blob: db4a819805536b4bb197f46a12bc1a07d02fd987 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "api/audio/audio_processing.h"
#include <math.h>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
#include <numeric>
#include <queue>
#include <string>
#include "absl/flags/flag.h"
#include "absl/strings/string_view.h"
#include "api/audio/builtin_audio_processing_builder.h"
#include "api/audio/echo_detector_creator.h"
#include "api/environment/environment_factory.h"
#include "api/make_ref_counted.h"
#include "common_audio/include/audio_util.h"
#include "common_audio/resampler/include/push_resampler.h"
#include "common_audio/resampler/push_sinc_resampler.h"
#include "common_audio/signal_processing/include/signal_processing_library.h"
#include "modules/audio_processing/aec_dump/aec_dump_factory.h"
#include "modules/audio_processing/audio_processing_impl.h"
#include "modules/audio_processing/include/mock_audio_processing.h"
#include "modules/audio_processing/test/protobuf_utils.h"
#include "modules/audio_processing/test/test_utils.h"
#include "rtc_base/arraysize.h"
#include "rtc_base/checks.h"
#include "rtc_base/fake_clock.h"
#include "rtc_base/gtest_prod_util.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "rtc_base/protobuf_utils.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/swap_queue.h"
#include "rtc_base/system/arch.h"
#include "rtc_base/task_queue_for_test.h"
#include "rtc_base/thread.h"
#include "system_wrappers/include/cpu_features_wrapper.h"
#include "test/gtest.h"
#include "test/testsupport/file_utils.h"
#ifdef WEBRTC_ANDROID_PLATFORM_BUILD
#include "external/webrtc/webrtc/modules/audio_processing/debug.pb.h"
#include "external/webrtc/webrtc/modules/audio_processing/test/unittest.pb.h"
#else
#include "modules/audio_processing/debug.pb.h"
#include "modules/audio_processing/test/unittest.pb.h"
#endif
ABSL_FLAG(bool,
write_apm_ref_data,
false,
"Write ApmTest.Process results to file, instead of comparing results "
"to the existing reference data file.");
namespace webrtc {
namespace {
// All sample rates used by APM internally during processing. Other input /
// output rates are resampled to / from one of these.
const int kProcessSampleRates[] = {16000, 32000, 48000};
enum StreamDirection { kForward = 0, kReverse };
void ConvertToFloat(const int16_t* int_data, ChannelBuffer<float>* cb) {
ChannelBuffer<int16_t> cb_int(cb->num_frames(), cb->num_channels());
Deinterleave(int_data, cb->num_frames(), cb->num_channels(),
cb_int.channels());
for (size_t i = 0; i < cb->num_channels(); ++i) {
S16ToFloat(cb_int.channels()[i], cb->num_frames(), cb->channels()[i]);
}
}
void ConvertToFloat(const Int16FrameData& frame, ChannelBuffer<float>* cb) {
ConvertToFloat(frame.data.data(), cb);
}
void MixStereoToMono(const float* stereo,
float* mono,
size_t samples_per_channel) {
for (size_t i = 0; i < samples_per_channel; ++i)
mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) / 2;
}
void MixStereoToMono(const int16_t* stereo,
int16_t* mono,
size_t samples_per_channel) {
for (size_t i = 0; i < samples_per_channel; ++i)
mono[i] = (stereo[i * 2] + stereo[i * 2 + 1]) >> 1;
}
void CopyLeftToRightChannel(int16_t* stereo, size_t samples_per_channel) {
for (size_t i = 0; i < samples_per_channel; i++) {
stereo[i * 2 + 1] = stereo[i * 2];
}
}
void VerifyChannelsAreEqual(const int16_t* stereo, size_t samples_per_channel) {
for (size_t i = 0; i < samples_per_channel; i++) {
EXPECT_EQ(stereo[i * 2 + 1], stereo[i * 2]);
}
}
void SetFrameTo(Int16FrameData* frame, int16_t value) {
for (size_t i = 0; i < frame->samples_per_channel * frame->num_channels;
++i) {
frame->data[i] = value;
}
}
void SetFrameTo(Int16FrameData* frame, int16_t left, int16_t right) {
ASSERT_EQ(2u, frame->num_channels);
for (size_t i = 0; i < frame->samples_per_channel * 2; i += 2) {
frame->data[i] = left;
frame->data[i + 1] = right;
}
}
void ScaleFrame(Int16FrameData* frame, float scale) {
for (size_t i = 0; i < frame->samples_per_channel * frame->num_channels;
++i) {
frame->data[i] = FloatS16ToS16(frame->data[i] * scale);
}
}
bool FrameDataAreEqual(const Int16FrameData& frame1,
const Int16FrameData& frame2) {
if (frame1.samples_per_channel != frame2.samples_per_channel) {
return false;
}
if (frame1.num_channels != frame2.num_channels) {
return false;
}
if (memcmp(
frame1.data.data(), frame2.data.data(),
frame1.samples_per_channel * frame1.num_channels * sizeof(int16_t))) {
return false;
}
return true;
}
rtc::ArrayView<int16_t> GetMutableFrameData(Int16FrameData* frame) {
int16_t* ptr = frame->data.data();
const size_t len = frame->samples_per_channel * frame->num_channels;
return rtc::ArrayView<int16_t>(ptr, len);
}
rtc::ArrayView<const int16_t> GetFrameData(const Int16FrameData& frame) {
const int16_t* ptr = frame.data.data();
const size_t len = frame.samples_per_channel * frame.num_channels;
return rtc::ArrayView<const int16_t>(ptr, len);
}
void EnableAllAPComponents(AudioProcessing* ap) {
AudioProcessing::Config apm_config = ap->GetConfig();
apm_config.echo_canceller.enabled = true;
#if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
apm_config.echo_canceller.mobile_mode = true;
apm_config.gain_controller1.enabled = true;
apm_config.gain_controller1.mode =
AudioProcessing::Config::GainController1::kAdaptiveDigital;
#elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
apm_config.echo_canceller.mobile_mode = false;
apm_config.gain_controller1.enabled = true;
apm_config.gain_controller1.mode =
AudioProcessing::Config::GainController1::kAdaptiveAnalog;
#endif
apm_config.noise_suppression.enabled = true;
apm_config.high_pass_filter.enabled = true;
apm_config.pipeline.maximum_internal_processing_rate = 48000;
ap->ApplyConfig(apm_config);
}
// These functions are only used by ApmTest.Process.
template <class T>
T AbsValue(T a) {
return a > 0 ? a : -a;
}
int16_t MaxAudioFrame(const Int16FrameData& frame) {
const size_t length = frame.samples_per_channel * frame.num_channels;
int16_t max_data = AbsValue(frame.data[0]);
for (size_t i = 1; i < length; i++) {
max_data = std::max(max_data, AbsValue(frame.data[i]));
}
return max_data;
}
void OpenFileAndWriteMessage(absl::string_view filename,
const MessageLite& msg) {
FILE* file = fopen(std::string(filename).c_str(), "wb");
ASSERT_TRUE(file != NULL);
int32_t size = rtc::checked_cast<int32_t>(msg.ByteSizeLong());
ASSERT_GT(size, 0);
std::unique_ptr<uint8_t[]> array(new uint8_t[size]);
ASSERT_TRUE(msg.SerializeToArray(array.get(), size));
ASSERT_EQ(1u, fwrite(&size, sizeof(size), 1, file));
ASSERT_EQ(static_cast<size_t>(size),
fwrite(array.get(), sizeof(array[0]), size, file));
fclose(file);
}
std::string ResourceFilePath(absl::string_view name, int sample_rate_hz) {
rtc::StringBuilder ss;
// Resource files are all stereo.
ss << name << sample_rate_hz / 1000 << "_stereo";
return test::ResourcePath(ss.str(), "pcm");
}
// Temporary filenames unique to this process. Used to be able to run these
// tests in parallel as each process needs to be running in isolation they can't
// have competing filenames.
std::map<std::string, std::string> temp_filenames;
std::string OutputFilePath(absl::string_view name,
int input_rate,
int output_rate,
int reverse_input_rate,
int reverse_output_rate,
size_t num_input_channels,
size_t num_output_channels,
size_t num_reverse_input_channels,
size_t num_reverse_output_channels,
StreamDirection file_direction) {
rtc::StringBuilder ss;
ss << name << "_i" << num_input_channels << "_" << input_rate / 1000 << "_ir"
<< num_reverse_input_channels << "_" << reverse_input_rate / 1000 << "_";
if (num_output_channels == 1) {
ss << "mono";
} else if (num_output_channels == 2) {
ss << "stereo";
} else {
RTC_DCHECK_NOTREACHED();
}
ss << output_rate / 1000;
if (num_reverse_output_channels == 1) {
ss << "_rmono";
} else if (num_reverse_output_channels == 2) {
ss << "_rstereo";
} else {
RTC_DCHECK_NOTREACHED();
}
ss << reverse_output_rate / 1000;
ss << "_d" << file_direction << "_pcm";
std::string filename = ss.str();
if (temp_filenames[filename].empty())
temp_filenames[filename] = test::TempFilename(test::OutputPath(), filename);
return temp_filenames[filename];
}
void ClearTempFiles() {
for (auto& kv : temp_filenames)
remove(kv.second.c_str());
}
// Only remove "out" files. Keep "ref" files.
void ClearTempOutFiles() {
for (auto it = temp_filenames.begin(); it != temp_filenames.end();) {
const std::string& filename = it->first;
if (filename.substr(0, 3).compare("out") == 0) {
remove(it->second.c_str());
temp_filenames.erase(it++);
} else {
it++;
}
}
}
void OpenFileAndReadMessage(absl::string_view filename, MessageLite* msg) {
FILE* file = fopen(std::string(filename).c_str(), "rb");
ASSERT_TRUE(file != NULL);
ReadMessageFromFile(file, msg);
fclose(file);
}
// Reads a 10 ms chunk (actually AudioProcessing::GetFrameSize() samples per
// channel) of int16 interleaved audio from the given (assumed stereo) file,
// converts to deinterleaved float (optionally downmixing) and returns the
// result in `cb`. Returns false if the file ended (or on error) and true
// otherwise.
//
// `int_data` and `float_data` are just temporary space that must be
// sufficiently large to hold the 10 ms chunk.
bool ReadChunk(FILE* file,
int16_t* int_data,
float* float_data,
ChannelBuffer<float>* cb) {
// The files always contain stereo audio.
size_t frame_size = cb->num_frames() * 2;
size_t read_count = fread(int_data, sizeof(int16_t), frame_size, file);
if (read_count != frame_size) {
// Check that the file really ended.
RTC_DCHECK(feof(file));
return false; // This is expected.
}
S16ToFloat(int_data, frame_size, float_data);
if (cb->num_channels() == 1) {
MixStereoToMono(float_data, cb->channels()[0], cb->num_frames());
} else {
Deinterleave(float_data, cb->num_frames(), 2, cb->channels());
}
return true;
}
// Returns the reference file name that matches the current CPU
// architecture/optimizations.
std::string GetReferenceFilename() {
#if defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
return test::ResourcePath("audio_processing/output_data_fixed", "pb");
#elif defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
if (GetCPUInfo(kAVX2) != 0) {
return test::ResourcePath("audio_processing/output_data_float_avx2", "pb");
}
return test::ResourcePath("audio_processing/output_data_float", "pb");
#endif
}
// Flag that can temporarily be enabled for local debugging to inspect
// `ApmTest.VerifyDebugDump(Int|Float)` failures. Do not upload code changes
// with this flag set to true.
constexpr bool kDumpWhenExpectMessageEqFails = false;
// Checks the debug constants values used in this file so that no code change is
// submitted with values temporarily used for local debugging.
TEST(ApmUnitTests, CheckDebugConstants) {
ASSERT_FALSE(kDumpWhenExpectMessageEqFails);
}
// Expects the equality of `actual` and `expected` by inspecting a hard-coded
// subset of `audioproc::Stream` fields.
void ExpectStreamFieldsEq(const audioproc::Stream& actual,
const audioproc::Stream& expected) {
EXPECT_EQ(actual.input_data(), expected.input_data());
EXPECT_EQ(actual.output_data(), expected.output_data());
EXPECT_EQ(actual.delay(), expected.delay());
EXPECT_EQ(actual.drift(), expected.drift());
EXPECT_EQ(actual.applied_input_volume(), expected.applied_input_volume());
EXPECT_EQ(actual.keypress(), expected.keypress());
}
// Expects the equality of `actual` and `expected` by inspecting a hard-coded
// subset of `audioproc::Event` fields.
void ExpectEventFieldsEq(const audioproc::Event& actual,
const audioproc::Event& expected) {
EXPECT_EQ(actual.type(), expected.type());
if (actual.type() != expected.type()) {
return;
}
switch (actual.type()) {
case audioproc::Event::STREAM:
ExpectStreamFieldsEq(actual.stream(), expected.stream());
break;
default:
// Not implemented.
break;
}
}
// Returns true if the `actual` and `expected` byte streams share the same size
// and contain the same data. If they differ and `kDumpWhenExpectMessageEqFails`
// is true, checks the equality of a subset of `audioproc::Event` (nested)
// fields.
bool ExpectMessageEq(rtc::ArrayView<const uint8_t> actual,
rtc::ArrayView<const uint8_t> expected) {
EXPECT_EQ(actual.size(), expected.size());
if (actual.size() != expected.size()) {
return false;
}
if (memcmp(actual.data(), expected.data(), actual.size()) == 0) {
// Same message. No need to parse.
return true;
}
if (kDumpWhenExpectMessageEqFails) {
// Parse differing messages and expect equality to produce detailed error
// messages.
audioproc::Event event_actual, event_expected;
RTC_DCHECK(event_actual.ParseFromArray(actual.data(), actual.size()));
RTC_DCHECK(event_expected.ParseFromArray(expected.data(), expected.size()));
ExpectEventFieldsEq(event_actual, event_expected);
}
return false;
}
class ApmTest : public ::testing::Test {
protected:
ApmTest();
virtual void SetUp();
virtual void TearDown();
static void SetUpTestSuite() {}
static void TearDownTestSuite() { ClearTempFiles(); }
// Used to select between int and float interface tests.
