blob: 51ace1cf75e6a1787cad53ea6bbb52631772aefa [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtcp_sender.h"
#include <string.h> // memcpy
#include <algorithm> // std::min
#include <cstdint>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>
#include "absl/strings/string_view.h"
#include "api/array_view.h"
#include "api/environment/environment.h"
#include "api/rtc_event_log/rtc_event_log.h"
#include "api/rtp_headers.h"
#include "api/units/data_rate.h"
#include "api/units/time_delta.h"
#include "api/units/timestamp.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video/video_codec_constants.h"
#include "logging/rtc_event_log/events/rtc_event_rtcp_packet_outgoing.h"
#include "modules/rtp_rtcp/include/rtp_rtcp_defines.h"
#include "modules/rtp_rtcp/source/ntp_time_util.h"
#include "modules/rtp_rtcp/source/rtcp_packet.h"
#include "modules/rtp_rtcp/source/rtcp_packet/app.h"
#include "modules/rtp_rtcp/source/rtcp_packet/bye.h"
#include "modules/rtp_rtcp/source/rtcp_packet/dlrr.h"
#include "modules/rtp_rtcp/source/rtcp_packet/extended_reports.h"
#include "modules/rtp_rtcp/source/rtcp_packet/fir.h"
#include "modules/rtp_rtcp/source/rtcp_packet/loss_notification.h"
#include "modules/rtp_rtcp/source/rtcp_packet/nack.h"
#include "modules/rtp_rtcp/source/rtcp_packet/pli.h"
#include "modules/rtp_rtcp/source/rtcp_packet/receiver_report.h"
#include "modules/rtp_rtcp/source/rtcp_packet/remb.h"
#include "modules/rtp_rtcp/source/rtcp_packet/report_block.h"
#include "modules/rtp_rtcp/source/rtcp_packet/rrtr.h"
#include "modules/rtp_rtcp/source/rtcp_packet/sdes.h"
#include "modules/rtp_rtcp/source/rtcp_packet/sender_report.h"
#include "modules/rtp_rtcp/source/rtcp_packet/target_bitrate.h"
#include "modules/rtp_rtcp/source/rtcp_packet/tmmb_item.h"
#include "modules/rtp_rtcp/source/rtcp_packet/tmmbn.h"
#include "modules/rtp_rtcp/source/rtcp_packet/tmmbr.h"
#include "modules/rtp_rtcp/source/rtp_rtcp_config.h"
#include "modules/rtp_rtcp/source/rtp_rtcp_impl2.h"
#include "modules/rtp_rtcp/source/rtp_rtcp_interface.h"
#include "modules/rtp_rtcp/source/tmmbr_help.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
#include "rtc_base/synchronization/mutex.h"
#include "rtc_base/trace_event.h"
namespace webrtc {
namespace {
const uint32_t kRtcpAnyExtendedReports = kRtcpXrReceiverReferenceTime |
kRtcpXrDlrrReportBlock |
kRtcpXrTargetBitrate;
constexpr int32_t kDefaultVideoReportInterval = 1000;
constexpr int32_t kDefaultAudioReportInterval = 5000;
} // namespace
// Helper to put several RTCP packets into lower layer datagram RTCP packet.
class RTCPSender::PacketSender {
public:
PacketSender(rtcp::RtcpPacket::PacketReadyCallback callback,
size_t max_packet_size)
: callback_(callback), max_packet_size_(max_packet_size) {
RTC_CHECK_LE(max_packet_size, IP_PACKET_SIZE);
}
~PacketSender() { RTC_DCHECK_EQ(index_, 0) << "Unsent rtcp packet."; }
// Appends a packet to pending compound packet.
// Sends rtcp packet if buffer is full and resets the buffer.
void AppendPacket(const rtcp::RtcpPacket& packet) {
packet.Create(buffer_, &index_, max_packet_size_, callback_);
}
// Sends pending rtcp packet.
