blob: 5355c5dd09b45213105d91c2c217f4f937901542 [file] [log] [blame]
/*
* Copyright (c) 2023 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/rtp_packetizer_h265.h"
#include <vector>
#include "common_video/h265/h265_common.h"
#include "modules/rtp_rtcp/mocks/mock_rtp_rtcp.h"
#include "modules/rtp_rtcp/source/byte_io.h"
#include "modules/rtp_rtcp/source/rtp_packet_h265_common.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
using ::testing::Each;
using ::testing::ElementsAre;
using ::testing::ElementsAreArray;
using ::testing::Eq;
using ::testing::IsEmpty;
using ::testing::SizeIs;
constexpr RtpPacketToSend::ExtensionManager* kNoExtensions = nullptr;
constexpr size_t kMaxPayloadSizeBytes = 1200;
constexpr size_t kH265LengthFieldSizeBytes = 2;
constexpr RtpPacketizer::PayloadSizeLimits kNoLimits;
constexpr size_t kFuHeaderSizeBytes =
kH265FuHeaderSizeBytes + kH265PayloadHeaderSizeBytes;
struct NalUnitHeader {
uint8_t forbidden_zero_bit = 0;
uint8_t nal_unit_type = 0;
uint8_t nuh_layer_id = 0;
uint8_t nuh_temporal_id_plus1 = 0;
};
// Creates Buffer that looks like nal unit of given header and size.
rtc::Buffer GenerateNalUnit(NalUnitHeader header, size_t size) {
RTC_CHECK_GT(size, 0);
rtc::Buffer buffer(size);
buffer[0] = (header.nal_unit_type << 1) | (header.nuh_layer_id >> 5);
buffer[1] = (header.nuh_layer_id << 3) | header.nuh_temporal_id_plus1;
for (size_t i = 2; i < size; ++i) {
buffer[i] = static_cast<uint8_t>(i);
}
// Last byte shouldn't be 0, or it may be counted as part of next 4-byte start
// sequence.
buffer[size - 1] |= 0x10;
return buffer;
}
// Create frame consisting of nalus of given size.
rtc::Buffer CreateFrame(std::initializer_list<size_t> nalu_sizes) {
static constexpr int kStartCodeSize = 3;
rtc::Buffer frame(absl::c_accumulate(nalu_sizes, size_t{0}) +
kStartCodeSize * nalu_sizes.size());
size_t offset = 0;
for (size_t nalu_size : nalu_sizes) {
EXPECT_GE(nalu_size, 1u);
// Insert nalu start code
frame[offset] = 0;
frame[offset + 1] = 0;
frame[offset + 2] = 1;
// Set some valid header.
frame[offset + 3] = 2;
// Fill payload avoiding accidental start codes
if (nalu_size > 1) {
memset(frame.data() + offset + 4, 0x3f, nalu_size - 1);
}
offset += (kStartCodeSize + nalu_size);
}
return frame;
}
// Create frame consisting of given nalus.
rtc::Buffer CreateFrame(rtc::ArrayView<const rtc::Buffer> nalus) {
static constexpr int kStartCodeSize = 3;
int frame_size = 0;
for (const rtc::Buffer& nalu : nalus) {
frame_size += (kStartCodeSize + nalu.size());
}
rtc::Buffer frame(frame_size);
size_t offset = 0;
for (const rtc::Buffer& nalu : nalus) {
// Insert nalu start code
frame[offset] = 0;
frame[offset + 1] = 0;
frame[offset + 2] = 1;
// Copy the nalu unit.
memcpy(frame.data() + offset + 3, nalu.data(), nalu.size());
offset += (kStartCodeSize + nalu.size());
}
return frame;
}
std::vector<RtpPacketToSend> FetchAllPackets(RtpPacketizerH265* packetizer) {
std::vector<RtpPacketToSend> result;
size_t num_packets = packetizer->NumPackets();
result.reserve(num_packets);
RtpPacketToSend packet(kNoExtensions);
while (packetizer->NextPacket(&packet)) {
result.push_back(packet);
}
EXPECT_THAT(result, SizeIs(num_packets));
return result;
}
// Single nalu tests.