enum Format { kIntFormat, kFloatFormat };
void Init(int sample_rate_hz,
int output_sample_rate_hz,
int reverse_sample_rate_hz,
size_t num_input_channels,
size_t num_output_channels,
size_t num_reverse_channels,
bool open_output_file);
void Init(AudioProcessing* ap);
void EnableAllComponents();
bool ReadFrame(FILE* file, Int16FrameData* frame);
bool ReadFrame(FILE* file, Int16FrameData* frame, ChannelBuffer<float>* cb);
void ReadFrameWithRewind(FILE* file, Int16FrameData* frame);
void ReadFrameWithRewind(FILE* file,
Int16FrameData* frame,
ChannelBuffer<float>* cb);
void ProcessDelayVerificationTest(int delay_ms,
int system_delay_ms,
int delay_min,
int delay_max);
void TestChangingChannelsInt16Interface(
size_t num_channels,
AudioProcessing::Error expected_return);
void TestChangingForwardChannels(size_t num_in_channels,
size_t num_out_channels,
AudioProcessing::Error expected_return);
void TestChangingReverseChannels(size_t num_rev_channels,
AudioProcessing::Error expected_return);
void RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate);
void RunManualVolumeChangeIsPossibleTest(int sample_rate);
void StreamParametersTest(Format format);
int ProcessStreamChooser(Format format);
int AnalyzeReverseStreamChooser(Format format);
void ProcessDebugDump(absl::string_view in_filename,
absl::string_view out_filename,
Format format,
int max_size_bytes);
void VerifyDebugDumpTest(Format format);
const std::string output_path_;
const std::string ref_filename_;
rtc::scoped_refptr<AudioProcessing> apm_;
Int16FrameData frame_;
Int16FrameData revframe_;
std::unique_ptr<ChannelBuffer<float>> float_cb_;
std::unique_ptr<ChannelBuffer<float>> revfloat_cb_;
int output_sample_rate_hz_;
size_t num_output_channels_;
FILE* far_file_;
FILE* near_file_;
FILE* out_file_;
};
ApmTest::ApmTest()
: output_path_(test::OutputPath()),
ref_filename_(GetReferenceFilename()),
output_sample_rate_hz_(0),
num_output_channels_(0),
far_file_(NULL),
near_file_(NULL),
out_file_(NULL) {
apm_ = BuiltinAudioProcessingBuilder().Build(CreateEnvironment());
AudioProcessing::Config apm_config = apm_->GetConfig();
apm_config.gain_controller1.analog_gain_controller.enabled = false;
apm_config.pipeline.maximum_internal_processing_rate = 48000;
apm_->ApplyConfig(apm_config);
}
void ApmTest::SetUp() {
ASSERT_TRUE(apm_.get() != NULL);
Init(32000, 32000, 32000, 2, 2, 2, false);
}
void ApmTest::TearDown() {
if (far_file_) {
ASSERT_EQ(0, fclose(far_file_));
}
far_file_ = NULL;
if (near_file_) {
ASSERT_EQ(0, fclose(near_file_));
}
near_file_ = NULL;
if (out_file_) {
ASSERT_EQ(0, fclose(out_file_));
}
out_file_ = NULL;
}
void ApmTest::Init(AudioProcessing* ap) {
ASSERT_EQ(
kNoErr,
ap->Initialize({{{frame_.sample_rate_hz, frame_.num_channels},
{output_sample_rate_hz_, num_output_channels_},
{revframe_.sample_rate_hz, revframe_.num_channels},
{revframe_.sample_rate_hz, revframe_.num_channels}}}));
}
void ApmTest::Init(int sample_rate_hz,
int output_sample_rate_hz,
int reverse_sample_rate_hz,
size_t num_input_channels,
size_t num_output_channels,
size_t num_reverse_channels,
bool open_output_file) {
SetContainerFormat(sample_rate_hz, num_input_channels, &frame_, &float_cb_);
output_sample_rate_hz_ = output_sample_rate_hz;
num_output_channels_ = num_output_channels;
SetContainerFormat(reverse_sample_rate_hz, num_reverse_channels, &revframe_,
&revfloat_cb_);
Init(apm_.get());
if (far_file_) {
ASSERT_EQ(0, fclose(far_file_));
}
std::string filename = ResourceFilePath("far", sample_rate_hz);
far_file_ = fopen(filename.c_str(), "rb");
ASSERT_TRUE(far_file_ != NULL) << "Could not open file " << filename << "\n";
if (near_file_) {
ASSERT_EQ(0, fclose(near_file_));
}
filename = ResourceFilePath("near", sample_rate_hz);
near_file_ = fopen(filename.c_str(), "rb");
ASSERT_TRUE(near_file_ != NULL) << "Could not open file " << filename << "\n";
if (open_output_file) {
if (out_file_) {
ASSERT_EQ(0, fclose(out_file_));
}
filename = OutputFilePath(
"out", sample_rate_hz, output_sample_rate_hz, reverse_sample_rate_hz,
reverse_sample_rate_hz, num_input_channels, num_output_channels,
num_reverse_channels, num_reverse_channels, kForward);
out_file_ = fopen(filename.c_str(), "wb");
ASSERT_TRUE(out_file_ != NULL)
<< "Could not open file " << filename << "\n";
}
}
void ApmTest::EnableAllComponents() {
EnableAllAPComponents(apm_.get());
}
bool ApmTest::ReadFrame(FILE* file,
Int16FrameData* frame,
ChannelBuffer<float>* cb) {
// The files always contain stereo audio.
size_t frame_size = frame->samples_per_channel * 2;
size_t read_count =
fread(frame->data.data(), sizeof(int16_t), frame_size, file);
if (read_count != frame_size) {
// Check that the file really ended.
EXPECT_NE(0, feof(file));
return false; // This is expected.
}
if (frame->num_channels == 1) {
MixStereoToMono(frame->data.data(), frame->data.data(),
frame->samples_per_channel);
}
if (cb) {
ConvertToFloat(*frame, cb);
}
return true;
}
bool ApmTest::ReadFrame(FILE* file, Int16FrameData* frame) {
return ReadFrame(file, frame, NULL);
}
// If the end of the file has been reached, rewind it and attempt to read the
// frame again.
void ApmTest::ReadFrameWithRewind(FILE* /* file */,
Int16FrameData* /* frame */,
ChannelBuffer<float>* cb) {
if (!ReadFrame(near_file_, &frame_, cb)) {
rewind(near_file_);
ASSERT_TRUE(ReadFrame(near_file_, &frame_, cb));
}
}
void ApmTest::ReadFrameWithRewind(FILE* file, Int16FrameData* frame) {
ReadFrameWithRewind(file, frame, NULL);
}
int ApmTest::ProcessStreamChooser(Format format) {
if (format == kIntFormat) {
return apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data());
}
return apm_->ProcessStream(
float_cb_->channels(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(output_sample_rate_hz_, num_output_channels_),
float_cb_->channels());
}
int ApmTest::AnalyzeReverseStreamChooser(Format format) {
if (format == kIntFormat) {
return apm_->ProcessReverseStream(
revframe_.data.data(),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
revframe_.data.data());
}
return apm_->AnalyzeReverseStream(
revfloat_cb_->channels(),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels));
}
void ApmTest::ProcessDelayVerificationTest(int delay_ms,
int system_delay_ms,
int delay_min,
int delay_max) {
// The `revframe_` and `frame_` should include the proper frame information,
// hence can be used for extracting information.
Int16FrameData tmp_frame;
std::queue<Int16FrameData*> frame_queue;
bool causal = true;
tmp_frame.CopyFrom(revframe_);
SetFrameTo(&tmp_frame, 0);
EXPECT_EQ(apm_->kNoError, apm_->Initialize());
// Initialize the `frame_queue` with empty frames.
int frame_delay = delay_ms / 10;
while (frame_delay < 0) {
Int16FrameData* frame = new Int16FrameData();
frame->CopyFrom(tmp_frame);
frame_queue.push(frame);
frame_delay++;
causal = false;
}
while (frame_delay > 0) {
Int16FrameData* frame = new Int16FrameData();
frame->CopyFrom(tmp_frame);
frame_queue.push(frame);
frame_delay--;
}
// Run for 4.5 seconds, skipping statistics from the first 2.5 seconds. We
// need enough frames with audio to have reliable estimates, but as few as
// possible to keep processing time down. 4.5 seconds seemed to be a good
// compromise for this recording.
for (int frame_count = 0; frame_count < 450; ++frame_count) {
Int16FrameData* frame = new Int16FrameData();
frame->CopyFrom(tmp_frame);
// Use the near end recording, since that has more speech in it.
ASSERT_TRUE(ReadFrame(near_file_, frame));
frame_queue.push(frame);
Int16FrameData* reverse_frame = frame;
Int16FrameData* process_frame = frame_queue.front();
if (!causal) {
reverse_frame = frame_queue.front();
// When we call ProcessStream() the frame is modified, so we can't use the
// pointer directly when things are non-causal. Use an intermediate frame
// and copy the data.
process_frame = &tmp_frame;
process_frame->CopyFrom(*frame);
}
EXPECT_EQ(apm_->kNoError, apm_->ProcessReverseStream(
reverse_frame->data.data(),
StreamConfig(reverse_frame->sample_rate_hz,
reverse_frame->num_channels),
StreamConfig(reverse_frame->sample_rate_hz,
reverse_frame->num_channels),
reverse_frame->data.data()));
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(system_delay_ms));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(process_frame->data.data(),
StreamConfig(process_frame->sample_rate_hz,
process_frame->num_channels),
StreamConfig(process_frame->sample_rate_hz,
process_frame->num_channels),
process_frame->data.data()));
frame = frame_queue.front();
frame_queue.pop();
delete frame;
if (frame_count == 250) {
// Discard the first delay metrics to avoid convergence effects.
static_cast<void>(apm_->GetStatistics());
}
}
rewind(near_file_);
while (!frame_queue.empty()) {
Int16FrameData* frame = frame_queue.front();
frame_queue.pop();
delete frame;
}
// Calculate expected delay estimate and acceptable regions. Further,
// limit them w.r.t. AEC delay estimation support.
const size_t samples_per_ms =
rtc::SafeMin<size_t>(16u, frame_.samples_per_channel / 10);
const int expected_median =
rtc::SafeClamp<int>(delay_ms - system_delay_ms, delay_min, delay_max);
const int expected_median_high = rtc::SafeClamp<int>(
expected_median + rtc::dchecked_cast<int>(96 / samples_per_ms), delay_min,
delay_max);
const int expected_median_low = rtc::SafeClamp<int>(
expected_median - rtc::dchecked_cast<int>(96 / samples_per_ms), delay_min,
delay_max);
// Verify delay metrics.
AudioProcessingStats stats = apm_->GetStatistics();
ASSERT_TRUE(stats.delay_median_ms.has_value());
int32_t median = *stats.delay_median_ms;
EXPECT_GE(expected_median_high, median);
EXPECT_LE(expected_median_low, median);
}
void ApmTest::StreamParametersTest(Format format) {
// No errors when the components are disabled.
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
// -- Missing AGC level --
AudioProcessing::Config apm_config = apm_->GetConfig();
apm_config.gain_controller1.enabled = true;
apm_->ApplyConfig(apm_config);
EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format));
// Resets after successful ProcessStream().
apm_->set_stream_analog_level(127);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format));
// Other stream parameters set correctly.
apm_config.echo_canceller.enabled = true;
apm_config.echo_canceller.mobile_mode = false;
apm_->ApplyConfig(apm_config);
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
EXPECT_EQ(apm_->kStreamParameterNotSetError, ProcessStreamChooser(format));
apm_config.gain_controller1.enabled = false;
apm_->ApplyConfig(apm_config);
// -- Missing delay --
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
// Resets after successful ProcessStream().
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
// Other stream parameters set correctly.
apm_config.gain_controller1.enabled = true;
apm_->ApplyConfig(apm_config);
apm_->set_stream_analog_level(127);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
apm_config.gain_controller1.enabled = false;
apm_->ApplyConfig(apm_config);
// -- No stream parameters --
EXPECT_EQ(apm_->kNoError, AnalyzeReverseStreamChooser(format));
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
// -- All there --
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(100));
apm_->set_stream_analog_level(127);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(format));
}
TEST_F(ApmTest, StreamParametersInt) {
StreamParametersTest(kIntFormat);
}
TEST_F(ApmTest, StreamParametersFloat) {
StreamParametersTest(kFloatFormat);
}
void ApmTest::TestChangingChannelsInt16Interface(
size_t num_channels,
AudioProcessing::Error expected_return) {
frame_.num_channels = num_channels;
EXPECT_EQ(expected_return,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_EQ(expected_return,
apm_->ProcessReverseStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
}
void ApmTest::TestChangingForwardChannels(
size_t num_in_channels,
size_t num_out_channels,
AudioProcessing::Error expected_return) {
const StreamConfig input_stream = {frame_.sample_rate_hz, num_in_channels};
const StreamConfig output_stream = {output_sample_rate_hz_, num_out_channels};
EXPECT_EQ(expected_return,
apm_->ProcessStream(float_cb_->channels(), input_stream,
output_stream, float_cb_->channels()));
}
void ApmTest::TestChangingReverseChannels(
size_t num_rev_channels,
AudioProcessing::Error expected_return) {
const ProcessingConfig processing_config = {
{{frame_.sample_rate_hz, apm_->num_input_channels()},
{output_sample_rate_hz_, apm_->num_output_channels()},
{frame_.sample_rate_hz, num_rev_channels},
{frame_.sample_rate_hz, num_rev_channels}}};
EXPECT_EQ(
expected_return,
apm_->ProcessReverseStream(
float_cb_->channels(), processing_config.reverse_input_stream(),
processing_config.reverse_output_stream(), float_cb_->channels()));
}
TEST_F(ApmTest, ChannelsInt16Interface) {
// Testing number of invalid and valid channels.
Init(16000, 16000, 16000, 4, 4, 4, false);
TestChangingChannelsInt16Interface(0, apm_->kBadNumberChannelsError);
for (size_t i = 1; i < 4; i++) {
TestChangingChannelsInt16Interface(i, kNoErr);
EXPECT_EQ(i, apm_->num_input_channels());
}
}
TEST_F(ApmTest, Channels) {
// Testing number of invalid and valid channels.
Init(16000, 16000, 16000, 4, 4, 4, false);
TestChangingForwardChannels(0, 1, apm_->kBadNumberChannelsError);
TestChangingReverseChannels(0, apm_->kBadNumberChannelsError);
for (size_t i = 1; i < 4; ++i) {
for (size_t j = 0; j < 1; ++j) {
// Output channels much be one or match input channels.
if (j == 1 || i == j) {
TestChangingForwardChannels(i, j, kNoErr);
TestChangingReverseChannels(i, kNoErr);
EXPECT_EQ(i, apm_->num_input_channels());
EXPECT_EQ(j, apm_->num_output_channels());
// The number of reverse channels used for processing to is always 1.
EXPECT_EQ(1u, apm_->num_reverse_channels());
} else {
TestChangingForwardChannels(i, j,
AudioProcessing::kBadNumberChannelsError);
}
}
}
}
TEST_F(ApmTest, SampleRatesInt) {
// Testing some valid sample rates.
for (int sample_rate : {8000, 12000, 16000, 32000, 44100, 48000, 96000}) {
SetContainerFormat(sample_rate, 2, &frame_, &float_cb_);
EXPECT_NOERR(ProcessStreamChooser(kIntFormat));
}
}
// This test repeatedly reconfigures the pre-amplifier in APM, processes a
// number of frames, and checks that output signal has the right level.
TEST_F(ApmTest, PreAmplifier) {
// Fill the audio frame with a sawtooth pattern.
rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_);
const size_t samples_per_channel = frame_.samples_per_channel;
for (size_t i = 0; i < samples_per_channel; i++) {
for (size_t ch = 0; ch < frame_.num_channels; ++ch) {
frame_data[i + ch * samples_per_channel] = 10000 * ((i % 3) - 1);
}
}
// Cache the frame in tmp_frame.
Int16FrameData tmp_frame;
tmp_frame.CopyFrom(frame_);
auto compute_power = [](const Int16FrameData& frame) {
rtc::ArrayView<const int16_t> data = GetFrameData(frame);
return std::accumulate(data.begin(), data.end(), 0.0f,
[](float a, float b) { return a + b * b; }) /
data.size() / 32768 / 32768;
};
const float input_power = compute_power(tmp_frame);
// Double-check that the input data is large compared to the error kEpsilon.
constexpr float kEpsilon = 1e-4f;
RTC_DCHECK_GE(input_power, 10 * kEpsilon);
// 1. Enable pre-amp with 0 dB gain.
AudioProcessing::Config config = apm_->GetConfig();
config.pre_amplifier.enabled = true;
config.pre_amplifier.fixed_gain_factor = 1.0f;
apm_->ApplyConfig(config);
for (int i = 0; i < 20; ++i) {
frame_.CopyFrom(tmp_frame);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
}
float output_power = compute_power(frame_);
EXPECT_NEAR(output_power, input_power, kEpsilon);
config = apm_->GetConfig();
EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 1.0f);
// 2. Change pre-amp gain via ApplyConfig.
config.pre_amplifier.fixed_gain_factor = 2.0f;
apm_->ApplyConfig(config);
for (int i = 0; i < 20; ++i) {
frame_.CopyFrom(tmp_frame);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
}
output_power = compute_power(frame_);
EXPECT_NEAR(output_power, 4 * input_power, kEpsilon);
config = apm_->GetConfig();
EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 2.0f);
// 3. Change pre-amp gain via a RuntimeSetting.
apm_->SetRuntimeSetting(
AudioProcessing::RuntimeSetting::CreateCapturePreGain(1.5f));
for (int i = 0; i < 20; ++i) {
frame_.CopyFrom(tmp_frame);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
}
output_power = compute_power(frame_);
EXPECT_NEAR(output_power, 2.25 * input_power, kEpsilon);
config = apm_->GetConfig();
EXPECT_EQ(config.pre_amplifier.fixed_gain_factor, 1.5f);
}
// Ensures that the emulated analog mic gain functionality runs without
// crashing.