void Send() {
if (index_ > 0) {
callback_(rtc::ArrayView<const uint8_t>(buffer_, index_));
index_ = 0;
}
}
private:
const rtcp::RtcpPacket::PacketReadyCallback callback_;
const size_t max_packet_size_;
size_t index_ = 0;
uint8_t buffer_[IP_PACKET_SIZE];
};
RTCPSender::FeedbackState::FeedbackState()
: packets_sent(0),
media_bytes_sent(0),
send_bitrate(DataRate::Zero()),
remote_sr(0),
receiver(nullptr) {}
RTCPSender::FeedbackState::FeedbackState(const FeedbackState&) = default;
RTCPSender::FeedbackState::FeedbackState(FeedbackState&&) = default;
RTCPSender::FeedbackState::~FeedbackState() = default;
class RTCPSender::RtcpContext {
public:
RtcpContext(const FeedbackState& feedback_state,
int32_t nack_size,
const uint16_t* nack_list,
Timestamp now)
: feedback_state_(feedback_state),
nack_size_(nack_size),
nack_list_(nack_list),
now_(now) {}
const FeedbackState& feedback_state_;
const int32_t nack_size_;
const uint16_t* nack_list_;
const Timestamp now_;
};
RTCPSender::Configuration RTCPSender::Configuration::FromRtpRtcpConfiguration(
const RtpRtcpInterface::Configuration& configuration) {
RTCPSender::Configuration result;
result.audio = configuration.audio;
result.local_media_ssrc = configuration.local_media_ssrc;
result.outgoing_transport = configuration.outgoing_transport;
result.non_sender_rtt_measurement = configuration.non_sender_rtt_measurement;
if (configuration.rtcp_report_interval_ms) {
result.rtcp_report_interval =
TimeDelta::Millis(configuration.rtcp_report_interval_ms);
}
result.receive_statistics = configuration.receive_statistics;
result.rtcp_packet_type_counter_observer =
configuration.rtcp_packet_type_counter_observer;
return result;
}
RTCPSender::RTCPSender(const Environment& env, Configuration config)
: env_(env),
audio_(config.audio),
ssrc_(config.local_media_ssrc),
random_(env_.clock().TimeInMicroseconds()),
method_(RtcpMode::kOff),
transport_(config.outgoing_transport),
report_interval_(config.rtcp_report_interval.value_or(
TimeDelta::Millis(config.audio ? kDefaultAudioReportInterval
: kDefaultVideoReportInterval))),
schedule_next_rtcp_send_evaluation_function_(
std::move(config.schedule_next_rtcp_send_evaluation_function)),
sending_(false),
timestamp_offset_(0),
last_rtp_timestamp_(0),
remote_ssrc_(0),
receive_statistics_(config.receive_statistics),
sequence_number_fir_(0),
remb_bitrate_(0),
tmmbr_send_bps_(0),
packet_oh_send_(0),
max_packet_size_(IP_PACKET_SIZE - 28), // IPv4 + UDP by default.
xr_send_receiver_reference_time_enabled_(
config.non_sender_rtt_measurement),
packet_type_counter_observer_(config.rtcp_packet_type_counter_observer),
send_video_bitrate_allocation_(false),
last_payload_type_(-1) {
RTC_DCHECK(transport_ != nullptr);
builders_[kRtcpSr] = &RTCPSender::BuildSR;
builders_[kRtcpRr] = &RTCPSender::BuildRR;
builders_[kRtcpSdes] = &RTCPSender::BuildSDES;
builders_[kRtcpPli] = &RTCPSender::BuildPLI;
builders_[kRtcpFir] = &RTCPSender::BuildFIR;
builders_[kRtcpRemb] = &RTCPSender::BuildREMB;
builders_[kRtcpBye] = &RTCPSender::BuildBYE;
builders_[kRtcpLossNotification] = &RTCPSender::BuildLossNotification;
builders_[kRtcpTmmbr] = &RTCPSender::BuildTMMBR;
builders_[kRtcpTmmbn] = &RTCPSender::BuildTMMBN;
builders_[kRtcpNack] = &RTCPSender::BuildNACK;
builders_[kRtcpAnyExtendedReports] = &RTCPSender::BuildExtendedReports;
}
RTCPSender::~RTCPSender() {}
