalable streams we only need to save the
// last frame id.
result.dependencies.push_back(last_vp9_frame_id_[0][0]);
}
last_vp9_frame_id_[0][0] = frame_id;
}
result.active_decode_targets =
((uint32_t{1} << num_temporal_layers * (last_active_spatial_id + 1)) -
1) ^
((uint32_t{1} << num_temporal_layers * first_active_spatial_id) - 1);
// Calculate chains, asuming chain includes all frames with temporal_id = 0
if (!vp9_header.inter_pic_predicted && !vp9_header.inter_layer_predicted) {
// Assume frames without dependencies also reset chains.
for (int sid = spatial_index; sid <= last_active_spatial_id; ++sid) {
chain_last_frame_id_[sid] = -1;
}
}
result.chain_diffs.resize(num_spatial_layers, 0);
for (int sid = first_active_spatial_id; sid <= last_active_spatial_id;
++sid) {
if (chain_last_frame_id_[sid] == -1) {
result.chain_diffs[sid] = 0;
continue;
}
int64_t chain_diff = frame_id - chain_last_frame_id_[sid];
if (chain_diff >= 256) {
RTC_LOG(LS_ERROR)
<< "Too many frames since last VP9 T0 frame for spatial layer #"
<< sid << " at frame#" << frame_id;
chain_last_frame_id_[sid] = -1;
chain_diff = 0;
}
result.chain_diffs[sid] = chain_diff;
}
if (temporal_index == 0) {
chain_last_frame_id_[spatial_index] = frame_id;
if (!vp9_header.non_ref_for_inter_layer_pred) {
for (int sid = spatial_index + 1; sid <= last_active_spatial_id; ++sid) {
chain_last_frame_id_[sid] = frame_id;
}
}
}
}
void RtpPayloadParams::SetDependenciesVp8Deprecated(
const CodecSpecificInfoVP8& vp8_info,
int64_t frame_id,
bool is_keyframe,
int spatial_index,
int temporal_index,
bool layer_sync,
RTPVideoHeader::GenericDescriptorInfo* generic) {
RTC_DCHECK(!vp8_info.useExplicitDependencies);
RTC_DCHECK(!new_version_used_.has_value() || !new_version_used_.value());
new_version_used_ = false;
if (is_keyframe) {
RTC_DCHECK_EQ(temporal_index, 0);
last_frame_id_[spatial_index].fill(-1);
last_frame_id_[spatial_index][temporal_index] = frame_id;
return;
}
if (layer_sync) {
int64_t tl0_frame_id = last_frame_id_[spatial_index][0];
for (int i = 1; i < RtpGenericFrameDescriptor::kMaxTemporalLayers; ++i) {
if (last_frame_id_[spatial_index][i] < tl0_frame_id) {
last_frame_id_[spatial_index][i] = -1;
}
}
RTC_DCHECK_GE(tl0_frame_id, 0);
RTC_DCHECK_LT(tl0_frame_id, frame_id);
generic->dependencies.push_back(tl0_frame_id);
} else {
for (int i = 0; i <= temporal_index; ++i) {
int64_t last_frame_id = last_frame_id_[spatial_index][i];
if (last_frame_id != -1) {
RTC_DCHECK_LT(last_frame_id, frame_id);
generic->dependencies.push_back(last_frame_id);
}
}
}
last_frame_id_[spatial_index][temporal_index] = frame_id;
}
void RtpPayloadParams::SetDependenciesVp8New(
const CodecSpecificInfoVP8& vp8_info,
int64_t frame_id,
bool is_keyframe,
bool /* layer_sync */,
RTPVideoHeader::GenericDescriptorInfo* generic) {
RTC_DCHECK(vp8_info.useExplicitDependencies);
RTC_DCHECK(!new_version_used_.has_value() || new_version_used_.value());
new_version_used_ = true;
if (is_keyframe) {
RTC_DCHECK_EQ(vp8_info.referencedBuffersCount, 0u);
buffer_id_to_frame_id_.fill(frame_id);
return;
}
constexpr size_t kBuffersCountVp8 = CodecSpecificInfoVP8::kBuffersCount;
RTC_DCHECK_GT(vp8_info.referencedBuffersCount, 0u);
RTC_DCHECK_LE(vp8_info.referencedBuffersCount,
arraysize(vp8_info.referencedBuffers));
for (size_t i = 0; i < vp8_info.referencedBuffersCount; ++i) {
const size_t referenced_buffer = vp8_info.referencedBuffers[i];
RTC_DCHECK_LT(referenced_buffer, kBuffersCountVp8);
RTC_DCHECK_LT(referenced_buffer, buffer_id_to_frame_id_.size());
const int64_t dependency_frame_id =
buffer_id_to_frame_id_[referenced_buffer];
RTC_DCHECK_GE(dependency_frame_id, 0);
RTC_DCHECK_LT(dependency_frame_id, frame_id);
const bool is_new_dependency =
std::find(generic->dependencies.begin(), generic->dependencies.end(),
dependency_frame_id) == generic->dependencies.end();
if (is_new_dependency) {
generic->dependencies.push_back(dependency_frame_id);
}
}
RTC_DCHECK_LE(vp8_info.updatedBuffersCount, kBuffersCountVp8);
for (size_t i = 0; i < vp8_info.updatedBuffersCount; ++i) {
const size_t updated_id = vp8_info.updatedBuffers[i];
buffer_id_to_frame_id_[updated_id] = frame_id;
}
RTC_DCHECK_LE(buffer_id_to_frame_id_.size(), kBuffersCountVp8);
}
} // namespace webrtc