blob: 21ef24a646cabcec8bd6d79ded7fe19669d51a0b [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/include/remote_ntp_time_estimator.h"
#include <cstdint>
#include "modules/rtp_rtcp/source/ntp_time_util.h"
#include "rtc_base/logging.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/ntp_time.h"
namespace webrtc {
namespace {
constexpr int kMinimumNumberOfSamples = 2;
constexpr TimeDelta kTimingLogInterval = TimeDelta::Seconds(10);
constexpr int kClocksOffsetSmoothingWindow = 100;
// Subtracts two NtpTime values keeping maximum precision.
int64_t Subtract(NtpTime minuend, NtpTime subtrahend) {
uint64_t a = static_cast<uint64_t>(minuend);
uint64_t b = static_cast<uint64_t>(subtrahend);
return a >= b ? static_cast<int64_t>(a - b) : -static_cast<int64_t>(b - a);
}
NtpTime Add(NtpTime lhs, int64_t rhs) {
uint64_t result = static_cast<uint64_t>(lhs);
if (rhs >= 0) {
result += static_cast<uint64_t>(rhs);
} else {
result -= static_cast<uint64_t>(-rhs);
}
return NtpTime(result);
}
} // namespace
// TODO(wu): Refactor this class so that it can be shared with
// vie_sync_module.cc.
RemoteNtpTimeEstimator::RemoteNtpTimeEstimator(Clock* clock)
: clock_(clock),
ntp_clocks_offset_estimator_(kClocksOffsetSmoothingWindow) {}
bool RemoteNtpTimeEstimator::UpdateRtcpTimestamp(TimeDelta rtt,
NtpTime sender_send_time,
uint32_t rtp_timestamp) {
switch (rtp_to_ntp_.UpdateMeasurements(sender_send_time, rtp_timestamp)) {
case RtpToNtpEstimator::kInvalidMeasurement:
return false;
case RtpToNtpEstimator::kSameMeasurement:
// No new RTCP SR since last time this function was called.
return true;
case RtpToNtpEstimator::kNewMeasurement:
break;
}
// Assume connection is symmetric and thus time to deliver the packet is half
// the round trip time.
int64_t deliver_time_ntp = ToNtpUnits(rtt) / 2;
// Update extrapolator with the new arrival time.
NtpTime receiver_arrival_time = clock_->CurrentNtpTime();
int64_t remote_to_local_clocks_offset =
Subtract(receiver_arrival_time, sender_send_time) - deliver_time_ntp;
ntp_clocks_offset_estimator_.Insert(remote_to_local_clocks_offset);
return true;
}
NtpTime RemoteNtpTimeEstimator::EstimateNtp(uint32_t rtp_timestamp) {
NtpTime sender_capture = rtp_to_ntp_.Estimate(rtp_timestamp);
if (!sender_capture.Valid()) {
return sender_capture;
}
int64_t remote_to_local_clocks_offset =
ntp_clocks_offset_estimator_.GetFilteredValue();
NtpTime receiver_capture = Add(sender_capture, remote_to_local_clocks_offset);
Timestamp now = clock_->CurrentTime();
if (now - last_timing_log_ > kTimingLogInterval) {
RTC_LOG(LS_INFO) << "RTP timestamp: " << rtp_timestamp
<< " in NTP clock: " << sender_capture.ToMs()
<< " estimated time in receiver NTP clock: "
<< receiver_capture.ToMs();
last_timing_log_ = now;
}
return receiver_capture;
}
std::optional<int64_t>
RemoteNtpTimeEstimator::EstimateRemoteToLocalClockOffset() {
if (ntp_clocks_offset_estimator_.GetNumberOfSamplesStored() <
kMinimumNumberOfSamples) {
return std::nullopt;
}
return ntp_clocks_offset_estimator_.GetFilteredValue();
}
} // namespace webrtc