TEST_F(ApmTest, AnalogMicGainEmulation) {
// Fill the audio frame with a sawtooth pattern.
rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_);
const size_t samples_per_channel = frame_.samples_per_channel;
for (size_t i = 0; i < samples_per_channel; i++) {
for (size_t ch = 0; ch < frame_.num_channels; ++ch) {
frame_data[i + ch * samples_per_channel] = 100 * ((i % 3) - 1);
}
}
// Cache the frame in tmp_frame.
Int16FrameData tmp_frame;
tmp_frame.CopyFrom(frame_);
// Enable the analog gain emulation.
AudioProcessing::Config config = apm_->GetConfig();
config.capture_level_adjustment.enabled = true;
config.capture_level_adjustment.analog_mic_gain_emulation.enabled = true;
config.capture_level_adjustment.analog_mic_gain_emulation.initial_level = 21;
config.gain_controller1.enabled = true;
config.gain_controller1.mode =
AudioProcessing::Config::GainController1::Mode::kAdaptiveAnalog;
config.gain_controller1.analog_gain_controller.enabled = true;
apm_->ApplyConfig(config);
// Process a number of frames to ensure that the code runs without crashes.
for (int i = 0; i < 20; ++i) {
frame_.CopyFrom(tmp_frame);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
}
}
// This test repeatedly reconfigures the capture level adjustment functionality
// in APM, processes a number of frames, and checks that output signal has the
// right level.
TEST_F(ApmTest, CaptureLevelAdjustment) {
// Fill the audio frame with a sawtooth pattern.
rtc::ArrayView<int16_t> frame_data = GetMutableFrameData(&frame_);
const size_t samples_per_channel = frame_.samples_per_channel;
for (size_t i = 0; i < samples_per_channel; i++) {
for (size_t ch = 0; ch < frame_.num_channels; ++ch) {
frame_data[i + ch * samples_per_channel] = 100 * ((i % 3) - 1);
}
}
// Cache the frame in tmp_frame.
Int16FrameData tmp_frame;
tmp_frame.CopyFrom(frame_);
auto compute_power = [](const Int16FrameData& frame) {
rtc::ArrayView<const int16_t> data = GetFrameData(frame);
return std::accumulate(data.begin(), data.end(), 0.0f,
[](float a, float b) { return a + b * b; }) /
data.size() / 32768 / 32768;
};
const float input_power = compute_power(tmp_frame);
// Double-check that the input data is large compared to the error kEpsilon.
constexpr float kEpsilon = 1e-20f;
RTC_DCHECK_GE(input_power, 10 * kEpsilon);
// 1. Enable pre-amp with 0 dB gain.
AudioProcessing::Config config = apm_->GetConfig();
config.capture_level_adjustment.enabled = true;
config.capture_level_adjustment.pre_gain_factor = 0.5f;
config.capture_level_adjustment.post_gain_factor = 4.f;
const float expected_output_power1 =
config.capture_level_adjustment.pre_gain_factor *
config.capture_level_adjustment.pre_gain_factor *
config.capture_level_adjustment.post_gain_factor *
config.capture_level_adjustment.post_gain_factor * input_power;
apm_->ApplyConfig(config);
for (int i = 0; i < 20; ++i) {
frame_.CopyFrom(tmp_frame);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
}
float output_power = compute_power(frame_);
EXPECT_NEAR(output_power, expected_output_power1, kEpsilon);
config = apm_->GetConfig();
EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 0.5f);
EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 4.f);
// 2. Change pre-amp gain via ApplyConfig.
config.capture_level_adjustment.pre_gain_factor = 1.0f;
config.capture_level_adjustment.post_gain_factor = 2.f;
const float expected_output_power2 =
config.capture_level_adjustment.pre_gain_factor *
config.capture_level_adjustment.pre_gain_factor *
config.capture_level_adjustment.post_gain_factor *
config.capture_level_adjustment.post_gain_factor * input_power;
apm_->ApplyConfig(config);
for (int i = 0; i < 20; ++i) {
frame_.CopyFrom(tmp_frame);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
}
output_power = compute_power(frame_);
EXPECT_NEAR(output_power, expected_output_power2, kEpsilon);
config = apm_->GetConfig();
EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 1.0f);
EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 2.f);
// 3. Change pre-amp gain via a RuntimeSetting.
constexpr float kPreGain3 = 0.5f;
constexpr float kPostGain3 = 3.f;
const float expected_output_power3 =
kPreGain3 * kPreGain3 * kPostGain3 * kPostGain3 * input_power;
apm_->SetRuntimeSetting(
AudioProcessing::RuntimeSetting::CreateCapturePreGain(kPreGain3));
apm_->SetRuntimeSetting(
AudioProcessing::RuntimeSetting::CreateCapturePostGain(kPostGain3));
for (int i = 0; i < 20; ++i) {
frame_.CopyFrom(tmp_frame);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kIntFormat));
}
output_power = compute_power(frame_);
EXPECT_NEAR(output_power, expected_output_power3, kEpsilon);
config = apm_->GetConfig();
EXPECT_EQ(config.capture_level_adjustment.pre_gain_factor, 0.5f);
EXPECT_EQ(config.capture_level_adjustment.post_gain_factor, 3.f);
}
TEST_F(ApmTest, GainControl) {
AudioProcessing::Config config = apm_->GetConfig();
config.gain_controller1.enabled = false;
apm_->ApplyConfig(config);
config.gain_controller1.enabled = true;
apm_->ApplyConfig(config);
// Testing gain modes
for (auto mode :
{AudioProcessing::Config::GainController1::kAdaptiveDigital,
AudioProcessing::Config::GainController1::kFixedDigital,
AudioProcessing::Config::GainController1::kAdaptiveAnalog}) {
config.gain_controller1.mode = mode;
apm_->ApplyConfig(config);
apm_->set_stream_analog_level(100);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
}
// Testing target levels
for (int target_level_dbfs : {0, 15, 31}) {
config.gain_controller1.target_level_dbfs = target_level_dbfs;
apm_->ApplyConfig(config);
apm_->set_stream_analog_level(100);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
}
// Testing compression gains
for (int compression_gain_db : {0, 10, 90}) {
config.gain_controller1.compression_gain_db = compression_gain_db;
apm_->ApplyConfig(config);
apm_->set_stream_analog_level(100);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
}
// Testing limiter off/on
for (bool enable : {false, true}) {
config.gain_controller1.enable_limiter = enable;
apm_->ApplyConfig(config);
apm_->set_stream_analog_level(100);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
}
// Testing level limits.
constexpr int kMinLevel = 0;
constexpr int kMaxLevel = 255;
apm_->set_stream_analog_level(kMinLevel);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
apm_->set_stream_analog_level((kMinLevel + kMaxLevel) / 2);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
apm_->set_stream_analog_level(kMaxLevel);
EXPECT_EQ(apm_->kNoError, ProcessStreamChooser(kFloatFormat));
}
#if RTC_DCHECK_IS_ON && GTEST_HAS_DEATH_TEST && !defined(WEBRTC_ANDROID)
using ApmDeathTest = ApmTest;
TEST_F(ApmDeathTest, GainControlDiesOnTooLowTargetLevelDbfs) {
auto config = apm_->GetConfig();
config.gain_controller1.enabled = true;
config.gain_controller1.target_level_dbfs = -1;
EXPECT_DEATH(apm_->ApplyConfig(config), "");
}
TEST_F(ApmDeathTest, GainControlDiesOnTooHighTargetLevelDbfs) {
auto config = apm_->GetConfig();
config.gain_controller1.enabled = true;
config.gain_controller1.target_level_dbfs = 32;
EXPECT_DEATH(apm_->ApplyConfig(config), "");
}
TEST_F(ApmDeathTest, GainControlDiesOnTooLowCompressionGainDb) {
auto config = apm_->GetConfig();
config.gain_controller1.enabled = true;
config.gain_controller1.compression_gain_db = -1;
EXPECT_DEATH(apm_->ApplyConfig(config), "");
}
TEST_F(ApmDeathTest, GainControlDiesOnTooHighCompressionGainDb) {
auto config = apm_->GetConfig();
config.gain_controller1.enabled = true;
config.gain_controller1.compression_gain_db = 91;
EXPECT_DEATH(apm_->ApplyConfig(config), "");
}
TEST_F(ApmDeathTest, ApmDiesOnTooLowAnalogLevel) {
auto config = apm_->GetConfig();
config.gain_controller1.enabled = true;
apm_->ApplyConfig(config);
EXPECT_DEATH(apm_->set_stream_analog_level(-1), "");
}
TEST_F(ApmDeathTest, ApmDiesOnTooHighAnalogLevel) {
auto config = apm_->GetConfig();
config.gain_controller1.enabled = true;
apm_->ApplyConfig(config);
EXPECT_DEATH(apm_->set_stream_analog_level(256), "");
}
#endif
void ApmTest::RunQuantizedVolumeDoesNotGetStuckTest(int sample_rate) {
Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false);
auto config = apm_->GetConfig();
config.gain_controller1.enabled = true;
config.gain_controller1.mode =
AudioProcessing::Config::GainController1::kAdaptiveAnalog;
apm_->ApplyConfig(config);
int out_analog_level = 0;
for (int i = 0; i < 2000; ++i) {
ReadFrameWithRewind(near_file_, &frame_);
// Ensure the audio is at a low level, so the AGC will try to increase it.
ScaleFrame(&frame_, 0.25);
// Always pass in the same volume.
apm_->set_stream_analog_level(100);
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
out_analog_level = apm_->recommended_stream_analog_level();
}
// Ensure the AGC is still able to reach the maximum.
EXPECT_EQ(255, out_analog_level);
}
// Verifies that despite volume slider quantization, the AGC can continue to
// increase its volume.
TEST_F(ApmTest, QuantizedVolumeDoesNotGetStuck) {
for (size_t sample_rate_hz : kProcessSampleRates) {
SCOPED_TRACE(::testing::Message() << "sample_rate_hz=" << sample_rate_hz);
RunQuantizedVolumeDoesNotGetStuckTest(sample_rate_hz);
}
}
void ApmTest::RunManualVolumeChangeIsPossibleTest(int sample_rate) {
Init(sample_rate, sample_rate, sample_rate, 2, 2, 2, false);
auto config = apm_->GetConfig();
config.gain_controller1.enabled = true;
config.gain_controller1.mode =
AudioProcessing::Config::GainController1::kAdaptiveAnalog;
apm_->ApplyConfig(config);
int out_analog_level = 100;
for (int i = 0; i < 1000; ++i) {
ReadFrameWithRewind(near_file_, &frame_);
// Ensure the audio is at a low level, so the AGC will try to increase it.
ScaleFrame(&frame_, 0.25);
apm_->set_stream_analog_level(out_analog_level);
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
out_analog_level = apm_->recommended_stream_analog_level();
}
// Ensure the volume was raised.
EXPECT_GT(out_analog_level, 100);
int highest_level_reached = out_analog_level;
// Simulate a user manual volume change.
out_analog_level = 100;
for (int i = 0; i < 300; ++i) {
ReadFrameWithRewind(near_file_, &frame_);
ScaleFrame(&frame_, 0.25);
apm_->set_stream_analog_level(out_analog_level);
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
out_analog_level = apm_->recommended_stream_analog_level();
// Check that AGC respected the manually adjusted volume.
EXPECT_LT(out_analog_level, highest_level_reached);
}
// Check that the volume was still raised.
EXPECT_GT(out_analog_level, 100);
}
TEST_F(ApmTest, ManualVolumeChangeIsPossible) {
for (size_t sample_rate_hz : kProcessSampleRates) {
SCOPED_TRACE(::testing::Message() << "sample_rate_hz=" << sample_rate_hz);
RunManualVolumeChangeIsPossibleTest(sample_rate_hz);
}
}
TEST_F(ApmTest, HighPassFilter) {
// Turn HP filter on/off
AudioProcessing::Config apm_config;
apm_config.high_pass_filter.enabled = true;
apm_->ApplyConfig(apm_config);
apm_config.high_pass_filter.enabled = false;
apm_->ApplyConfig(apm_config);
}
TEST_F(ApmTest, AllProcessingDisabledByDefault) {
AudioProcessing::Config config = apm_->GetConfig();
EXPECT_FALSE(config.echo_canceller.enabled);
EXPECT_FALSE(config.high_pass_filter.enabled);
EXPECT_FALSE(config.gain_controller1.enabled);
EXPECT_FALSE(config.noise_suppression.enabled);
}
TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabledInt) {
// Test that ProcessStream simply copies input to output when all components
// are disabled.
// Runs over all processing rates, and some particularly common or special
// rates.
// - 8000 Hz: lowest sample rate seen in Chrome metrics,
// - 22050 Hz: APM input/output frames are not exactly 10 ms,
// - 44100 Hz: very common desktop sample rate.
constexpr int kSampleRatesHz[] = {8000, 16000, 22050, 32000, 44100, 48000};
for (size_t sample_rate_hz : kSampleRatesHz) {
SCOPED_TRACE(::testing::Message() << "sample_rate_hz=" << sample_rate_hz);
Init(sample_rate_hz, sample_rate_hz, sample_rate_hz, 2, 2, 2, false);
SetFrameTo(&frame_, 1000, 2000);
Int16FrameData frame_copy;
frame_copy.CopyFrom(frame_);
for (int j = 0; j < 1000; j++) {
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessReverseStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy));
}
}
}
TEST_F(ApmTest, NoProcessingWhenAllComponentsDisabledFloat) {
// Test that ProcessStream simply copies input to output when all components
// are disabled.
const size_t kSamples = 160;
const int sample_rate = 16000;
const float src[kSamples] = {-1.0f, 0.0f, 1.0f};
float dest[kSamples] = {};
auto src_channels = &src[0];
auto dest_channels = &dest[0];
apm_ = BuiltinAudioProcessingBuilder().Build(CreateEnvironment());
EXPECT_NOERR(apm_->ProcessStream(&src_channels, StreamConfig(sample_rate, 1),
StreamConfig(sample_rate, 1),
&dest_channels));
for (size_t i = 0; i < kSamples; ++i) {
EXPECT_EQ(src[i], dest[i]);
}
// Same for ProcessReverseStream.
float rev_dest[kSamples] = {};
auto rev_dest_channels = &rev_dest[0];
StreamConfig input_stream = {sample_rate, 1};
StreamConfig output_stream = {sample_rate, 1};
EXPECT_NOERR(apm_->ProcessReverseStream(&src_channels, input_stream,
output_stream, &rev_dest_channels));
for (size_t i = 0; i < kSamples; ++i) {
EXPECT_EQ(src[i], rev_dest[i]);
}
}
TEST_F(ApmTest, IdenticalInputChannelsResultInIdenticalOutputChannels) {
EnableAllComponents();
for (size_t i = 0; i < arraysize(kProcessSampleRates); i++) {
Init(kProcessSampleRates[i], kProcessSampleRates[i], kProcessSampleRates[i],
2, 2, 2, false);
int analog_level = 127;
ASSERT_EQ(0, feof(far_file_));
ASSERT_EQ(0, feof(near_file_));
while (ReadFrame(far_file_, &revframe_) && ReadFrame(near_file_, &frame_)) {
CopyLeftToRightChannel(revframe_.data.data(),
revframe_.samples_per_channel);
ASSERT_EQ(
kNoErr,
apm_->ProcessReverseStream(
revframe_.data.data(),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
revframe_.data.data()));
CopyLeftToRightChannel(frame_.data.data(), frame_.samples_per_channel);
ASSERT_EQ(kNoErr, apm_->set_stream_delay_ms(0));
apm_->set_stream_analog_level(analog_level);
ASSERT_EQ(kNoErr,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
analog_level = apm_->recommended_stream_analog_level();
VerifyChannelsAreEqual(frame_.data.data(), frame_.samples_per_channel);
}
rewind(far_file_);
rewind(near_file_);
}
}
TEST_F(ApmTest, SplittingFilter) {
// Verify the filter is not active through undistorted audio when:
// 1. No components are enabled...