RtcpMode RTCPSender::Status() const {
MutexLock lock(&mutex_rtcp_sender_);
return method_;
}
void RTCPSender::SetRTCPStatus(RtcpMode new_method) {
MutexLock lock(&mutex_rtcp_sender_);
if (new_method == RtcpMode::kOff) {
next_time_to_send_rtcp_ = std::nullopt;
} else if (method_ == RtcpMode::kOff) {
// When switching on, reschedule the next packet
SetNextRtcpSendEvaluationDuration(report_interval_ / 2);
}
method_ = new_method;
}
bool RTCPSender::Sending() const {
MutexLock lock(&mutex_rtcp_sender_);
return sending_;
}
void RTCPSender::SetSendingStatus(const FeedbackState& feedback_state,
bool sending) {
MutexLock lock(&mutex_rtcp_sender_);
sending_ = sending;
}
void RTCPSender::SetNonSenderRttMeasurement(bool enabled) {
MutexLock lock(&mutex_rtcp_sender_);
xr_send_receiver_reference_time_enabled_ = enabled;
}
int32_t RTCPSender::SendLossNotification(const FeedbackState& feedback_state,
uint16_t last_decoded_seq_num,
uint16_t last_received_seq_num,
bool decodability_flag,
bool buffering_allowed) {
int32_t error_code = -1;
auto callback = [&](rtc::ArrayView<const uint8_t> packet) {
transport_->SendRtcp(packet);
error_code = 0;
env_.event_log().Log(std::make_unique<RtcEventRtcpPacketOutgoing>(packet));
};
std::optional<PacketSender> sender;
{
MutexLock lock(&mutex_rtcp_sender_);
if (!loss_notification_.Set(last_decoded_seq_num, last_received_seq_num,
decodability_flag)) {
return -1;
}
SetFlag(kRtcpLossNotification, /*is_volatile=*/true);
if (buffering_allowed) {
// The loss notification will be batched with additional feedback
// messages.
return 0;
}
sender.emplace(callback, max_packet_size_);
auto result = ComputeCompoundRTCPPacket(
feedback_state, RTCPPacketType::kRtcpLossNotification, 0, nullptr,
*sender);
if (result) {
return *result;
}
}
sender->Send();
return error_code;
}
void RTCPSender::SetRemb(int64_t bitrate_bps, std::vector<uint32_t> ssrcs) {
RTC_CHECK_GE(bitrate_bps, 0);
MutexLock lock(&mutex_rtcp_sender_);
if (method_ == RtcpMode::kOff) {
RTC_LOG(LS_WARNING) << "Can't send RTCP if it is disabled.";
return;
}
remb_bitrate_ = bitrate_bps;
remb_ssrcs_ = std::move(ssrcs);
SetFlag(kRtcpRemb, /*is_volatile=*/false);
// Send a REMB immediately if we have a new REMB. The frequency of REMBs is
// throttled by the caller.
SetNextRtcpSendEvaluationDuration(TimeDelta::Zero());
}
void RTCPSender::UnsetRemb() {
MutexLock lock(&mutex_rtcp_sender_);
// Stop sending REMB each report until it is reenabled and REMB data set.
ConsumeFlag(kRtcpRemb, /*forced=*/true);
}
bool RTCPSender::TMMBR() const {
MutexLock lock(&mutex_rtcp_sender_);
return IsFlagPresent(RTCPPacketType::kRtcpTmmbr);
}
void RTCPSender::SetMaxRtpPacketSize(size_t max_packet_size) {
MutexLock lock(&mutex_rtcp_sender_);
max_packet_size_ = max_packet_size;
}
void RTCPSender::SetTimestampOffset(uint32_t timestamp_offset) {
MutexLock lock(&mutex_rtcp_sender_);
timestamp_offset_ = timestamp_offset;
}
void RTCPSender::SetLastRtpTime(uint32_t rtp_timestamp,
std::optional<Timestamp> capture_time,
std::optional<int8_t> payload_type) {
MutexLock lock(&mutex_rtcp_sender_);
// For compatibility with clients who don't set payload type correctly on all
// calls.
if (payload_type.has_value()) {
last_payload_type_ = *payload_type;
}
last_rtp_timestamp_ = rtp_timestamp;
if (!capture_time.has_value()) {
// We don't currently get a capture time from VoiceEngine.