TEST(RtpPacketizerH265Test, SingleNalu) {
const uint8_t frame[] = {0, 0, 1, H265::kIdrWRadl, 0xFF};
RtpPacketizerH265 packetizer(frame, kNoLimits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(1));
EXPECT_THAT(packets[0].payload(), ElementsAre(H265::kIdrWRadl, 0xFF));
}
TEST(RtpPacketizerH265Test, SingleNaluTwoPackets) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = kMaxPayloadSizeBytes;
rtc::Buffer nalus[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
kMaxPayloadSizeBytes),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
100)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(2));
EXPECT_THAT(packets[0].payload(), ElementsAreArray(nalus[0]));
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[1]));
}
TEST(RtpPacketizerH265Test,
SingleNaluFirstPacketReductionAppliesOnlyToFirstFragment) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 200;
limits.first_packet_reduction_len = 5;
rtc::Buffer nalus[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/195),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/200),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/200)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(3));
EXPECT_THAT(packets[0].payload(), ElementsAreArray(nalus[0]));
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[1]));
EXPECT_THAT(packets[2].payload(), ElementsAreArray(nalus[2]));
}
TEST(RtpPacketizerH265Test,
SingleNaluLastPacketReductionAppliesOnlyToLastFragment) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 200;
limits.last_packet_reduction_len = 5;
rtc::Buffer nalus[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/200),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/200),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/195)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(3));
EXPECT_THAT(packets[0].payload(), ElementsAreArray(nalus[0]));
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[1]));
EXPECT_THAT(packets[2].payload(), ElementsAreArray(nalus[2]));
}
TEST(RtpPacketizerH265Test,
SingleNaluFirstAndLastPacketReductionSumsForSinglePacket) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 200;
limits.first_packet_reduction_len = 20;
limits.last_packet_reduction_len = 30;
rtc::Buffer frame = CreateFrame({150});
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
EXPECT_THAT(packets, SizeIs(1));
}
// Aggregation tests.
TEST(RtpPacketizerH265Test, ApRespectsNoPacketReduction) {
rtc::Buffer nalus[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/0x123)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, kNoLimits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(1));
auto payload = packets[0].payload();
int type = H265::ParseNaluType(payload[0]);
EXPECT_EQ(payload.size(), kH265NalHeaderSizeBytes +
3 * kH265LengthFieldSizeBytes + 3 + 3 + 0x123);
EXPECT_EQ(type, H265::NaluType::kAp);
payload = payload.subview(kH265NalHeaderSizeBytes);
// 1st fragment.
EXPECT_THAT(payload.subview(0, kH265LengthFieldSizeBytes),
ElementsAre(0, 3)); // Size.
EXPECT_THAT(payload.subview(kH265LengthFieldSizeBytes, 3),
ElementsAreArray(nalus[0]));
payload = payload.subview(kH265LengthFieldSizeBytes + 3);
// 2nd fragment.
EXPECT_THAT(payload.subview(0, kH265LengthFieldSizeBytes),
ElementsAre(0, 3)); // Size.
EXPECT_THAT(payload.subview(kH265LengthFieldSizeBytes, 3),
ElementsAreArray(nalus[1]));
payload = payload.subview(kH265LengthFieldSizeBytes + 3);
// 3rd fragment.
EXPECT_THAT(payload.subview(0, kH265LengthFieldSizeBytes),
ElementsAre(0x1, 0x23)); // Size.
EXPECT_THAT(payload.subview(kH265LengthFieldSizeBytes),
ElementsAreArray(nalus[2]));
}
TEST(RtpPacketizerH265Test, ApRespectsLayerIdAndTemporalId) {
// Generate 3 NALUs: NALU 1 with nuh_layer_id 2 and nuh_temporal_id_plus1 6,
// NALU 2 with nuh_layer_id 0 and nuh_temporal_id_plus1 1,
// NALU 3 with nuh_layer_id 32 and nuh_temporal_id_plus1 2,
// So in the AP packet header, nuh_layer_id should be 0 which is the lowest
// nuh_layer_id value of 3 NALUs and nuh_temporal_id_plus1 should be 1 which
// is the lowest nuh_temporal_id_plus1 value of 3 NALUs
rtc::Buffer nalus[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 2,
.nuh_temporal_id_plus1 = 6},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 0,
.nuh_temporal_id_plus1 = 1},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/0x123)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, kNoLimits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(1));
auto payload = packets[0].payload();
uint8_t type = H265::ParseNaluType(payload[0]);
uint8_t layer_id = ((payload[0] & kH265LayerIDHMask) << 5) |
((payload[1] & kH265LayerIDLMask) >> 3);
uint8_t temporal_id = payload[1] & kH265TIDMask;
EXPECT_EQ(payload.size(), kH265NalHeaderSizeBytes +
3 * kH265LengthFieldSizeBytes + 3 + 3 + 0x123);
EXPECT_EQ(type, H265::NaluType::kAp);
EXPECT_EQ(layer_id, 0);
EXPECT_EQ(temporal_id, 1);
payload = payload.subview(kH265NalHeaderSizeBytes);
// 1st fragment.