SetFrameTo(&frame_, 1000);
Int16FrameData frame_copy;
frame_copy.CopyFrom(frame_);
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy));
// 2. Only the level estimator is enabled...
auto apm_config = apm_->GetConfig();
SetFrameTo(&frame_, 1000);
frame_copy.CopyFrom(frame_);
apm_->ApplyConfig(apm_config);
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_TRUE(FrameDataAreEqual(frame_, frame_copy));
apm_->ApplyConfig(apm_config);
// Check the test is valid. We should have distortion from the filter
// when AEC is enabled (which won't affect the audio).
apm_config.echo_canceller.enabled = true;
apm_config.echo_canceller.mobile_mode = false;
apm_->ApplyConfig(apm_config);
frame_.samples_per_channel = 320;
frame_.num_channels = 2;
frame_.sample_rate_hz = 32000;
SetFrameTo(&frame_, 1000);
frame_copy.CopyFrom(frame_);
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_FALSE(FrameDataAreEqual(frame_, frame_copy));
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
void ApmTest::ProcessDebugDump(absl::string_view in_filename,
absl::string_view out_filename,
Format format,
int max_size_bytes) {
TaskQueueForTest worker_queue("ApmTest_worker_queue");
FILE* in_file = fopen(std::string(in_filename).c_str(), "rb");
ASSERT_TRUE(in_file != NULL);
audioproc::Event event_msg;
bool first_init = true;
while (ReadMessageFromFile(in_file, &event_msg)) {
if (event_msg.type() == audioproc::Event::INIT) {
const audioproc::Init msg = event_msg.init();
int reverse_sample_rate = msg.sample_rate();
if (msg.has_reverse_sample_rate()) {
reverse_sample_rate = msg.reverse_sample_rate();
}
int output_sample_rate = msg.sample_rate();
if (msg.has_output_sample_rate()) {
output_sample_rate = msg.output_sample_rate();
}
Init(msg.sample_rate(), output_sample_rate, reverse_sample_rate,
msg.num_input_channels(), msg.num_output_channels(),
msg.num_reverse_channels(), false);
if (first_init) {
// AttachAecDump() writes an additional init message. Don't start
// recording until after the first init to avoid the extra message.
auto aec_dump = AecDumpFactory::Create(out_filename, max_size_bytes,
worker_queue.Get());
EXPECT_TRUE(aec_dump);
apm_->AttachAecDump(std::move(aec_dump));
first_init = false;
}
} else if (event_msg.type() == audioproc::Event::REVERSE_STREAM) {
const audioproc::ReverseStream msg = event_msg.reverse_stream();
if (msg.channel_size() > 0) {
ASSERT_EQ(revframe_.num_channels,
static_cast<size_t>(msg.channel_size()));
for (int i = 0; i < msg.channel_size(); ++i) {
memcpy(revfloat_cb_->channels()[i], msg.channel(i).data(),
msg.channel(i).size());
}
} else {
memcpy(revframe_.data.data(), msg.data().data(), msg.data().size());
if (format == kFloatFormat) {
// We're using an int16 input file; convert to float.
ConvertToFloat(revframe_, revfloat_cb_.get());
}
}
AnalyzeReverseStreamChooser(format);
} else if (event_msg.type() == audioproc::Event::STREAM) {
const audioproc::Stream msg = event_msg.stream();
// ProcessStream could have changed this for the output frame.
frame_.num_channels = apm_->num_input_channels();
apm_->set_stream_analog_level(msg.applied_input_volume());
EXPECT_NOERR(apm_->set_stream_delay_ms(msg.delay()));
if (msg.has_keypress()) {
apm_->set_stream_key_pressed(msg.keypress());
} else {
apm_->set_stream_key_pressed(true);
}
if (msg.input_channel_size() > 0) {
ASSERT_EQ(frame_.num_channels,
static_cast<size_t>(msg.input_channel_size()));
for (int i = 0; i < msg.input_channel_size(); ++i) {
memcpy(float_cb_->channels()[i], msg.input_channel(i).data(),
msg.input_channel(i).size());
}
} else {
memcpy(frame_.data.data(), msg.input_data().data(),
msg.input_data().size());
if (format == kFloatFormat) {
// We're using an int16 input file; convert to float.
ConvertToFloat(frame_, float_cb_.get());
}
}
ProcessStreamChooser(format);
}
}
apm_->DetachAecDump();
fclose(in_file);
}
void ApmTest::VerifyDebugDumpTest(Format format) {
rtc::ScopedFakeClock fake_clock;
const std::string in_filename = test::ResourcePath("ref03", "aecdump");
std::string format_string;
switch (format) {
case kIntFormat:
format_string = "_int";
break;
case kFloatFormat:
format_string = "_float";
break;
}
const std::string ref_filename = test::TempFilename(
test::OutputPath(), std::string("ref") + format_string + "_aecdump");
const std::string out_filename = test::TempFilename(
test::OutputPath(), std::string("out") + format_string + "_aecdump");
const std::string limited_filename = test::TempFilename(
test::OutputPath(), std::string("limited") + format_string + "_aecdump");
const size_t logging_limit_bytes = 100000;
// We expect at least this many bytes in the created logfile.
const size_t logging_expected_bytes = 95000;
EnableAllComponents();
ProcessDebugDump(in_filename, ref_filename, format, -1);
ProcessDebugDump(ref_filename, out_filename, format, -1);
ProcessDebugDump(ref_filename, limited_filename, format, logging_limit_bytes);
FILE* ref_file = fopen(ref_filename.c_str(), "rb");
FILE* out_file = fopen(out_filename.c_str(), "rb");
FILE* limited_file = fopen(limited_filename.c_str(), "rb");
ASSERT_TRUE(ref_file != NULL);
ASSERT_TRUE(out_file != NULL);
ASSERT_TRUE(limited_file != NULL);
std::unique_ptr<uint8_t[]> ref_bytes;
std::unique_ptr<uint8_t[]> out_bytes;
std::unique_ptr<uint8_t[]> limited_bytes;
size_t ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes);
size_t out_size = ReadMessageBytesFromFile(out_file, &out_bytes);
size_t limited_size = ReadMessageBytesFromFile(limited_file, &limited_bytes);
size_t bytes_read = 0;
size_t bytes_read_limited = 0;
while (ref_size > 0 && out_size > 0) {
bytes_read += ref_size;
bytes_read_limited += limited_size;
EXPECT_EQ(ref_size, out_size);
EXPECT_GE(ref_size, limited_size);
EXPECT_TRUE(ExpectMessageEq(/*actual=*/{out_bytes.get(), out_size},
/*expected=*/{ref_bytes.get(), ref_size}));
if (limited_size > 0) {
EXPECT_TRUE(
ExpectMessageEq(/*actual=*/{limited_bytes.get(), limited_size},
/*expected=*/{ref_bytes.get(), ref_size}));
}
ref_size = ReadMessageBytesFromFile(ref_file, &ref_bytes);
out_size = ReadMessageBytesFromFile(out_file, &out_bytes);
limited_size = ReadMessageBytesFromFile(limited_file, &limited_bytes);
}
EXPECT_GT(bytes_read, 0u);
EXPECT_GT(bytes_read_limited, logging_expected_bytes);
EXPECT_LE(bytes_read_limited, logging_limit_bytes);
EXPECT_NE(0, feof(ref_file));
EXPECT_NE(0, feof(out_file));
EXPECT_NE(0, feof(limited_file));
ASSERT_EQ(0, fclose(ref_file));
ASSERT_EQ(0, fclose(out_file));
ASSERT_EQ(0, fclose(limited_file));
remove(ref_filename.c_str());
remove(out_filename.c_str());
remove(limited_filename.c_str());
}
TEST_F(ApmTest, VerifyDebugDumpInt) {
VerifyDebugDumpTest(kIntFormat);
}
TEST_F(ApmTest, VerifyDebugDumpFloat) {
VerifyDebugDumpTest(kFloatFormat);
}
#endif
// TODO(andrew): expand test to verify output.
TEST_F(ApmTest, DebugDump) {
TaskQueueForTest worker_queue("ApmTest_worker_queue");
const std::string filename =
test::TempFilename(test::OutputPath(), "debug_aec");
{
auto aec_dump = AecDumpFactory::Create("", -1, worker_queue.Get());
EXPECT_FALSE(aec_dump);
}
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Stopping without having started should be OK.
apm_->DetachAecDump();
auto aec_dump = AecDumpFactory::Create(filename, -1, worker_queue.Get());
EXPECT_TRUE(aec_dump);
apm_->AttachAecDump(std::move(aec_dump));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessReverseStream(
revframe_.data.data(),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
revframe_.data.data()));
apm_->DetachAecDump();
// Verify the file has been written.
FILE* fid = fopen(filename.c_str(), "r");
ASSERT_TRUE(fid != NULL);
// Clean it up.
ASSERT_EQ(0, fclose(fid));
ASSERT_EQ(0, remove(filename.c_str()));
#else
// Verify the file has NOT been written.
ASSERT_TRUE(fopen(filename.c_str(), "r") == NULL);
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
// TODO(andrew): expand test to verify output.
TEST_F(ApmTest, DebugDumpFromFileHandle) {
TaskQueueForTest worker_queue("ApmTest_worker_queue");
const std::string filename =
test::TempFilename(test::OutputPath(), "debug_aec");
FileWrapper f = FileWrapper::OpenWriteOnly(filename);
ASSERT_TRUE(f.is_open());
#ifdef WEBRTC_AUDIOPROC_DEBUG_DUMP
// Stopping without having started should be OK.
apm_->DetachAecDump();
auto aec_dump = AecDumpFactory::Create(std::move(f), -1, worker_queue.Get());
EXPECT_TRUE(aec_dump);
apm_->AttachAecDump(std::move(aec_dump));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessReverseStream(
revframe_.data.data(),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
revframe_.data.data()));
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
apm_->DetachAecDump();
// Verify the file has been written.
FILE* fid = fopen(filename.c_str(), "r");
ASSERT_TRUE(fid != NULL);
// Clean it up.
ASSERT_EQ(0, fclose(fid));
ASSERT_EQ(0, remove(filename.c_str()));
#endif // WEBRTC_AUDIOPROC_DEBUG_DUMP
}
// TODO(andrew): Add a test to process a few frames with different combinations
// of enabled components.
TEST_F(ApmTest, Process) {
GOOGLE_PROTOBUF_VERIFY_VERSION;
audioproc::OutputData ref_data;
if (!absl::GetFlag(FLAGS_write_apm_ref_data)) {
OpenFileAndReadMessage(ref_filename_, &ref_data);
} else {
const int kChannels[] = {1, 2};
// Write the desired tests to the protobuf reference file.
for (size_t i = 0; i < arraysize(kChannels); i++) {
for (size_t j = 0; j < arraysize(kChannels); j++) {
for (int sample_rate_hz : AudioProcessing::kNativeSampleRatesHz) {
audioproc::Test* test = ref_data.add_test();
test->set_num_reverse_channels(kChannels[i]);
test->set_num_input_channels(kChannels[j]);
test->set_num_output_channels(kChannels[j]);
test->set_sample_rate(sample_rate_hz);
test->set_use_aec_extended_filter(false);
}
}
}
#if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
// To test the extended filter mode.
audioproc::Test* test = ref_data.add_test();
test->set_num_reverse_channels(2);
test->set_num_input_channels(2);
test->set_num_output_channels(2);
test->set_sample_rate(AudioProcessing::kSampleRate32kHz);
test->set_use_aec_extended_filter(true);
#endif
}
for (int i = 0; i < ref_data.test_size(); i++) {
printf("Running test %d of %d...\n", i + 1, ref_data.test_size());
audioproc::Test* test = ref_data.mutable_test(i);
// TODO(ajm): We no longer allow different input and output channels. Skip
// these tests for now, but they should be removed from the set.
if (test->num_input_channels() != test->num_output_channels())
continue;
apm_ = BuiltinAudioProcessingBuilder()
.SetEchoDetector(CreateEchoDetector())
.Build(CreateEnvironment());
AudioProcessing::Config apm_config = apm_->GetConfig();
apm_config.gain_controller1.analog_gain_controller.enabled = false;
apm_->ApplyConfig(apm_config);
EnableAllComponents();
Init(test->sample_rate(), test->sample_rate(), test->sample_rate(),
static_cast<size_t>(test->num_input_channels()),
static_cast<size_t>(test->num_output_channels()),
static_cast<size_t>(test->num_reverse_channels()), true);
int frame_count = 0;
int analog_level = 127;
int analog_level_average = 0;
int max_output_average = 0;
#if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
int stats_index = 0;
#endif
while (ReadFrame(far_file_, &revframe_) && ReadFrame(near_file_, &frame_)) {
EXPECT_EQ(
apm_->kNoError,
apm_->ProcessReverseStream(
revframe_.data.data(),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
StreamConfig(revframe_.sample_rate_hz, revframe_.num_channels),
revframe_.data.data()));
EXPECT_EQ(apm_->kNoError, apm_->set_stream_delay_ms(0));
apm_->set_stream_analog_level(analog_level);
EXPECT_EQ(apm_->kNoError,
apm_->ProcessStream(
frame_.data.data(),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
StreamConfig(frame_.sample_rate_hz, frame_.num_channels),
frame_.data.data()));
// Ensure the frame was downmixed properly.
EXPECT_EQ(static_cast<size_t>(test->num_output_channels()),
frame_.num_channels);
max_output_average += MaxAudioFrame(frame_);
analog_level = apm_->recommended_stream_analog_level();
analog_level_average += analog_level;
AudioProcessingStats stats = apm_->GetStatistics();
size_t frame_size = frame_.samples_per_channel * frame_.num_channels;
size_t write_count =
fwrite(frame_.data.data(), sizeof(int16_t), frame_size, out_file_);
ASSERT_EQ(frame_size, write_count);
// Reset in case of downmixing.
frame_.num_channels = static_cast<size_t>(test->num_input_channels());
frame_count++;
#if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
const int kStatsAggregationFrameNum = 100; // 1 second.
if (frame_count % kStatsAggregationFrameNum == 0) {
// Get echo and delay metrics.