last_frame_capture_time_ = env_.clock().CurrentTime();
} else {
last_frame_capture_time_ = *capture_time;
}
}
void RTCPSender::SetRtpClockRate(int8_t payload_type, int rtp_clock_rate_hz) {
MutexLock lock(&mutex_rtcp_sender_);
rtp_clock_rates_khz_[payload_type] = rtp_clock_rate_hz / 1000;
}
uint32_t RTCPSender::SSRC() const {
MutexLock lock(&mutex_rtcp_sender_);
return ssrc_;
}
void RTCPSender::SetSsrc(uint32_t ssrc) {
MutexLock lock(&mutex_rtcp_sender_);
ssrc_ = ssrc;
}
void RTCPSender::SetRemoteSSRC(uint32_t ssrc) {
MutexLock lock(&mutex_rtcp_sender_);
remote_ssrc_ = ssrc;
}
int32_t RTCPSender::SetCNAME(absl::string_view c_name) {
RTC_DCHECK_LT(c_name.size(), RTCP_CNAME_SIZE);
MutexLock lock(&mutex_rtcp_sender_);
cname_ = std::string(c_name);
return 0;
}
bool RTCPSender::TimeToSendRTCPReport(bool send_keyframe_before_rtp) const {
Timestamp now = env_.clock().CurrentTime();
MutexLock lock(&mutex_rtcp_sender_);
RTC_DCHECK(
(method_ == RtcpMode::kOff && !next_time_to_send_rtcp_.has_value()) ||
(method_ != RtcpMode::kOff && next_time_to_send_rtcp_.has_value()));
if (method_ == RtcpMode::kOff)
return false;
if (!audio_ && send_keyframe_before_rtp) {
// For video key-frames we want to send the RTCP before the large key-frame
// if we have a 100 ms margin
now += TimeDelta::Millis(100);
}
return now >= *next_time_to_send_rtcp_;
}
void RTCPSender::BuildSR(const RtcpContext& ctx, PacketSender& sender) {
// Timestamp shouldn't be estimated before first media frame.
RTC_DCHECK(last_frame_capture_time_.has_value());
// The timestamp of this RTCP packet should be estimated as the timestamp of
// the frame being captured at this moment. We are calculating that
// timestamp as the last frame's timestamp + the time since the last frame
// was captured.
int rtp_rate = rtp_clock_rates_khz_[last_payload_type_];
if (rtp_rate <= 0) {
rtp_rate =
(audio_ ? kBogusRtpRateForAudioRtcp : kVideoPayloadTypeFrequency) /
1000;
}
// Round now_us_ to the closest millisecond, because Ntp time is rounded
// when converted to milliseconds,
uint32_t rtp_timestamp =
timestamp_offset_ + last_rtp_timestamp_ +
((ctx.now_.us() + 500) / 1000 - last_frame_capture_time_->ms()) *
rtp_rate;
rtcp::SenderReport report;
report.SetSenderSsrc(ssrc_);
report.SetNtp(env_.clock().ConvertTimestampToNtpTime(ctx.now_));
report.SetRtpTimestamp(rtp_timestamp);
report.SetPacketCount(ctx.feedback_state_.packets_sent);
report.SetOctetCount(ctx.feedback_state_.media_bytes_sent);
report.SetReportBlocks(CreateReportBlocks(ctx.feedback_state_));
sender.AppendPacket(report);
}
void RTCPSender::BuildSDES(const RtcpContext& ctx, PacketSender& sender) {
size_t length_cname = cname_.length();
RTC_CHECK_LT(length_cname, RTCP_CNAME_SIZE);
rtcp::Sdes sdes;
sdes.AddCName(ssrc_, cname_);
sender.AppendPacket(sdes);
}
void RTCPSender::BuildRR(const RtcpContext& ctx, PacketSender& sender) {
rtcp::ReceiverReport report;
report.SetSenderSsrc(ssrc_);
report.SetReportBlocks(CreateReportBlocks(ctx.feedback_state_));
if (method_ == RtcpMode::kCompound || !report.report_blocks().empty()) {
sender.AppendPacket(report);
}
}
void RTCPSender::BuildPLI(const RtcpContext& ctx, PacketSender& sender) {
rtcp::Pli pli;
pli.SetSenderSsrc(ssrc_);
pli.SetMediaSsrc(remote_ssrc_);
++packet_type_counter_.pli_packets;
sender.AppendPacket(pli);
}
void RTCPSender::BuildFIR(const RtcpContext& ctx, PacketSender& sender) {
++sequence_number_fir_;
rtcp::Fir fir;
fir.SetSenderSsrc(ssrc_);
fir.AddRequestTo(remote_ssrc_, sequence_number_fir_);
++packet_type_counter_.fir_packets;
sender.AppendPacket(fir);
}
void RTCPSender::BuildREMB(const RtcpContext& ctx, PacketSender& sender) {
rtcp::Remb remb;
remb.SetSenderSsrc(ssrc_);
remb.SetBitrateBps(remb_bitrate_);
remb.SetSsrcs(remb_ssrcs_);
sender.AppendPacket(remb);
}
void RTCPSender::SetTargetBitrate(unsigned int target_bitrate) {
MutexLock lock(&mutex_rtcp_sender_);
tmmbr_send_bps_ = target_bitrate;
}
void RTCPSender::BuildTMMBR(const RtcpContext& ctx, PacketSender& sender) {
if (ctx.feedback_state_.receiver == nullptr)
return;
// Before sending the TMMBR check the received TMMBN, only an owner is
// allowed to raise the bitrate:
// * If the sender is an owner of the TMMBN -> send TMMBR
// * If not an owner but the TMMBR would enter the TMMBN -> send TMMBR
// get current bounding set from RTCP receiver
bool tmmbr_owner = false;
// holding mutex_rtcp_sender_ while calling RTCPreceiver which
// will accuire criticalSectionRTCPReceiver_ is a potental deadlock but
// since RTCPreceiver is not doing the reverse we should be fine
std::vector<rtcp::TmmbItem> candidates =
ctx.feedback_state_.receiver->BoundingSet(&tmmbr_owner);
if (!candidates.empty()) {
for (const auto& candidate : candidates) {
if (candidate.bitrate_bps() == tmmbr_send_bps_ &&
candidate.packet_overhead() == packet_oh_send_) {
// Do not send the same tuple.