EXPECT_THAT(payload.subview(0, kH265LengthFieldSizeBytes), ElementsAre(0, 3));
EXPECT_THAT(payload.subview(kH265LengthFieldSizeBytes, 3),
ElementsAreArray(nalus[0]));
payload = payload.subview(kH265LengthFieldSizeBytes + 3);
// 2nd fragment.
EXPECT_THAT(payload.subview(0, kH265LengthFieldSizeBytes), ElementsAre(0, 3));
EXPECT_THAT(payload.subview(kH265LengthFieldSizeBytes, 3),
ElementsAreArray(nalus[1]));
payload = payload.subview(kH265LengthFieldSizeBytes + 3);
// 3rd fragment.
EXPECT_THAT(payload.subview(0, kH265LengthFieldSizeBytes),
ElementsAre(0x1, 0x23));
EXPECT_THAT(payload.subview(kH265LengthFieldSizeBytes),
ElementsAreArray(nalus[2]));
}
TEST(RtpPacketizerH265Test, ApRespectsFirstPacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1000;
limits.first_packet_reduction_len = 100;
const size_t kFirstFragmentSize =
limits.max_payload_len - limits.first_packet_reduction_len;
rtc::Buffer nalus[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/kFirstFragmentSize),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/3)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(2));
// Expect 1st packet is single nalu.
EXPECT_THAT(packets[0].payload(), ElementsAreArray(nalus[0]));
// Expect 2nd packet is aggregate of last two fragments.
// The size of H265 nal_unit_header is 2 bytes, according to 7.3.1.2
// in H265 spec. Aggregation packet type is 48, nuh_layer_id is 32 and
// nuh_temporal_id_plus1 is 2, so the nal_unit_header should be "01100001
// 00000010", which is 97 and 2.
EXPECT_THAT(packets[1].payload(),
ElementsAre(97, 2, //
0, 3, nalus[1][0], nalus[1][1], nalus[1][2], //
0, 3, nalus[2][0], nalus[2][1], nalus[2][2]));
}
TEST(RtpPacketizerH265Test, ApRespectsLastPacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1000;
limits.last_packet_reduction_len = 100;
const size_t kLastFragmentSize =
limits.max_payload_len - limits.last_packet_reduction_len;
rtc::Buffer nalus[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/kLastFragmentSize)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(2));
// Expect 1st packet is aggregate of 1st two fragments.
EXPECT_THAT(packets[0].payload(),
ElementsAre(97, 2, //
0, 3, nalus[0][0], nalus[0][1], nalus[0][2], //
0, 3, nalus[1][0], nalus[1][1], nalus[1][2]));
// Expect 2nd packet is single nalu.
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[2]));
}
TEST(RtpPacketizerH265Test, TooSmallForApHeaders) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1000;
const size_t kLastFragmentSize =
limits.max_payload_len - 3 * kH265LengthFieldSizeBytes - 4;
rtc::Buffer nalus[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/3),
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
/*size=*/kLastFragmentSize)};
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(2));
// Expect 1st packet is aggregate of 1st two fragments.
EXPECT_THAT(packets[0].payload(),
ElementsAre(97, 2, //
0, 3, nalus[0][0], nalus[0][1], nalus[0][2], //
0, 3, nalus[1][0], nalus[1][1], nalus[1][2]));
// Expect 2nd packet is single nalu.