AudioProcessingStats stats2 = apm_->GetStatistics();
// Echo metrics.
const float echo_return_loss = stats2.echo_return_loss.value_or(-1.0f);
const float echo_return_loss_enhancement =
stats2.echo_return_loss_enhancement.value_or(-1.0f);
const float residual_echo_likelihood =
stats2.residual_echo_likelihood.value_or(-1.0f);
const float residual_echo_likelihood_recent_max =
stats2.residual_echo_likelihood_recent_max.value_or(-1.0f);
if (!absl::GetFlag(FLAGS_write_apm_ref_data)) {
const audioproc::Test::EchoMetrics& reference =
test->echo_metrics(stats_index);
constexpr float kEpsilon = 0.01;
EXPECT_NEAR(echo_return_loss, reference.echo_return_loss(), kEpsilon);
EXPECT_NEAR(echo_return_loss_enhancement,
reference.echo_return_loss_enhancement(), kEpsilon);
EXPECT_NEAR(residual_echo_likelihood,
reference.residual_echo_likelihood(), kEpsilon);
EXPECT_NEAR(residual_echo_likelihood_recent_max,
reference.residual_echo_likelihood_recent_max(),
kEpsilon);
++stats_index;
} else {
audioproc::Test::EchoMetrics* message_echo = test->add_echo_metrics();
message_echo->set_echo_return_loss(echo_return_loss);
message_echo->set_echo_return_loss_enhancement(
echo_return_loss_enhancement);
message_echo->set_residual_echo_likelihood(residual_echo_likelihood);
message_echo->set_residual_echo_likelihood_recent_max(
residual_echo_likelihood_recent_max);
}
}
#endif // defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE).
}
max_output_average /= frame_count;
analog_level_average /= frame_count;
if (!absl::GetFlag(FLAGS_write_apm_ref_data)) {
const int kIntNear = 1;
// All numbers being consistently higher on N7 compare to the reference
// data.
// TODO(bjornv): If we start getting more of these offsets on Android we
// should consider a different approach. Either using one slack for all,
// or generate a separate android reference.
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS)
const int kMaxOutputAverageOffset = 9;
const int kMaxOutputAverageNear = 26;
#else
const int kMaxOutputAverageOffset = 0;
const int kMaxOutputAverageNear = kIntNear;
#endif
EXPECT_NEAR(test->analog_level_average(), analog_level_average, kIntNear);
EXPECT_NEAR(test->max_output_average(),
max_output_average - kMaxOutputAverageOffset,
kMaxOutputAverageNear);
} else {
test->set_analog_level_average(analog_level_average);
test->set_max_output_average(max_output_average);
}
rewind(far_file_);
rewind(near_file_);
}
if (absl::GetFlag(FLAGS_write_apm_ref_data)) {
OpenFileAndWriteMessage(ref_filename_, ref_data);
}
}
// Compares the reference and test arrays over a region around the expected
// delay. Finds the highest SNR in that region and adds the variance and squared
// error results to the supplied accumulators.
void UpdateBestSNR(const float* ref,
const float* test,
size_t length,
int expected_delay,
double* variance_acc,
double* sq_error_acc) {
RTC_CHECK_LT(expected_delay, length)
<< "delay greater than signal length, cannot compute SNR";
double best_snr = std::numeric_limits<double>::min();
double best_variance = 0;
double best_sq_error = 0;
// Search over a region of nine samples around the expected delay.
for (int delay = std::max(expected_delay - 4, 0); delay <= expected_delay + 4;
++delay) {
double sq_error = 0;
double variance = 0;
for (size_t i = 0; i < length - delay; ++i) {
double error = test[i + delay] - ref[i];
sq_error += error * error;
variance += ref[i] * ref[i];
}
if (sq_error == 0) {
*variance_acc += variance;
return;
}
double snr = variance / sq_error;
if (snr > best_snr) {
best_snr = snr;
best_variance = variance;
best_sq_error = sq_error;
}
}
*variance_acc += best_variance;
*sq_error_acc += best_sq_error;
}
// Used to test a multitude of sample rate and channel combinations. It works
// by first producing a set of reference files (in SetUpTestCase) that are
// assumed to be correct, as the used parameters are verified by other tests
// in this collection. Primarily the reference files are all produced at
// "native" rates which do not involve any resampling.
// Each test pass produces an output file with a particular format. The output
// is matched against the reference file closest to its internal processing
// format. If necessary the output is resampled back to its process format.
// Due to the resampling distortion, we don't expect identical results, but
// enforce SNR thresholds which vary depending on the format. 0 is a special
// case SNR which corresponds to inf, or zero error.
typedef std::tuple<int, int, int, int, double, double> AudioProcessingTestData;
class AudioProcessingTest
: public ::testing::TestWithParam<AudioProcessingTestData> {
public:
AudioProcessingTest()
: input_rate_(std::get<0>(GetParam())),
output_rate_(std::get<1>(GetParam())),
reverse_input_rate_(std::get<2>(GetParam())),
reverse_output_rate_(std::get<3>(GetParam())),
expected_snr_(std::get<4>(GetParam())),
expected_reverse_snr_(std::get<5>(GetParam())) {}
virtual ~AudioProcessingTest() {}
static void SetUpTestSuite() {
// Create all needed output reference files.
const size_t kNumChannels[] = {1, 2};
for (size_t i = 0; i < arraysize(kProcessSampleRates); ++i) {
for (size_t j = 0; j < arraysize(kNumChannels); ++j) {
for (size_t k = 0; k < arraysize(kNumChannels); ++k) {
// The reference files always have matching input and output channels.
ProcessFormat(kProcessSampleRates[i], kProcessSampleRates[i],
kProcessSampleRates[i], kProcessSampleRates[i],
kNumChannels[j], kNumChannels[j], kNumChannels[k],
kNumChannels[k], "ref");
}
}
}
}
void TearDown() {
// Remove "out" files after each test.
ClearTempOutFiles();
}
static void TearDownTestSuite() { ClearTempFiles(); }
// Runs a process pass on files with the given parameters and dumps the output
// to a file specified with `output_file_prefix`. Both forward and reverse
// output streams are dumped.
static void ProcessFormat(int input_rate,
int output_rate,
int reverse_input_rate,
int reverse_output_rate,
size_t num_input_channels,
size_t num_output_channels,
size_t num_reverse_input_channels,
size_t num_reverse_output_channels,
absl::string_view output_file_prefix) {
AudioProcessing::Config apm_config;
apm_config.gain_controller1.analog_gain_controller.enabled = false;
scoped_refptr<AudioProcessing> ap = BuiltinAudioProcessingBuilder()
.SetConfig(apm_config)
.Build(CreateEnvironment());
EnableAllAPComponents(ap.get());
ProcessingConfig processing_config = {
{{input_rate, num_input_channels},
{output_rate, num_output_channels},
{reverse_input_rate, num_reverse_input_channels},
{reverse_output_rate, num_reverse_output_channels}}};
ap->Initialize(processing_config);
FILE* far_file =
fopen(ResourceFilePath("far", reverse_input_rate).c_str(), "rb");
FILE* near_file = fopen(ResourceFilePath("near", input_rate).c_str(), "rb");
FILE* out_file = fopen(
OutputFilePath(
output_file_prefix, input_rate, output_rate, reverse_input_rate,
reverse_output_rate, num_input_channels, num_output_channels,
num_reverse_input_channels, num_reverse_output_channels, kForward)
.c_str(),
"wb");
FILE* rev_out_file = fopen(
OutputFilePath(
output_file_prefix, input_rate, output_rate, reverse_input_rate,
reverse_output_rate, num_input_channels, num_output_channels,
num_reverse_input_channels, num_reverse_output_channels, kReverse)
.c_str(),
"wb");
ASSERT_TRUE(far_file != NULL);
ASSERT_TRUE(near_file != NULL);
ASSERT_TRUE(out_file != NULL);
ASSERT_TRUE(rev_out_file != NULL);
ChannelBuffer<float> fwd_cb(AudioProcessing::GetFrameSize(input_rate),
num_input_channels);
ChannelBuffer<float> rev_cb(
AudioProcessing::GetFrameSize(reverse_input_rate),
num_reverse_input_channels);
ChannelBuffer<float> out_cb(AudioProcessing::GetFrameSize(output_rate),
num_output_channels);
ChannelBuffer<float> rev_out_cb(
AudioProcessing::GetFrameSize(reverse_output_rate),
num_reverse_output_channels);
// Temporary buffers.
const int max_length =
2 * std::max(std::max(out_cb.num_frames(), rev_out_cb.num_frames()),
std::max(fwd_cb.num_frames(), rev_cb.num_frames()));
std::unique_ptr<float[]> float_data(new float[max_length]);
std::unique_ptr<int16_t[]> int_data(new int16_t[max_length]);
int analog_level = 127;
while (ReadChunk(far_file, int_data.get(), float_data.get(), &rev_cb) &&
ReadChunk(near_file, int_data.get(), float_data.get(), &fwd_cb)) {
EXPECT_NOERR(ap->ProcessReverseStream(
rev_cb.channels(), processing_config.reverse_input_stream(),
processing_config.reverse_output_stream(), rev_out_cb.channels()));
EXPECT_NOERR(ap->set_stream_delay_ms(0));
ap->set_stream_analog_level(analog_level);
EXPECT_NOERR(ap->ProcessStream(
fwd_cb.channels(), StreamConfig(input_rate, num_input_channels),
StreamConfig(output_rate, num_output_channels), out_cb.channels()));
// Dump forward output to file.
RTC_DCHECK_EQ(out_cb.num_bands(), 1u); // Assumes full frequency band.
DeinterleavedView<const float> deinterleaved_src(
out_cb.channels()[0], out_cb.num_frames(), out_cb.num_channels());
InterleavedView<float> interleaved_dst(
float_data.get(), out_cb.num_frames(), out_cb.num_channels());
Interleave(deinterleaved_src, interleaved_dst);
size_t out_length = out_cb.num_channels() * out_cb.num_frames();
ASSERT_EQ(out_length, fwrite(float_data.get(), sizeof(float_data[0]),
out_length, out_file));
// Dump reverse output to file.
RTC_DCHECK_EQ(rev_out_cb.num_bands(), 1u);
deinterleaved_src = DeinterleavedView<const float>(
rev_out_cb.channels()[0], rev_out_cb.num_frames(),
rev_out_cb.num_channels());
interleaved_dst = InterleavedView<float>(
float_data.get(), rev_out_cb.num_frames(), rev_out_cb.num_channels());
Interleave(deinterleaved_src, interleaved_dst);
size_t rev_out_length =
rev_out_cb.num_channels() * rev_out_cb.num_frames();
ASSERT_EQ(rev_out_length, fwrite(float_data.get(), sizeof(float_data[0]),
rev_out_length, rev_out_file));
analog_level = ap->recommended_stream_analog_level();
}
fclose(far_file);
fclose(near_file);
fclose(out_file);
fclose(rev_out_file);
}
protected:
int input_rate_;
int output_rate_;
int reverse_input_rate_;
int reverse_output_rate_;
double expected_snr_;
double expected_reverse_snr_;
};
TEST_P(AudioProcessingTest, Formats) {
struct ChannelFormat {
int num_input;
int num_output;
int num_reverse_input;
int num_reverse_output;
};
ChannelFormat cf[] = {
{1, 1, 1, 1}, {1, 1, 2, 1}, {2, 1, 1, 1},
{2, 1, 2, 1}, {2, 2, 1, 1}, {2, 2, 2, 2},
};
for (size_t i = 0; i < arraysize(cf); ++i) {
ProcessFormat(input_rate_, output_rate_, reverse_input_rate_,
reverse_output_rate_, cf[i].num_input, cf[i].num_output,
cf[i].num_reverse_input, cf[i].num_reverse_output, "out");
// Verify output for both directions.
std::vector<StreamDirection> stream_directions;
stream_directions.push_back(kForward);
stream_directions.push_back(kReverse);
for (StreamDirection file_direction : stream_directions) {
const int in_rate = file_direction ? reverse_input_rate_ : input_rate_;
const int out_rate = file_direction ? reverse_output_rate_ : output_rate_;
const int out_num =
file_direction ? cf[i].num_reverse_output : cf[i].num_output;
const double expected_snr =
file_direction ? expected_reverse_snr_ : expected_snr_;
const int min_ref_rate = std::min(in_rate, out_rate);
int ref_rate;
if (min_ref_rate > 32000) {
ref_rate = 48000;
} else if (min_ref_rate > 16000) {
ref_rate = 32000;
} else {
ref_rate = 16000;
}
FILE* out_file = fopen(
OutputFilePath("out", input_rate_, output_rate_, reverse_input_rate_,
reverse_output_rate_, cf[i].num_input,
cf[i].num_output, cf[i].num_reverse_input,
cf[i].num_reverse_output, file_direction)
.c_str(),
"rb");
// The reference files always have matching input and output channels.
FILE* ref_file =
fopen(OutputFilePath("ref", ref_rate, ref_rate, ref_rate, ref_rate,
cf[i].num_output, cf[i].num_output,
cf[i].num_reverse_output,
cf[i].num_reverse_output, file_direction)
.c_str(),
"rb");
ASSERT_TRUE(out_file != NULL);
ASSERT_TRUE(ref_file != NULL);
const size_t ref_samples_per_channel =
AudioProcessing::GetFrameSize(ref_rate);
const size_t ref_length = ref_samples_per_channel * out_num;
const size_t out_samples_per_channel =
AudioProcessing::GetFrameSize(out_rate);
const size_t out_length = out_samples_per_channel * out_num;
// Data from the reference file.
std::unique_ptr<float[]> ref_data(new float[ref_length]);
// Data from the output file.
std::unique_ptr<float[]> out_data(new float[out_length]);
// Data from the resampled output, in case the reference and output rates
// don't match.
std::unique_ptr<float[]> cmp_data(new float[ref_length]);
PushResampler<float> resampler(out_samples_per_channel,
ref_samples_per_channel, out_num);
// Compute the resampling delay of the output relative to the reference,
// to find the region over which we should search for the best SNR.
float expected_delay_sec = 0;
if (in_rate != ref_rate) {
// Input resampling delay.
expected_delay_sec +=
PushSincResampler::AlgorithmicDelaySeconds(in_rate);
}
if (out_rate != ref_rate) {
// Output resampling delay.
expected_delay_sec +=
PushSincResampler::AlgorithmicDelaySeconds(ref_rate);
// Delay of converting the output back to its processing rate for
// testing.
expected_delay_sec +=
PushSincResampler::AlgorithmicDelaySeconds(out_rate);
}
// The delay is multiplied by the number of channels because
// UpdateBestSNR() computes the SNR over interleaved data without taking
// channels into account.
int expected_delay =
std::floor(expected_delay_sec * ref_rate + 0.5f) * out_num;
double variance = 0;
double sq_error = 0;
while (fread(out_data.get(), sizeof(out_data[0]), out_length, out_file) &&
fread(ref_data.get(), sizeof(ref_data[0]), ref_length, ref_file)) {
float* out_ptr = out_data.get();
if (out_rate != ref_rate) {
// Resample the output back to its internal processing rate if
// necessary.
InterleavedView<const float> src(out_ptr, out_samples_per_channel,
out_num);
InterleavedView<float> dst(cmp_data.get(), ref_samples_per_channel,
out_num);
ASSERT_EQ(ref_length,
static_cast<size_t>(resampler.Resample(src, dst)));
out_ptr = cmp_data.get();
}
// Update the `sq_error` and `variance` accumulators with the highest
// SNR of reference vs output.
UpdateBestSNR(ref_data.get(), out_ptr, ref_length, expected_delay,
&variance, &sq_error);
}
std::cout << "(" << input_rate_ << ", " << output_rate_ << ", "
<< reverse_input_rate_ << ", " << reverse_output_rate_ << ", "
<< cf[i].num_input << ", " << cf[i].num_output << ", "
<< cf[i].num_reverse_input << ", " << cf[i].num_reverse_output
<< ", " << file_direction << "): ";
if (sq_error > 0) {
double snr = 10 * log10(variance / sq_error);
EXPECT_GE(snr, expected_snr);
EXPECT_NE(0, expected_snr);
std::cout << "SNR=" << snr << " dB" << std::endl;
} else {
std::cout << "SNR=inf dB" << std::endl;
}
fclose(out_file);
fclose(ref_file);
}
}
}
#if defined(WEBRTC_AUDIOPROC_FLOAT_PROFILE)
INSTANTIATE_TEST_SUITE_P(
CommonFormats,
AudioProcessingTest,
// Internal processing rates and the particularly common sample rate 44100
// Hz are tested in a grid of combinations (capture in, render in, out).