return;
}
}
if (!tmmbr_owner) {
// Use received bounding set as candidate set.
// Add current tuple.
candidates.emplace_back(ssrc_, tmmbr_send_bps_, packet_oh_send_);
// Find bounding set.
std::vector<rtcp::TmmbItem> bounding =
TMMBRHelp::FindBoundingSet(std::move(candidates));
tmmbr_owner = TMMBRHelp::IsOwner(bounding, ssrc_);
if (!tmmbr_owner) {
// Did not enter bounding set, no meaning to send this request.
return;
}
}
}
if (!tmmbr_send_bps_)
return;
rtcp::Tmmbr tmmbr;
tmmbr.SetSenderSsrc(ssrc_);
rtcp::TmmbItem request;
request.set_ssrc(remote_ssrc_);
request.set_bitrate_bps(tmmbr_send_bps_);
request.set_packet_overhead(packet_oh_send_);
tmmbr.AddTmmbr(request);
sender.AppendPacket(tmmbr);
}
void RTCPSender::BuildTMMBN(const RtcpContext& ctx, PacketSender& sender) {
rtcp::Tmmbn tmmbn;
tmmbn.SetSenderSsrc(ssrc_);
for (const rtcp::TmmbItem& tmmbr : tmmbn_to_send_) {
if (tmmbr.bitrate_bps() > 0) {
tmmbn.AddTmmbr(tmmbr);
}
}
sender.AppendPacket(tmmbn);
}
void RTCPSender::BuildAPP(const RtcpContext& ctx, PacketSender& sender) {
rtcp::App app;
app.SetSenderSsrc(ssrc_);
sender.AppendPacket(app);
}
void RTCPSender::BuildLossNotification(const RtcpContext& ctx,
PacketSender& sender) {
loss_notification_.SetSenderSsrc(ssrc_);
loss_notification_.SetMediaSsrc(remote_ssrc_);
sender.AppendPacket(loss_notification_);
}
void RTCPSender::BuildNACK(const RtcpContext& ctx, PacketSender& sender) {
rtcp::Nack nack;
nack.SetSenderSsrc(ssrc_);
nack.SetMediaSsrc(remote_ssrc_);
nack.SetPacketIds(ctx.nack_list_, ctx.nack_size_);
// Report stats.