EXPECT_THAT(packets[1].payload(), ElementsAreArray(nalus[2]));
}
TEST(RtpPacketizerH265Test, LastFragmentFitsInSingleButNotLastPacket) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1178;
limits.first_packet_reduction_len = 0;
limits.last_packet_reduction_len = 20;
limits.single_packet_reduction_len = 20;
// Actual sizes, which triggered this bug.
rtc::Buffer frame = CreateFrame({20, 8, 18, 1161});
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
// Last packet has to be of correct size.
// Incorrect implementation might miss this constraint and not split the last
// fragment in two packets.
EXPECT_LE(static_cast<int>(packets.back().payload_size()),
limits.max_payload_len - limits.last_packet_reduction_len);
}
// Splits frame with payload size `frame_payload_size` without fragmentation,
// Returns sizes of the payloads excluding FU headers.
std::vector<int> TestFu(size_t frame_payload_size,
const RtpPacketizer::PayloadSizeLimits& limits) {
rtc::Buffer nalu[] = {
GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
kH265NalHeaderSizeBytes + frame_payload_size)};
rtc::Buffer frame = CreateFrame(nalu);
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
EXPECT_GE(packets.size(), 2u); // Single packet indicates it is not FU.
std::vector<uint16_t> fu_header;
std::vector<int> payload_sizes;
for (const RtpPacketToSend& packet : packets) {
auto payload = packet.payload();
EXPECT_GT(payload.size(), kFuHeaderSizeBytes);
// FU header is after the 2-bytes size PayloadHdr according to 4.4.3 in spec
fu_header.push_back(payload[2]);
payload_sizes.push_back(payload.size() - kFuHeaderSizeBytes);
}
EXPECT_TRUE(fu_header.front() & kH265SBitMask);
EXPECT_TRUE(fu_header.back() & kH265EBitMask);
// Clear S and E bits before testing all are duplicating same original header.
fu_header.front() &= ~kH265SBitMask;
fu_header.back() &= ~kH265EBitMask;
uint8_t nalu_type = (nalu[0][0] & kH265TypeMask) >> 1;
EXPECT_THAT(fu_header, Each(Eq(nalu_type)));
return payload_sizes;
}
// Fragmentation tests.
TEST(RtpPacketizerH265Test, FuOddSize) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
EXPECT_THAT(TestFu(1200, limits), ElementsAre(600, 600));
}
TEST(RtpPacketizerH265Test, FuWithFirstPacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
limits.first_packet_reduction_len = 4;
limits.single_packet_reduction_len = 4;
EXPECT_THAT(TestFu(1198, limits), ElementsAre(597, 601));
}
TEST(RtpPacketizerH265Test, FuWithLastPacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
limits.last_packet_reduction_len = 4;
limits.single_packet_reduction_len = 4;
EXPECT_THAT(TestFu(1198, limits), ElementsAre(601, 597));
}
TEST(RtpPacketizerH265Test, FuWithSinglePacketReduction) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1199;
limits.single_packet_reduction_len = 200;
EXPECT_THAT(TestFu(1000, limits), ElementsAre(500, 500));
}
TEST(RtpPacketizerH265Test, FuEvenSize) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
EXPECT_THAT(TestFu(1201, limits), ElementsAre(600, 601));
}
TEST(RtpPacketizerH265Test, FuRounding) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1448;
EXPECT_THAT(TestFu(10123, limits),
ElementsAre(1265, 1265, 1265, 1265, 1265, 1266, 1266, 1266));
}
TEST(RtpPacketizerH265Test, FuBig) {
RtpPacketizer::PayloadSizeLimits limits;
limits.max_payload_len = 1200;
// Generate 10 full sized packets, leave room for FU headers.
EXPECT_THAT(
TestFu(10 * (1200 - kFuHeaderSizeBytes), limits),
ElementsAre(1197, 1197, 1197, 1197, 1197, 1197, 1197, 1197, 1197, 1197));
}
struct PacketInfo {
bool first_fragment = false;
bool last_fragment = false;
bool aggregated = false;
int nalu_index = 0;
int nalu_number = 0;
int payload_size = 0;
int start_offset = 0;
};
struct MixedApFuTestParams {
std::vector<int> nalus;
int expect_packetsSize = 0;
std::vector<PacketInfo> expected_packets;
};
class RtpPacketizerH265ParametrizedTest
: public ::testing::TestWithParam<MixedApFuTestParams> {};
// Fragmentation + aggregation mixed testing.