::testing::Values(std::make_tuple(48000, 48000, 48000, 48000, 0, 0),
std::make_tuple(48000, 48000, 32000, 48000, 40, 30),
std::make_tuple(48000, 48000, 16000, 48000, 40, 20),
std::make_tuple(48000, 44100, 48000, 44100, 20, 20),
std::make_tuple(48000, 44100, 32000, 44100, 20, 15),
std::make_tuple(48000, 44100, 16000, 44100, 20, 15),
std::make_tuple(48000, 32000, 48000, 32000, 30, 35),
std::make_tuple(48000, 32000, 32000, 32000, 30, 0),
std::make_tuple(48000, 32000, 16000, 32000, 30, 20),
std::make_tuple(48000, 16000, 48000, 16000, 25, 20),
std::make_tuple(48000, 16000, 32000, 16000, 25, 20),
std::make_tuple(48000, 16000, 16000, 16000, 25, 0),
std::make_tuple(44100, 48000, 48000, 48000, 30, 0),
std::make_tuple(44100, 48000, 32000, 48000, 30, 30),
std::make_tuple(44100, 48000, 16000, 48000, 30, 20),
std::make_tuple(44100, 44100, 48000, 44100, 20, 20),
std::make_tuple(44100, 44100, 32000, 44100, 20, 15),
std::make_tuple(44100, 44100, 16000, 44100, 20, 15),
std::make_tuple(44100, 32000, 48000, 32000, 30, 35),
std::make_tuple(44100, 32000, 32000, 32000, 30, 0),
std::make_tuple(44100, 32000, 16000, 32000, 30, 20),
std::make_tuple(44100, 16000, 48000, 16000, 25, 20),
std::make_tuple(44100, 16000, 32000, 16000, 25, 20),
std::make_tuple(44100, 16000, 16000, 16000, 25, 0),
std::make_tuple(32000, 48000, 48000, 48000, 15, 0),
std::make_tuple(32000, 48000, 32000, 48000, 15, 30),
std::make_tuple(32000, 48000, 16000, 48000, 15, 20),
std::make_tuple(32000, 44100, 48000, 44100, 19, 20),
std::make_tuple(32000, 44100, 32000, 44100, 19, 15),
std::make_tuple(32000, 44100, 16000, 44100, 19, 15),
std::make_tuple(32000, 32000, 48000, 32000, 40, 35),
std::make_tuple(32000, 32000, 32000, 32000, 0, 0),
std::make_tuple(32000, 32000, 16000, 32000, 39, 20),
std::make_tuple(32000, 16000, 48000, 16000, 25, 20),
std::make_tuple(32000, 16000, 32000, 16000, 25, 20),
std::make_tuple(32000, 16000, 16000, 16000, 25, 0),
std::make_tuple(16000, 48000, 48000, 48000, 9, 0),
std::make_tuple(16000, 48000, 32000, 48000, 9, 30),
std::make_tuple(16000, 48000, 16000, 48000, 9, 20),
std::make_tuple(16000, 44100, 48000, 44100, 15, 20),
std::make_tuple(16000, 44100, 32000, 44100, 15, 15),
std::make_tuple(16000, 44100, 16000, 44100, 15, 15),
std::make_tuple(16000, 32000, 48000, 32000, 25, 35),
std::make_tuple(16000, 32000, 32000, 32000, 25, 0),
std::make_tuple(16000, 32000, 16000, 32000, 25, 20),
std::make_tuple(16000, 16000, 48000, 16000, 39, 20),
std::make_tuple(16000, 16000, 32000, 16000, 39, 20),
std::make_tuple(16000, 16000, 16000, 16000, 0, 0),
// Other sample rates are not tested exhaustively, to keep
// the test runtime manageable.
//
// Testing most other sample rates logged by Chrome UMA:
// - WebRTC.AudioInputSampleRate
// - WebRTC.AudioOutputSampleRate
// ApmConfiguration.HandlingOfRateCombinations covers
// remaining sample rates.
std::make_tuple(192000, 192000, 48000, 192000, 20, 40),
std::make_tuple(176400, 176400, 48000, 176400, 20, 35),
std::make_tuple(96000, 96000, 48000, 96000, 20, 40),
std::make_tuple(88200, 88200, 48000, 88200, 20, 20),
std::make_tuple(44100, 44100, 48000, 44100, 20, 20)));
#elif defined(WEBRTC_AUDIOPROC_FIXED_PROFILE)
INSTANTIATE_TEST_SUITE_P(
CommonFormats,
AudioProcessingTest,
::testing::Values(std::make_tuple(48000, 48000, 48000, 48000, 19, 0),
std::make_tuple(48000, 48000, 32000, 48000, 19, 30),
std::make_tuple(48000, 48000, 16000, 48000, 19, 20),
std::make_tuple(48000, 44100, 48000, 44100, 15, 20),
std::make_tuple(48000, 44100, 32000, 44100, 15, 15),
std::make_tuple(48000, 44100, 16000, 44100, 15, 15),
std::make_tuple(48000, 32000, 48000, 32000, 19, 35),
std::make_tuple(48000, 32000, 32000, 32000, 19, 0),
std::make_tuple(48000, 32000, 16000, 32000, 19, 20),
std::make_tuple(48000, 16000, 48000, 16000, 20, 20),
std::make_tuple(48000, 16000, 32000, 16000, 20, 20),
std::make_tuple(48000, 16000, 16000, 16000, 20, 0),
std::make_tuple(44100, 48000, 48000, 48000, 15, 0),
std::make_tuple(44100, 48000, 32000, 48000, 15, 30),
std::make_tuple(44100, 48000, 16000, 48000, 15, 20),
std::make_tuple(44100, 44100, 48000, 44100, 15, 20),
std::make_tuple(44100, 44100, 32000, 44100, 15, 15),
std::make_tuple(44100, 44100, 16000, 44100, 15, 15),
std::make_tuple(44100, 32000, 48000, 32000, 18, 35),
std::make_tuple(44100, 32000, 32000, 32000, 18, 0),
std::make_tuple(44100, 32000, 16000, 32000, 18, 20),
std::make_tuple(44100, 16000, 48000, 16000, 19, 20),
std::make_tuple(44100, 16000, 32000, 16000, 19, 20),
std::make_tuple(44100, 16000, 16000, 16000, 19, 0),
std::make_tuple(32000, 48000, 48000, 48000, 17, 0),
std::make_tuple(32000, 48000, 32000, 48000, 17, 30),
std::make_tuple(32000, 48000, 16000, 48000, 17, 20),
std::make_tuple(32000, 44100, 48000, 44100, 20, 20),
std::make_tuple(32000, 44100, 32000, 44100, 20, 15),
std::make_tuple(32000, 44100, 16000, 44100, 20, 15),
std::make_tuple(32000, 32000, 48000, 32000, 27, 35),
std::make_tuple(32000, 32000, 32000, 32000, 0, 0),
std::make_tuple(32000, 32000, 16000, 32000, 30, 20),
std::make_tuple(32000, 16000, 48000, 16000, 20, 20),
std::make_tuple(32000, 16000, 32000, 16000, 20, 20),
std::make_tuple(32000, 16000, 16000, 16000, 20, 0),
std::make_tuple(16000, 48000, 48000, 48000, 11, 0),
std::make_tuple(16000, 48000, 32000, 48000, 11, 30),
std::make_tuple(16000, 48000, 16000, 48000, 11, 20),
std::make_tuple(16000, 44100, 48000, 44100, 15, 20),
std::make_tuple(16000, 44100, 32000, 44100, 15, 15),
std::make_tuple(16000, 44100, 16000, 44100, 15, 15),
std::make_tuple(16000, 32000, 48000, 32000, 24, 35),
std::make_tuple(16000, 32000, 32000, 32000, 24, 0),
std::make_tuple(16000, 32000, 16000, 32000, 25, 20),
std::make_tuple(16000, 16000, 48000, 16000, 28, 20),
std::make_tuple(16000, 16000, 32000, 16000, 28, 20),
std::make_tuple(16000, 16000, 16000, 16000, 0, 0),
std::make_tuple(192000, 192000, 48000, 192000, 20, 40),
std::make_tuple(176400, 176400, 48000, 176400, 20, 35),
std::make_tuple(96000, 96000, 48000, 96000, 20, 40),
std::make_tuple(88200, 88200, 48000, 88200, 20, 20),
std::make_tuple(44100, 44100, 48000, 44100, 20, 20)));
#endif
// Produces a scoped trace debug output.
std::string ProduceDebugText(int render_input_sample_rate_hz,
int render_output_sample_rate_hz,
int capture_input_sample_rate_hz,
int capture_output_sample_rate_hz,
size_t render_input_num_channels,
size_t render_output_num_channels,
size_t capture_input_num_channels,
size_t capture_output_num_channels) {
rtc::StringBuilder ss;
ss << "Sample rates:"
"\n Render input: "
<< render_input_sample_rate_hz
<< " Hz"
"\n Render output: "
<< render_output_sample_rate_hz
<< " Hz"
"\n Capture input: "
<< capture_input_sample_rate_hz
<< " Hz"
"\n Capture output: "
<< capture_output_sample_rate_hz
<< " Hz"
"\nNumber of channels:"
"\n Render input: "
<< render_input_num_channels
<< "\n Render output: " << render_output_num_channels
<< "\n Capture input: " << capture_input_num_channels
<< "\n Capture output: " << capture_output_num_channels;
return ss.Release();
}
// Validates that running the audio processing module using various combinations
// of sample rates and number of channels works as intended.
void RunApmRateAndChannelTest(
rtc::ArrayView<const int> sample_rates_hz,
rtc::ArrayView<const int> render_channel_counts,
rtc::ArrayView<const int> capture_channel_counts) {
webrtc::AudioProcessing::Config apm_config;
apm_config.pipeline.multi_channel_render = true;
apm_config.pipeline.multi_channel_capture = true;
apm_config.echo_canceller.enabled = true;
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder(apm_config).Build(CreateEnvironment());
StreamConfig render_input_stream_config;
StreamConfig render_output_stream_config;
StreamConfig capture_input_stream_config;
StreamConfig capture_output_stream_config;
std::vector<float> render_input_frame_channels;
std::vector<float*> render_input_frame;
std::vector<float> render_output_frame_channels;
std::vector<float*> render_output_frame;
std::vector<float> capture_input_frame_channels;
std::vector<float*> capture_input_frame;
std::vector<float> capture_output_frame_channels;
std::vector<float*> capture_output_frame;
for (auto render_input_sample_rate_hz : sample_rates_hz) {
for (auto render_output_sample_rate_hz : sample_rates_hz) {
for (auto capture_input_sample_rate_hz : sample_rates_hz) {
for (auto capture_output_sample_rate_hz : sample_rates_hz) {
for (size_t render_input_num_channels : render_channel_counts) {
for (size_t capture_input_num_channels : capture_channel_counts) {
size_t render_output_num_channels = render_input_num_channels;
size_t capture_output_num_channels = capture_input_num_channels;
auto populate_audio_frame = [](int sample_rate_hz,
size_t num_channels,
StreamConfig* cfg,
std::vector<float>* channels_data,
std::vector<float*>* frame_data) {
cfg->set_sample_rate_hz(sample_rate_hz);
cfg->set_num_channels(num_channels);
size_t max_frame_size =
AudioProcessing::GetFrameSize(sample_rate_hz);
channels_data->resize(num_channels * max_frame_size);
std::fill(channels_data->begin(), channels_data->end(), 0.5f);
frame_data->resize(num_channels);
for (size_t channel = 0; channel < num_channels; ++channel) {
(*frame_data)[channel] =
&(*channels_data)[channel * max_frame_size];
}
};
populate_audio_frame(
render_input_sample_rate_hz, render_input_num_channels,
&render_input_stream_config, &render_input_frame_channels,
&render_input_frame);
populate_audio_frame(
render_output_sample_rate_hz, render_output_num_channels,
&render_output_stream_config, &render_output_frame_channels,
&render_output_frame);
populate_audio_frame(
capture_input_sample_rate_hz, capture_input_num_channels,
&capture_input_stream_config, &capture_input_frame_channels,
&capture_input_frame);
populate_audio_frame(
capture_output_sample_rate_hz, capture_output_num_channels,
&capture_output_stream_config, &capture_output_frame_channels,
&capture_output_frame);
for (size_t frame = 0; frame < 2; ++frame) {
SCOPED_TRACE(ProduceDebugText(
render_input_sample_rate_hz, render_output_sample_rate_hz,
capture_input_sample_rate_hz, capture_output_sample_rate_hz,
render_input_num_channels, render_output_num_channels,
render_input_num_channels, capture_output_num_channels));
int result = apm->ProcessReverseStream(
&render_input_frame[0], render_input_stream_config,
render_output_stream_config, &render_output_frame[0]);
EXPECT_EQ(result, AudioProcessing::kNoError);
result = apm->ProcessStream(
&capture_input_frame[0], capture_input_stream_config,
capture_output_stream_config, &capture_output_frame[0]);
EXPECT_EQ(result, AudioProcessing::kNoError);
}
}
}
}
}
}
}
}
constexpr void Toggle(bool& b) {
b ^= true;
}
} // namespace
TEST(RuntimeSettingTest, TestDefaultCtor) {
auto s = AudioProcessing::RuntimeSetting();
EXPECT_EQ(AudioProcessing::RuntimeSetting::Type::kNotSpecified, s.type());
}
TEST(RuntimeSettingTest, TestUsageWithSwapQueue) {
SwapQueue<AudioProcessing::RuntimeSetting> q(1);
auto s = AudioProcessing::RuntimeSetting();
ASSERT_TRUE(q.Insert(&s));
ASSERT_TRUE(q.Remove(&s));
EXPECT_EQ(AudioProcessing::RuntimeSetting::Type::kNotSpecified, s.type());
}
TEST(ApmConfiguration, EnablePostProcessing) {
// Verify that apm uses a capture post processing module if one is provided.
auto mock_post_processor_ptr =
new ::testing::NiceMock<test::MockCustomProcessing>();
auto mock_post_processor =
std::unique_ptr<CustomProcessing>(mock_post_processor_ptr);
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder()
.SetCapturePostProcessing(std::move(mock_post_processor))
.Build(CreateEnvironment());
Int16FrameData audio;
audio.num_channels = 1;
SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
EXPECT_CALL(*mock_post_processor_ptr, Process(::testing::_)).Times(1);
apm->ProcessStream(audio.data.data(),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
audio.data.data());
}
TEST(ApmConfiguration, EnablePreProcessing) {
// Verify that apm uses a capture post processing module if one is provided.
auto mock_pre_processor_ptr =
new ::testing::NiceMock<test::MockCustomProcessing>();
auto mock_pre_processor =
std::unique_ptr<CustomProcessing>(mock_pre_processor_ptr);
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder()
.SetRenderPreProcessing(std::move(mock_pre_processor))
.Build(CreateEnvironment());
Int16FrameData audio;
audio.num_channels = 1;
SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
EXPECT_CALL(*mock_pre_processor_ptr, Process(::testing::_)).Times(1);
apm->ProcessReverseStream(
audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
audio.data.data());
}
TEST(ApmConfiguration, EnableCaptureAnalyzer) {
// Verify that apm uses a capture analyzer if one is provided.
auto mock_capture_analyzer_ptr =
new ::testing::NiceMock<test::MockCustomAudioAnalyzer>();
auto mock_capture_analyzer =
std::unique_ptr<CustomAudioAnalyzer>(mock_capture_analyzer_ptr);
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder()
.SetCaptureAnalyzer(std::move(mock_capture_analyzer))
.Build(CreateEnvironment());
Int16FrameData audio;
audio.num_channels = 1;
SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
EXPECT_CALL(*mock_capture_analyzer_ptr, Analyze(::testing::_)).Times(1);
apm->ProcessStream(audio.data.data(),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
audio.data.data());
}
TEST(ApmConfiguration, PreProcessingReceivesRuntimeSettings) {
auto mock_pre_processor_ptr =
new ::testing::NiceMock<test::MockCustomProcessing>();
auto mock_pre_processor =
std::unique_ptr<CustomProcessing>(mock_pre_processor_ptr);
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder()
.SetRenderPreProcessing(std::move(mock_pre_processor))
.Build(CreateEnvironment());
apm->SetRuntimeSetting(
AudioProcessing::RuntimeSetting::CreateCustomRenderSetting(0));
// RuntimeSettings forwarded during 'Process*Stream' calls.