for (int idx = 0; idx < ctx.nack_size_; ++idx) {
nack_stats_.ReportRequest(ctx.nack_list_[idx]);
}
packet_type_counter_.nack_requests = nack_stats_.requests();
packet_type_counter_.unique_nack_requests = nack_stats_.unique_requests();
++packet_type_counter_.nack_packets;
sender.AppendPacket(nack);
}
void RTCPSender::BuildBYE(const RtcpContext& ctx, PacketSender& sender) {
rtcp::Bye bye;
bye.SetSenderSsrc(ssrc_);
bye.SetCsrcs(csrcs_);
sender.AppendPacket(bye);
}
void RTCPSender::BuildExtendedReports(const RtcpContext& ctx,
PacketSender& sender) {
rtcp::ExtendedReports xr;
xr.SetSenderSsrc(ssrc_);
if (!sending_ && xr_send_receiver_reference_time_enabled_) {
rtcp::Rrtr rrtr;
rrtr.SetNtp(env_.clock().ConvertTimestampToNtpTime(ctx.now_));
xr.SetRrtr(rrtr);
}
for (const rtcp::ReceiveTimeInfo& rti : ctx.feedback_state_.last_xr_rtis) {
xr.AddDlrrItem(rti);
}
if (send_video_bitrate_allocation_) {
rtcp::TargetBitrate target_bitrate;
for (int sl = 0; sl < kMaxSpatialLayers; ++sl) {
for (int tl = 0; tl < kMaxTemporalStreams; ++tl) {
if (video_bitrate_allocation_.HasBitrate(sl, tl)) {
target_bitrate.AddTargetBitrate(
sl, tl, video_bitrate_allocation_.GetBitrate(sl, tl) / 1000);
}
}
}
xr.SetTargetBitrate(target_bitrate);
send_video_bitrate_allocation_ = false;
}
sender.AppendPacket(xr);
}
int32_t RTCPSender::SendRTCP(const FeedbackState& feedback_state,
RTCPPacketType packet_type,
int32_t nack_size,
const uint16_t* nack_list) {
int32_t error_code = -1;
auto callback = [&](rtc::ArrayView<const uint8_t> packet) {
if (transport_->SendRtcp(packet)) {
error_code = 0;
env_.event_log().Log(
std::make_unique<RtcEventRtcpPacketOutgoing>(packet));
}
};
std::optional<PacketSender> sender;
{
MutexLock lock(&mutex_rtcp_sender_);
sender.emplace(callback, max_packet_size_);
auto result = ComputeCompoundRTCPPacket(feedback_state, packet_type,
nack_size, nack_list, *sender);
if (result) {
return *result;
}
}
sender->Send();
return error_code;
}
std::optional<int32_t> RTCPSender::ComputeCompoundRTCPPacket(
const FeedbackState& feedback_state,
RTCPPacketType packet_type,
int32_t nack_size,
const uint16_t* nack_list,
PacketSender& sender) {
if (method_ == RtcpMode::kOff) {
RTC_LOG(LS_WARNING) << "Can't send RTCP if it is disabled.";
return -1;
}
// Add the flag as volatile. Non volatile entries will not be overwritten.
// The new volatile flag will be consumed by the end of this call.
SetFlag(packet_type, true);
// Prevent sending streams to send SR before any media has been sent.
const bool can_calculate_rtp_timestamp = last_frame_capture_time_.has_value();
if (!can_calculate_rtp_timestamp) {
bool consumed_sr_flag = ConsumeFlag(kRtcpSr);
bool consumed_report_flag = sending_ && ConsumeFlag(kRtcpReport);
bool sender_report = consumed_report_flag || consumed_sr_flag;
if (sender_report && AllVolatileFlagsConsumed()) {
// This call was for Sender Report and nothing else.
return 0;
}
if (sending_ && method_ == RtcpMode::kCompound) {
// Not allowed to send any RTCP packet without sender report.
return -1;
}
}
// We need to send our NTP even if we haven't received any reports.
RtcpContext context(feedback_state, nack_size, nack_list,
env_.clock().CurrentTime());
PrepareReport(feedback_state);
bool create_bye = false;
auto it = report_flags_.begin();
while (it != report_flags_.end()) {
uint32_t rtcp_packet_type = it->type;
if (it->is_volatile) {
report_flags_.erase(it++);
} else {
++it;
}
// If there is a BYE, don't append now - save it and append it
// at the end later.
if (rtcp_packet_type == kRtcpBye) {
create_bye = true;
continue;
}
auto builder_it = builders_.find(rtcp_packet_type);
if (builder_it == builders_.end()) {
RTC_DCHECK_NOTREACHED()
<< "Could not find builder for packet type " << rtcp_packet_type;
} else {
BuilderFunc func = builder_it->second;
(this->*func)(context, sender);
}
}
// Append the BYE now at the end
if (create_bye) {
BuildBYE(context, sender);
}
if (packet_type_counter_observer_ != nullptr) {
packet_type_counter_observer_->RtcpPacketTypesCounterUpdated(
remote_ssrc_, packet_type_counter_);
}
RTC_DCHECK(AllVolatileFlagsConsumed());
return std::nullopt;
}
TimeDelta RTCPSender::ComputeTimeUntilNextReport(DataRate send_bitrate) {
/*
For audio we use a configurable interval (default: 5 seconds)
For video we use a configurable interval (default: 1 second)
for a BW smaller than ~200 kbit/s, technicaly we break the max 5% RTCP
BW for video but that should be extremely rare
From RFC 3550, https://www.rfc-editor.org/rfc/rfc3550#section-6.2
The RECOMMENDED value for the reduced minimum in seconds is 360
divided by the session bandwidth in kilobits/second. This minimum
is smaller than 5 seconds for bandwidths greater than 72 kb/s.