TEST_P(RtpPacketizerH265ParametrizedTest, MixedApFu) {
RtpPacketizer::PayloadSizeLimits limits;
const MixedApFuTestParams params = GetParam();
limits.max_payload_len = 100;
std::vector<rtc::Buffer> nalus;
nalus.reserve(params.nalus.size());
// Generate nalus according to size specified in paramters
for (size_t index = 0; index < params.nalus.size(); index++) {
nalus.push_back(GenerateNalUnit({.nal_unit_type = H265::NaluType::kIdrNLp,
.nuh_layer_id = 32,
.nuh_temporal_id_plus1 = 2},
params.nalus[index]));
}
rtc::Buffer frame = CreateFrame(nalus);
RtpPacketizerH265 packetizer(frame, limits);
std::vector<RtpPacketToSend> packets = FetchAllPackets(&packetizer);
ASSERT_THAT(packets, SizeIs(params.expect_packetsSize));
for (int i = 0; i < params.expect_packetsSize; i++) {
PacketInfo expected_packet = params.expected_packets[i];
if (expected_packet.aggregated) {
int type = H265::ParseNaluType(packets[i].payload()[0]);
EXPECT_THAT(type, H265::NaluType::kAp);
auto payload = packets[i].payload().subview(kH265NalHeaderSizeBytes);
int offset = 0;
// Generated AP packet header and payload align
for (int j = expected_packet.nalu_index; j < expected_packet.nalu_number;
j++) {
EXPECT_THAT(payload.subview(0, kH265LengthFieldSizeBytes),
ElementsAre(0, nalus[j].size()));
EXPECT_THAT(payload.subview(offset + kH265LengthFieldSizeBytes,
nalus[j].size()),
ElementsAreArray(nalus[j]));
offset += kH265LengthFieldSizeBytes + nalus[j].size();
}
} else {
uint8_t fu_header = 0;
fu_header |= (expected_packet.first_fragment ? kH265SBitMask : 0);
fu_header |= (expected_packet.last_fragment ? kH265EBitMask : 0);
fu_header |= H265::NaluType::kIdrNLp;
EXPECT_THAT(packets[i].payload().subview(0, kFuHeaderSizeBytes),
ElementsAre(99, 2, fu_header));
EXPECT_THAT(packets[i].payload().subview(kFuHeaderSizeBytes),
ElementsAreArray(nalus[expected_packet.nalu_index].data() +
kH265NalHeaderSizeBytes +
expected_packet.start_offset,
expected_packet.payload_size));
}
}
}
INSTANTIATE_TEST_SUITE_P(
RtpPacketizerH265Test,
RtpPacketizerH265ParametrizedTest,
testing::Values(
// FU + AP + FU.
// GenerateNalUnit will include 2 bytes nalu header, for FU packet split
// calculation, this 2-byte nalu header length should be excluded.
MixedApFuTestParams{.nalus = {140, 20, 20, 160},
.expect_packetsSize = 5,
.expected_packets = {{.first_fragment = true,
.nalu_index = 0,
.payload_size = 69,
.start_offset = 0},
{.last_fragment = true,
.nalu_index = 0,
.payload_size = 69,
.start_offset = 69},
{.aggregated = true,
.nalu_index = 1,
.nalu_number = 2},
{.first_fragment = true,
.nalu_index = 3,
.payload_size = 79,
.start_offset = 0},
{.last_fragment = true,
.nalu_index = 3,
.payload_size = 79,
.start_offset = 79}}},
// AP + FU + AP
MixedApFuTestParams{
.nalus = {20, 20, 160, 30, 30},
.expect_packetsSize = 4,
.expected_packets = {
{.aggregated = true, .nalu_index = 0, .nalu_number = 2},
{.first_fragment = true,
.nalu_index = 2,
.payload_size = 79,
.start_offset = 0},
{.last_fragment = true,
.nalu_index = 2,
.payload_size = 79,
.start_offset = 79},
{.aggregated = true, .nalu_index = 3, .nalu_number = 2}}}));
} // namespace
} // namespace webrtc