// Therefore we have to make one such call.
Int16FrameData audio;
audio.num_channels = 1;
SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
EXPECT_CALL(*mock_pre_processor_ptr, SetRuntimeSetting(::testing::_))
.Times(1);
apm->ProcessReverseStream(
audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
audio.data.data());
}
class MyEchoControlFactory : public EchoControlFactory {
public:
std::unique_ptr<EchoControl> Create(int /* sample_rate_hz */) {
auto ec = new test::MockEchoControl();
EXPECT_CALL(*ec, AnalyzeRender(::testing::_)).Times(1);
EXPECT_CALL(*ec, AnalyzeCapture(::testing::_)).Times(2);
EXPECT_CALL(*ec, ProcessCapture(::testing::_, ::testing::_, ::testing::_))
.Times(2);
return std::unique_ptr<EchoControl>(ec);
}
std::unique_ptr<EchoControl> Create(int sample_rate_hz,
int /* num_render_channels */,
int /* num_capture_channels */) {
return Create(sample_rate_hz);
}
};
TEST(ApmConfiguration, EchoControlInjection) {
// Verify that apm uses an injected echo controller if one is provided.
std::unique_ptr<EchoControlFactory> echo_control_factory(
new MyEchoControlFactory());
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder()
.SetEchoControlFactory(std::move(echo_control_factory))
.Build(CreateEnvironment());
Int16FrameData audio;
audio.num_channels = 1;
SetFrameSampleRate(&audio, AudioProcessing::NativeRate::kSampleRate16kHz);
apm->ProcessStream(audio.data.data(),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
audio.data.data());
apm->ProcessReverseStream(
audio.data.data(), StreamConfig(audio.sample_rate_hz, audio.num_channels),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
audio.data.data());
apm->ProcessStream(audio.data.data(),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
StreamConfig(audio.sample_rate_hz, audio.num_channels),
audio.data.data());
}
TEST(ApmConfiguration, EchoDetectorInjection) {
using ::testing::_;
rtc::scoped_refptr<test::MockEchoDetector> mock_echo_detector =
rtc::make_ref_counted<::testing::StrictMock<test::MockEchoDetector>>();
EXPECT_CALL(*mock_echo_detector,
Initialize(/*capture_sample_rate_hz=*/16000, _,
/*render_sample_rate_hz=*/16000, _))
.Times(1);
scoped_refptr<AudioProcessing> apm = BuiltinAudioProcessingBuilder()
.SetEchoDetector(mock_echo_detector)
.Build(CreateEnvironment());
// The echo detector is included in processing when enabled.
EXPECT_CALL(*mock_echo_detector, AnalyzeRenderAudio(_))
.WillOnce([](rtc::ArrayView<const float> render_audio) {
EXPECT_EQ(render_audio.size(), 160u);
});
EXPECT_CALL(*mock_echo_detector, AnalyzeCaptureAudio(_))
.WillOnce([](rtc::ArrayView<const float> capture_audio) {
EXPECT_EQ(capture_audio.size(), 160u);
});
EXPECT_CALL(*mock_echo_detector, GetMetrics()).Times(1);
Int16FrameData frame;
frame.num_channels = 1;
SetFrameSampleRate(&frame, 16000);
apm->ProcessReverseStream(frame.data.data(), StreamConfig(16000, 1),
StreamConfig(16000, 1), frame.data.data());
apm->ProcessStream(frame.data.data(), StreamConfig(16000, 1),
StreamConfig(16000, 1), frame.data.data());
// When processing rates change, the echo detector is also reinitialized to
// match those.
EXPECT_CALL(*mock_echo_detector,
Initialize(/*capture_sample_rate_hz=*/48000, _,
/*render_sample_rate_hz=*/16000, _))
.Times(1);
EXPECT_CALL(*mock_echo_detector,
Initialize(/*capture_sample_rate_hz=*/48000, _,
/*render_sample_rate_hz=*/48000, _))
.Times(1);
EXPECT_CALL(*mock_echo_detector, AnalyzeRenderAudio(_))
.WillOnce([](rtc::ArrayView<const float> render_audio) {
EXPECT_EQ(render_audio.size(), 480u);
});
EXPECT_CALL(*mock_echo_detector, AnalyzeCaptureAudio(_))
.Times(2)
.WillRepeatedly([](rtc::ArrayView<const float> capture_audio) {
EXPECT_EQ(capture_audio.size(), 480u);
});
EXPECT_CALL(*mock_echo_detector, GetMetrics()).Times(2);
SetFrameSampleRate(&frame, 48000);
apm->ProcessStream(frame.data.data(), StreamConfig(48000, 1),
StreamConfig(48000, 1), frame.data.data());
apm->ProcessReverseStream(frame.data.data(), StreamConfig(48000, 1),
StreamConfig(48000, 1), frame.data.data());
apm->ProcessStream(frame.data.data(), StreamConfig(48000, 1),
StreamConfig(48000, 1), frame.data.data());
}
rtc::scoped_refptr<AudioProcessing> CreateApm(bool mobile_aec) {
// Enable residual echo detection, for stats.
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder()
.SetEchoDetector(CreateEchoDetector())
.Build(CreateEnvironment());
if (!apm) {
return apm;
}
ProcessingConfig processing_config = {
{{32000, 1}, {32000, 1}, {32000, 1}, {32000, 1}}};
if (apm->Initialize(processing_config) != 0) {
return nullptr;
}
// Disable all components except for an AEC.
AudioProcessing::Config apm_config;
apm_config.high_pass_filter.enabled = false;
apm_config.gain_controller1.enabled = false;
apm_config.gain_controller2.enabled = false;
apm_config.echo_canceller.enabled = true;
apm_config.echo_canceller.mobile_mode = mobile_aec;
apm_config.noise_suppression.enabled = false;
apm->ApplyConfig(apm_config);
return apm;
}
#if defined(WEBRTC_ANDROID) || defined(WEBRTC_IOS) || defined(WEBRTC_MAC)
#define MAYBE_ApmStatistics DISABLED_ApmStatistics
#else
#define MAYBE_ApmStatistics ApmStatistics
#endif
TEST(MAYBE_ApmStatistics, AECEnabledTest) {
// Set up APM with AEC3 and process some audio.
rtc::scoped_refptr<AudioProcessing> apm = CreateApm(false);
ASSERT_TRUE(apm);
AudioProcessing::Config apm_config;
apm_config.echo_canceller.enabled = true;
apm->ApplyConfig(apm_config);
// Set up an audioframe.
Int16FrameData frame;
frame.num_channels = 1;
SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
// Fill the audio frame with a sawtooth pattern.
int16_t* ptr = frame.data.data();
for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) {
ptr[i] = 10000 * ((i % 3) - 1);
}
// Do some processing.
for (int i = 0; i < 200; i++) {
EXPECT_EQ(apm->ProcessReverseStream(
frame.data.data(),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
frame.data.data()),
0);
EXPECT_EQ(apm->set_stream_delay_ms(0), 0);
EXPECT_EQ(apm->ProcessStream(
frame.data.data(),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
frame.data.data()),
0);
}
// Test statistics interface.
AudioProcessingStats stats = apm->GetStatistics();
// We expect all statistics to be set and have a sensible value.
ASSERT_TRUE(stats.residual_echo_likelihood.has_value());
EXPECT_GE(*stats.residual_echo_likelihood, 0.0);
EXPECT_LE(*stats.residual_echo_likelihood, 1.0);
ASSERT_TRUE(stats.residual_echo_likelihood_recent_max.has_value());
EXPECT_GE(*stats.residual_echo_likelihood_recent_max, 0.0);
EXPECT_LE(*stats.residual_echo_likelihood_recent_max, 1.0);
ASSERT_TRUE(stats.echo_return_loss.has_value());
EXPECT_NE(*stats.echo_return_loss, -100.0);
ASSERT_TRUE(stats.echo_return_loss_enhancement.has_value());
EXPECT_NE(*stats.echo_return_loss_enhancement, -100.0);
}
TEST(MAYBE_ApmStatistics, AECMEnabledTest) {
// Set up APM with AECM and process some audio.
rtc::scoped_refptr<AudioProcessing> apm = CreateApm(true);
ASSERT_TRUE(apm);
// Set up an audioframe.
Int16FrameData frame;
frame.num_channels = 1;
SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
// Fill the audio frame with a sawtooth pattern.
int16_t* ptr = frame.data.data();
for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) {
ptr[i] = 10000 * ((i % 3) - 1);
}
// Do some processing.
for (int i = 0; i < 200; i++) {
EXPECT_EQ(apm->ProcessReverseStream(
frame.data.data(),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
frame.data.data()),
0);
EXPECT_EQ(apm->set_stream_delay_ms(0), 0);
EXPECT_EQ(apm->ProcessStream(
frame.data.data(),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
frame.data.data()),
0);
}
// Test statistics interface.
AudioProcessingStats stats = apm->GetStatistics();
// We expect only the residual echo detector statistics to be set and have a
// sensible value.
ASSERT_TRUE(stats.residual_echo_likelihood.has_value());
EXPECT_GE(*stats.residual_echo_likelihood, 0.0);
EXPECT_LE(*stats.residual_echo_likelihood, 1.0);
ASSERT_TRUE(stats.residual_echo_likelihood_recent_max.has_value());
EXPECT_GE(*stats.residual_echo_likelihood_recent_max, 0.0);
EXPECT_LE(*stats.residual_echo_likelihood_recent_max, 1.0);
EXPECT_FALSE(stats.echo_return_loss.has_value());
EXPECT_FALSE(stats.echo_return_loss_enhancement.has_value());
}
TEST(ApmStatistics, DoNotReportVoiceDetectedStat) {
ProcessingConfig processing_config = {
{{32000, 1}, {32000, 1}, {32000, 1}, {32000, 1}}};
// Set up an audioframe.
Int16FrameData frame;
frame.num_channels = 1;
SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
// Fill the audio frame with a sawtooth pattern.
int16_t* ptr = frame.data.data();
for (size_t i = 0; i < frame.kMaxDataSizeSamples; i++) {
ptr[i] = 10000 * ((i % 3) - 1);
}
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder().Build(CreateEnvironment());
apm->Initialize(processing_config);
// No metric should be reported.
EXPECT_EQ(
apm->ProcessStream(frame.data.data(),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
frame.data.data()),
0);
EXPECT_FALSE(apm->GetStatistics().voice_detected.has_value());
}
TEST(ApmStatistics, GetStatisticsReportsNoEchoDetectorStatsWhenDisabled) {
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder().Build(CreateEnvironment());
Int16FrameData frame;
frame.num_channels = 1;
SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
ASSERT_EQ(
apm->ProcessStream(frame.data.data(),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
frame.data.data()),
0);
// Echo detector is disabled by default, no stats reported.
AudioProcessingStats stats = apm->GetStatistics();
EXPECT_FALSE(stats.residual_echo_likelihood.has_value());
EXPECT_FALSE(stats.residual_echo_likelihood_recent_max.has_value());
}
TEST(ApmStatistics, GetStatisticsReportsEchoDetectorStatsWhenEnabled) {
// Create APM with an echo detector injected.
scoped_refptr<AudioProcessing> apm =
BuiltinAudioProcessingBuilder()
.SetEchoDetector(CreateEchoDetector())
.Build(CreateEnvironment());
Int16FrameData frame;
frame.num_channels = 1;
SetFrameSampleRate(&frame, AudioProcessing::NativeRate::kSampleRate32kHz);
// Echo detector enabled: Report stats.
ASSERT_EQ(
apm->ProcessStream(frame.data.data(),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
StreamConfig(frame.sample_rate_hz, frame.num_channels),
frame.data.data()),
0);
AudioProcessingStats stats = apm->GetStatistics();
EXPECT_TRUE(stats.residual_echo_likelihood.has_value());
EXPECT_TRUE(stats.residual_echo_likelihood_recent_max.has_value());
}
TEST(ApmConfiguration, HandlingOfRateAndChannelCombinations) {
std::array<int, 3> sample_rates_hz = {16000, 32000, 48000};
std::array<int, 2> render_channel_counts = {1, 7};
std::array<int, 2> capture_channel_counts = {1, 7};
RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts,
capture_channel_counts);
}
TEST(ApmConfiguration, HandlingOfChannelCombinations) {
std::array<int, 1> sample_rates_hz = {48000};
std::array<int, 8> render_channel_counts = {1, 2, 3, 4, 5, 6, 7, 8};
std::array<int, 8> capture_channel_counts = {1, 2, 3, 4, 5, 6, 7, 8};
RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts,
capture_channel_counts);
}
TEST(ApmConfiguration, HandlingOfRateCombinations) {
// Test rates <= 96000 logged by Chrome UMA:
// - WebRTC.AudioInputSampleRate
// - WebRTC.AudioOutputSampleRate
// Higher rates are tested in AudioProcessingTest.Format, to keep the number
// of combinations in this test manageable.
std::array<int, 9> sample_rates_hz = {8000, 11025, 16000, 22050, 32000,
44100, 48000, 88200, 96000};
std::array<int, 1> render_channel_counts = {2};
std::array<int, 1> capture_channel_counts = {2};
RunApmRateAndChannelTest(sample_rates_hz, render_channel_counts,
capture_channel_counts);
}
TEST(ApmConfiguration, SelfAssignment) {
// At some point memory sanitizer was complaining about self-assigment.
// Make sure we don't regress.
AudioProcessing::Config config;
AudioProcessing::Config* config2 = &config;
*config2 = *config2; // Workaround -Wself-assign-overloaded
SUCCEED(); // Real success is absence of defects from asan/msan/ubsan.
}
TEST(AudioProcessing, GainController1ConfigEqual) {
AudioProcessing::Config::GainController1 a;
AudioProcessing::Config::GainController1 b;
EXPECT_EQ(a, b);
Toggle(a.enabled);
b.enabled = a.enabled;
EXPECT_EQ(a, b);
a.mode = AudioProcessing::Config::GainController1::Mode::kAdaptiveDigital;
b.mode = a.mode;
EXPECT_EQ(a, b);
a.target_level_dbfs++;
b.target_level_dbfs = a.target_level_dbfs;
EXPECT_EQ(a, b);
a.compression_gain_db++;
b.compression_gain_db = a.compression_gain_db;
EXPECT_EQ(a, b);
Toggle(a.enable_limiter);
b.enable_limiter = a.enable_limiter;
EXPECT_EQ(a, b);
auto& a_analog = a.analog_gain_controller;
auto& b_analog = b.analog_gain_controller;
Toggle(a_analog.enabled);
b_analog.enabled = a_analog.enabled;
EXPECT_EQ(a, b);
a_analog.startup_min_volume++;
b_analog.startup_min_volume = a_analog.startup_min_volume;
EXPECT_EQ(a, b);
a_analog.clipped_level_min++;
b_analog.clipped_level_min = a_analog.clipped_level_min;
EXPECT_EQ(a, b);
Toggle(a_analog.enable_digital_adaptive);
b_analog.enable_digital_adaptive = a_analog.enable_digital_adaptive;
EXPECT_EQ(a, b);
}
// Checks that one differing parameter is sufficient to make two configs
// different.