The interval between RTCP packets is varied randomly over the
range [0.5,1.5] times the calculated interval to avoid unintended
synchronization of all participants
*/
TimeDelta min_interval = report_interval_;
if (!audio_ && sending_ && send_bitrate > DataRate::BitsPerSec(72'000)) {
// Calculate bandwidth for video; 360 / send bandwidth in kbit/s per
// https://www.rfc-editor.org/rfc/rfc3550#section-6.2 recommendation.
min_interval = std::min(TimeDelta::Seconds(360) / send_bitrate.kbps(),
report_interval_);
}
// The interval between RTCP packets is varied randomly over the
// range [1/2,3/2] times the calculated interval.
int min_interval_int = rtc::dchecked_cast<int>(min_interval.ms());
TimeDelta time_to_next = TimeDelta::Millis(
random_.Rand(min_interval_int * 1 / 2, min_interval_int * 3 / 2));
// To be safer clamp the result.
return std::max(time_to_next, TimeDelta::Millis(1));
}
void RTCPSender::PrepareReport(const FeedbackState& feedback_state) {
bool generate_report;
if (IsFlagPresent(kRtcpSr) || IsFlagPresent(kRtcpRr)) {
// Report type already explicitly set, don't automatically populate.
generate_report = true;
RTC_DCHECK(ConsumeFlag(kRtcpReport) == false);
} else {
generate_report =
(ConsumeFlag(kRtcpReport) && method_ == RtcpMode::kReducedSize) ||
method_ == RtcpMode::kCompound;
if (generate_report)
SetFlag(sending_ ? kRtcpSr : kRtcpRr, true);
}
if (IsFlagPresent(kRtcpSr) || (IsFlagPresent(kRtcpRr) && !cname_.empty()))
SetFlag(kRtcpSdes, true);
if (generate_report) {
if ((!sending_ && xr_send_receiver_reference_time_enabled_) ||
!feedback_state.last_xr_rtis.empty() ||
send_video_bitrate_allocation_) {
SetFlag(kRtcpAnyExtendedReports, true);
}
SetNextRtcpSendEvaluationDuration(
ComputeTimeUntilNextReport(feedback_state.send_bitrate));
// RtcpSender expected to be used for sending either just sender reports
// or just receiver reports.
RTC_DCHECK(!(IsFlagPresent(kRtcpSr) && IsFlagPresent(kRtcpRr)));
}
}
std::vector<rtcp::ReportBlock> RTCPSender::CreateReportBlocks(
const FeedbackState& feedback_state) {
std::vector<rtcp::ReportBlock> result;
if (!receive_statistics_)
return result;
result = receive_statistics_->RtcpReportBlocks(RTCP_MAX_REPORT_BLOCKS);
if (!result.empty() && feedback_state.last_rr.Valid()) {
// Get our NTP as late as possible to avoid a race.
uint32_t now = CompactNtp(env_.clock().CurrentNtpTime());
uint32_t receive_time = CompactNtp(feedback_state.last_rr);
uint32_t delay_since_last_sr = now - receive_time;
for (auto& report_block : result) {
report_block.SetLastSr(feedback_state.remote_sr);
report_block.SetDelayLastSr(delay_since_last_sr);
}
}
return result;
}
void RTCPSender::SetCsrcs(const std::vector<uint32_t>& csrcs) {
RTC_DCHECK_LE(csrcs.size(), kRtpCsrcSize);
MutexLock lock(&mutex_rtcp_sender_);
csrcs_ = csrcs;
}
void RTCPSender::SetTmmbn(std::vector<rtcp::TmmbItem> bounding_set) {
MutexLock lock(&mutex_rtcp_sender_);
tmmbn_to_send_ = std::move(bounding_set);
SetFlag(kRtcpTmmbn, true);
}
void RTCPSender::SetFlag(uint32_t type, bool is_volatile) {
if (type & kRtcpAnyExtendedReports) {
report_flags_.insert(ReportFlag(kRtcpAnyExtendedReports, is_volatile));
} else {
report_flags_.insert(ReportFlag(type, is_volatile));
}
}
bool RTCPSender::IsFlagPresent(uint32_t type) const {
return report_flags_.find(ReportFlag(type, false)) != report_flags_.end();
}
bool RTCPSender::ConsumeFlag(uint32_t type, bool forced) {
auto it = report_flags_.find(ReportFlag(type, false));
if (it == report_flags_.end())
return false;
if (it->is_volatile || forced)
report_flags_.erase((it));
return true;
}
bool RTCPSender::AllVolatileFlagsConsumed() const {
for (const ReportFlag& flag : report_flags_) {
if (flag.is_volatile)
return false;
}
return true;
}
void RTCPSender::SetVideoBitrateAllocation(
const VideoBitrateAllocation& bitrate) {
MutexLock lock(&mutex_rtcp_sender_);
if (method_ == RtcpMode::kOff) {
RTC_LOG(LS_WARNING) << "Can't send RTCP if it is disabled.";
return;
}
// Check if this allocation is first ever, or has a different set of
// spatial/temporal layers signaled and enabled, if so trigger an rtcp report
// as soon as possible.
std::optional<VideoBitrateAllocation> new_bitrate =
CheckAndUpdateLayerStructure(bitrate);
if (new_bitrate) {
video_bitrate_allocation_ = *new_bitrate;
RTC_LOG(LS_INFO) << "Emitting TargetBitrate XR for SSRC " << ssrc_
<< " with new layers enabled/disabled: "
<< video_bitrate_allocation_.ToString();
SetNextRtcpSendEvaluationDuration(TimeDelta::Zero());
} else {
video_bitrate_allocation_ = bitrate;
}
send_video_bitrate_allocation_ = true;
SetFlag(kRtcpAnyExtendedReports, true);
}
std::optional<VideoBitrateAllocation> RTCPSender::CheckAndUpdateLayerStructure(
const VideoBitrateAllocation& bitrate) const {
std::optional<VideoBitrateAllocation> updated_bitrate;
for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
if (!updated_bitrate &&
(bitrate.HasBitrate(si, ti) !=
video_bitrate_allocation_.HasBitrate(si, ti) ||
(bitrate.GetBitrate(si, ti) == 0) !=
(video_bitrate_allocation_.GetBitrate(si, ti) == 0))) {
updated_bitrate = bitrate;
}
if (video_bitrate_allocation_.GetBitrate(si, ti) > 0 &&
bitrate.GetBitrate(si, ti) == 0) {
// Make sure this stream disabling is explicitly signaled.
updated_bitrate->SetBitrate(si, ti, 0);
}
}
}
return updated_bitrate;
}
void RTCPSender::SendCombinedRtcpPacket(
std::vector<std::unique_ptr<rtcp::RtcpPacket>> rtcp_packets) {
size_t max_packet_size;
uint32_t ssrc;
{
MutexLock lock(&mutex_rtcp_sender_);
if (method_ == RtcpMode::kOff) {
RTC_LOG(LS_WARNING) << "Can't send RTCP if it is disabled.";
return;
}
max_packet_size = max_packet_size_;
ssrc = ssrc_;
}
RTC_DCHECK_LE(max_packet_size, IP_PACKET_SIZE);
auto callback = [&](rtc::ArrayView<const uint8_t> packet) {
if (transport_->SendRtcp(packet)) {
env_.event_log().Log(
std::make_unique<RtcEventRtcpPacketOutgoing>(packet));
}
};
PacketSender sender(callback, max_packet_size);
for (auto& rtcp_packet : rtcp_packets) {
rtcp_packet->SetSenderSsrc(ssrc);
sender.AppendPacket(*rtcp_packet);
}
sender.Send();
}
void RTCPSender::SetNextRtcpSendEvaluationDuration(TimeDelta duration) {
next_time_to_send_rtcp_ = env_.clock().CurrentTime() + duration;
// TODO(bugs.webrtc.org/11581): make unconditional once downstream consumers
// are using the callback method.
if (schedule_next_rtcp_send_evaluation_function_)
schedule_next_rtcp_send_evaluation_function_(duration);
}
} // namespace webrtc