TEST(AudioProcessing, GainController1ConfigNotEqual) {
AudioProcessing::Config::GainController1 a;
const AudioProcessing::Config::GainController1 b;
Toggle(a.enabled);
EXPECT_NE(a, b);
a = b;
a.mode = AudioProcessing::Config::GainController1::Mode::kAdaptiveDigital;
EXPECT_NE(a, b);
a = b;
a.target_level_dbfs++;
EXPECT_NE(a, b);
a = b;
a.compression_gain_db++;
EXPECT_NE(a, b);
a = b;
Toggle(a.enable_limiter);
EXPECT_NE(a, b);
a = b;
auto& a_analog = a.analog_gain_controller;
const auto& b_analog = b.analog_gain_controller;
Toggle(a_analog.enabled);
EXPECT_NE(a, b);
a_analog = b_analog;
a_analog.startup_min_volume++;
EXPECT_NE(a, b);
a_analog = b_analog;
a_analog.clipped_level_min++;
EXPECT_NE(a, b);
a_analog = b_analog;
Toggle(a_analog.enable_digital_adaptive);
EXPECT_NE(a, b);
a_analog = b_analog;
}
TEST(AudioProcessing, GainController2ConfigEqual) {
AudioProcessing::Config::GainController2 a;
AudioProcessing::Config::GainController2 b;
EXPECT_EQ(a, b);
Toggle(a.enabled);
b.enabled = a.enabled;
EXPECT_EQ(a, b);
a.fixed_digital.gain_db += 1.0f;
b.fixed_digital.gain_db = a.fixed_digital.gain_db;
EXPECT_EQ(a, b);
auto& a_adaptive = a.adaptive_digital;
auto& b_adaptive = b.adaptive_digital;
Toggle(a_adaptive.enabled);
b_adaptive.enabled = a_adaptive.enabled;
EXPECT_EQ(a, b);
a_adaptive.headroom_db += 1.0f;
b_adaptive.headroom_db = a_adaptive.headroom_db;
EXPECT_EQ(a, b);
a_adaptive.max_gain_db += 1.0f;
b_adaptive.max_gain_db = a_adaptive.max_gain_db;
EXPECT_EQ(a, b);
a_adaptive.initial_gain_db += 1.0f;
b_adaptive.initial_gain_db = a_adaptive.initial_gain_db;
EXPECT_EQ(a, b);
a_adaptive.max_gain_change_db_per_second += 1.0f;
b_adaptive.max_gain_change_db_per_second =
a_adaptive.max_gain_change_db_per_second;
EXPECT_EQ(a, b);
a_adaptive.max_output_noise_level_dbfs += 1.0f;
b_adaptive.max_output_noise_level_dbfs =
a_adaptive.max_output_noise_level_dbfs;
EXPECT_EQ(a, b);
}
// Checks that one differing parameter is sufficient to make two configs
// different.
TEST(AudioProcessing, GainController2ConfigNotEqual) {
AudioProcessing::Config::GainController2 a;
const AudioProcessing::Config::GainController2 b;
Toggle(a.enabled);
EXPECT_NE(a, b);
a = b;
a.fixed_digital.gain_db += 1.0f;
EXPECT_NE(a, b);
a.fixed_digital = b.fixed_digital;
auto& a_adaptive = a.adaptive_digital;
const auto& b_adaptive = b.adaptive_digital;
Toggle(a_adaptive.enabled);
EXPECT_NE(a, b);
a_adaptive = b_adaptive;
a_adaptive.headroom_db += 1.0f;
EXPECT_NE(a, b);
a_adaptive = b_adaptive;
a_adaptive.max_gain_db += 1.0f;
EXPECT_NE(a, b);
a_adaptive = b_adaptive;
a_adaptive.initial_gain_db += 1.0f;
EXPECT_NE(a, b);
a_adaptive = b_adaptive;
a_adaptive.max_gain_change_db_per_second += 1.0f;
EXPECT_NE(a, b);
a_adaptive = b_adaptive;
a_adaptive.max_output_noise_level_dbfs += 1.0f;
EXPECT_NE(a, b);
a_adaptive = b_adaptive;
}
struct ApmFormatHandlingTestParams {
enum class ExpectedOutput {
kErrorAndUnmodified,
kErrorAndSilence,
kErrorAndCopyOfFirstChannel,
kErrorAndExactCopy,
kNoError
};
StreamConfig input_config;
StreamConfig output_config;
ExpectedOutput expected_output;
};
class ApmFormatHandlingTest
: public ::testing::TestWithParam<
std::tuple<StreamDirection, ApmFormatHandlingTestParams>> {
public:
ApmFormatHandlingTest()
: stream_direction_(std::get<0>(GetParam())),
test_params_(std::get<1>(GetParam())) {}
protected:
::testing::Message ProduceDebugMessage() {
return ::testing::Message()
<< "input sample_rate_hz="
<< test_params_.input_config.sample_rate_hz()
<< " num_channels=" << test_params_.input_config.num_channels()
<< ", output sample_rate_hz="
<< test_params_.output_config.sample_rate_hz()
<< " num_channels=" << test_params_.output_config.num_channels()
<< ", stream_direction=" << stream_direction_ << ", expected_output="
<< static_cast<int>(test_params_.expected_output);
}
StreamDirection stream_direction_;
ApmFormatHandlingTestParams test_params_;
};
INSTANTIATE_TEST_SUITE_P(
FormatValidation,
ApmFormatHandlingTest,
testing::Combine(
::testing::Values(kForward, kReverse),
::testing::Values(
// Test cases with values on the boundary of legal ranges.
ApmFormatHandlingTestParams{
StreamConfig(16000, 1), StreamConfig(8000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
ApmFormatHandlingTestParams{
StreamConfig(8000, 1), StreamConfig(16000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
ApmFormatHandlingTestParams{
StreamConfig(384000, 1), StreamConfig(16000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
ApmFormatHandlingTestParams{
StreamConfig(16000, 1), StreamConfig(384000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
ApmFormatHandlingTestParams{
StreamConfig(16000, 2), StreamConfig(16000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
ApmFormatHandlingTestParams{
StreamConfig(16000, 3), StreamConfig(16000, 3),
ApmFormatHandlingTestParams::ExpectedOutput::kNoError},
// Supported but incompatible formats.
ApmFormatHandlingTestParams{
StreamConfig(16000, 3), StreamConfig(16000, 2),
ApmFormatHandlingTestParams::ExpectedOutput::
kErrorAndCopyOfFirstChannel},
ApmFormatHandlingTestParams{
StreamConfig(16000, 3), StreamConfig(16000, 4),
ApmFormatHandlingTestParams::ExpectedOutput::
kErrorAndCopyOfFirstChannel},
// Unsupported format and input / output mismatch.
ApmFormatHandlingTestParams{
StreamConfig(7900, 1), StreamConfig(16000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
ApmFormatHandlingTestParams{
StreamConfig(16000, 1), StreamConfig(7900, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
ApmFormatHandlingTestParams{
StreamConfig(390000, 1), StreamConfig(16000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
ApmFormatHandlingTestParams{
StreamConfig(16000, 1), StreamConfig(390000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
ApmFormatHandlingTestParams{
StreamConfig(-16000, 1), StreamConfig(16000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence},
// Unsupported format but input / output formats match.
ApmFormatHandlingTestParams{StreamConfig(7900, 1),
StreamConfig(7900, 1),
ApmFormatHandlingTestParams::
ExpectedOutput::kErrorAndExactCopy},
ApmFormatHandlingTestParams{StreamConfig(390000, 1),
StreamConfig(390000, 1),
ApmFormatHandlingTestParams::
ExpectedOutput::kErrorAndExactCopy},
// Unsupported but identical sample rate, channel mismatch.
ApmFormatHandlingTestParams{
StreamConfig(7900, 1), StreamConfig(7900, 2),
ApmFormatHandlingTestParams::ExpectedOutput::
kErrorAndCopyOfFirstChannel},
ApmFormatHandlingTestParams{
StreamConfig(7900, 2), StreamConfig(7900, 1),
ApmFormatHandlingTestParams::ExpectedOutput::
kErrorAndCopyOfFirstChannel},
// Test cases with meaningless output format.
ApmFormatHandlingTestParams{
StreamConfig(16000, 1), StreamConfig(-16000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::
kErrorAndUnmodified},
ApmFormatHandlingTestParams{
StreamConfig(-16000, 1), StreamConfig(-16000, 1),
ApmFormatHandlingTestParams::ExpectedOutput::
kErrorAndUnmodified})));
TEST_P(ApmFormatHandlingTest, IntApi) {
SCOPED_TRACE(ProduceDebugMessage());
// Set up input and output data.
const size_t num_input_samples =
test_params_.input_config.num_channels() *
std::abs(test_params_.input_config.sample_rate_hz() / 100);
const size_t num_output_samples =
test_params_.output_config.num_channels() *
std::abs(test_params_.output_config.sample_rate_hz() / 100);
std::vector<int16_t> input_block(num_input_samples);
for (int i = 0; i < static_cast<int>(input_block.size()); ++i) {
input_block[i] = i;
}
std::vector<int16_t> output_block(num_output_samples);
constexpr int kUnlikelyOffset = 37;
for (int i = 0; i < static_cast<int>(output_block.size()); ++i) {
output_block[i] = i - kUnlikelyOffset;
}
// Call APM.
scoped_refptr<AudioProcessing> ap =
BuiltinAudioProcessingBuilder().Build(CreateEnvironment());
int error;
if (stream_direction_ == kForward) {
error = ap->ProcessStream(input_block.data(), test_params_.input_config,
test_params_.output_config, output_block.data());
} else {
error = ap->ProcessReverseStream(
input_block.data(), test_params_.input_config,
test_params_.output_config, output_block.data());
}
// Check output.
switch (test_params_.expected_output) {
case ApmFormatHandlingTestParams::ExpectedOutput::kNoError:
EXPECT_EQ(error, AudioProcessing::kNoError);
break;
case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndUnmodified:
EXPECT_NE(error, AudioProcessing::kNoError);
for (int i = 0; i < static_cast<int>(output_block.size()); ++i) {
EXPECT_EQ(output_block[i], i - kUnlikelyOffset);
}
break;
case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence:
EXPECT_NE(error, AudioProcessing::kNoError);
for (int i = 0; i < static_cast<int>(output_block.size()); ++i) {
EXPECT_EQ(output_block[i], 0);
}
break;
case ApmFormatHandlingTestParams::ExpectedOutput::
kErrorAndCopyOfFirstChannel:
EXPECT_NE(error, AudioProcessing::kNoError);
for (size_t ch = 0; ch < test_params_.output_config.num_channels();
++ch) {
for (size_t i = 0; i < test_params_.output_config.num_frames(); ++i) {
EXPECT_EQ(
output_block[ch + i * test_params_.output_config.num_channels()],
static_cast<int16_t>(i *
test_params_.input_config.num_channels()));
}
}
break;
case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndExactCopy:
EXPECT_NE(error, AudioProcessing::kNoError);
for (int i = 0; i < static_cast<int>(output_block.size()); ++i) {
EXPECT_EQ(output_block[i], i);
}
break;
}
}
TEST_P(ApmFormatHandlingTest, FloatApi) {
SCOPED_TRACE(ProduceDebugMessage());
// Set up input and output data.
const size_t input_samples_per_channel =
std::abs(test_params_.input_config.sample_rate_hz()) / 100;
const size_t output_samples_per_channel =
std::abs(test_params_.output_config.sample_rate_hz()) / 100;
const size_t input_num_channels = test_params_.input_config.num_channels();
const size_t output_num_channels = test_params_.output_config.num_channels();
ChannelBuffer<float> input_block(input_samples_per_channel,
input_num_channels);
ChannelBuffer<float> output_block(output_samples_per_channel,
output_num_channels);
for (size_t ch = 0; ch < input_num_channels; ++ch) {
for (size_t i = 0; i < input_samples_per_channel; ++i) {
input_block.channels()[ch][i] = ch + i * input_num_channels;
}
}
constexpr int kUnlikelyOffset = 37;
for (size_t ch = 0; ch < output_num_channels; ++ch) {
for (size_t i = 0; i < output_samples_per_channel; ++i) {
output_block.channels()[ch][i] =
ch + i * output_num_channels - kUnlikelyOffset;
}
}
// Call APM.
scoped_refptr<AudioProcessing> ap =
BuiltinAudioProcessingBuilder().Build(CreateEnvironment());
int error;
if (stream_direction_ == kForward) {
error =
ap->ProcessStream(input_block.channels(), test_params_.input_config,
test_params_.output_config, output_block.channels());
} else {
error = ap->ProcessReverseStream(
input_block.channels(), test_params_.input_config,
test_params_.output_config, output_block.channels());
}
// Check output.
switch (test_params_.expected_output) {
case ApmFormatHandlingTestParams::ExpectedOutput::kNoError:
EXPECT_EQ(error, AudioProcessing::kNoError);
break;
case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndUnmodified:
EXPECT_NE(error, AudioProcessing::kNoError);
for (size_t ch = 0; ch < output_num_channels; ++ch) {
for (size_t i = 0; i < output_samples_per_channel; ++i) {
EXPECT_EQ(output_block.channels()[ch][i],
ch + i * output_num_channels - kUnlikelyOffset);
}
}
break;
case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndSilence:
EXPECT_NE(error, AudioProcessing::kNoError);
for (size_t ch = 0; ch < output_num_channels; ++ch) {
for (size_t i = 0; i < output_samples_per_channel; ++i) {
EXPECT_EQ(output_block.channels()[ch][i], 0);
}
}
break;
case ApmFormatHandlingTestParams::ExpectedOutput::
kErrorAndCopyOfFirstChannel:
EXPECT_NE(error, AudioProcessing::kNoError);
for (size_t ch = 0; ch < output_num_channels; ++ch) {
for (size_t i = 0; i < output_samples_per_channel; ++i) {
EXPECT_EQ(output_block.channels()[ch][i],
input_block.channels()[0][i]);
}
}
break;
case ApmFormatHandlingTestParams::ExpectedOutput::kErrorAndExactCopy:
EXPECT_NE(error, AudioProcessing::kNoError);
for (size_t ch = 0; ch < output_num_channels; ++ch) {
for (size_t i = 0; i < output_samples_per_channel; ++i) {
EXPECT_EQ(output_block.channels()[ch][i],
input_block.channels()[ch][i]);
}
}
break;
}
}
TEST(ApmAnalyzeReverseStreamFormatTest, AnalyzeReverseStream) {
for (auto&& [input_config, expect_error] :
{std::tuple(StreamConfig(16000, 2), /*expect_error=*/false),
std::tuple(StreamConfig(8000, 1), /*expect_error=*/false),
std::tuple(StreamConfig(384000, 1), /*expect_error=*/false),
std::tuple(StreamConfig(7900, 1), /*expect_error=*/true),
std::tuple(StreamConfig(390000, 1), /*expect_error=*/true),
std::tuple(StreamConfig(16000, 0), /*expect_error=*/true),
std::tuple(StreamConfig(-16000, 0), /*expect_error=*/true)}) {
SCOPED_TRACE(::testing::Message()
<< "sample_rate_hz=" << input_config.sample_rate_hz()
<< " num_channels=" << input_config.num_channels());
// Set up input data.
ChannelBuffer<float> input_block(
std::abs(input_config.sample_rate_hz()) / 100,
input_config.num_channels());
// Call APM.
scoped_refptr<AudioProcessing> ap =
BuiltinAudioProcessingBuilder().Build(CreateEnvironment());
int error = ap->AnalyzeReverseStream(input_block.channels(), input_config);
// Check output.
if (expect_error) {
EXPECT_NE(error, AudioProcessing::kNoError);
} else {
EXPECT_EQ(error, AudioProcessing::kNoError);
}
}
}
} // namespace webrtc