blob: fb5fd27249c03f800c9199c4a07501318124710e [file] [log] [blame]
/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/rtp_rtcp/source/video_rtp_depacketizer_vp9.h"
#include <memory>
#include <vector>
#include "api/array_view.h"
#include "test/gmock.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
void VerifyHeader(const RTPVideoHeaderVP9& expected,
const RTPVideoHeaderVP9& actual) {
EXPECT_EQ(expected.inter_layer_predicted, actual.inter_layer_predicted);
EXPECT_EQ(expected.inter_pic_predicted, actual.inter_pic_predicted);
EXPECT_EQ(expected.flexible_mode, actual.flexible_mode);
EXPECT_EQ(expected.beginning_of_frame, actual.beginning_of_frame);
EXPECT_EQ(expected.end_of_frame, actual.end_of_frame);
EXPECT_EQ(expected.ss_data_available, actual.ss_data_available);
EXPECT_EQ(expected.non_ref_for_inter_layer_pred,
actual.non_ref_for_inter_layer_pred);
EXPECT_EQ(expected.picture_id, actual.picture_id);
EXPECT_EQ(expected.max_picture_id, actual.max_picture_id);
EXPECT_EQ(expected.temporal_idx, actual.temporal_idx);
EXPECT_EQ(expected.spatial_idx, actual.spatial_idx);
EXPECT_EQ(expected.gof_idx, actual.gof_idx);
EXPECT_EQ(expected.tl0_pic_idx, actual.tl0_pic_idx);
EXPECT_EQ(expected.temporal_up_switch, actual.temporal_up_switch);
EXPECT_EQ(expected.num_ref_pics, actual.num_ref_pics);
for (uint8_t i = 0; i < expected.num_ref_pics; ++i) {
EXPECT_EQ(expected.pid_diff[i], actual.pid_diff[i]);
EXPECT_EQ(expected.ref_picture_id[i], actual.ref_picture_id[i]);
}
if (expected.ss_data_available) {
EXPECT_EQ(expected.spatial_layer_resolution_present,
actual.spatial_layer_resolution_present);
EXPECT_EQ(expected.num_spatial_layers, actual.num_spatial_layers);
if (expected.spatial_layer_resolution_present) {
for (size_t i = 0; i < expected.num_spatial_layers; i++) {
EXPECT_EQ(expected.width[i], actual.width[i]);
EXPECT_EQ(expected.height[i], actual.height[i]);
}
}
EXPECT_EQ(expected.gof.num_frames_in_gof, actual.gof.num_frames_in_gof);
for (size_t i = 0; i < expected.gof.num_frames_in_gof; i++) {
EXPECT_EQ(expected.gof.temporal_up_switch[i],
actual.gof.temporal_up_switch[i]);
EXPECT_EQ(expected.gof.temporal_idx[i], actual.gof.temporal_idx[i]);
EXPECT_EQ(expected.gof.num_ref_pics[i], actual.gof.num_ref_pics[i]);
for (uint8_t j = 0; j < expected.gof.num_ref_pics[i]; j++) {
EXPECT_EQ(expected.gof.pid_diff[i][j], actual.gof.pid_diff[i][j]);
}
}
}
}
TEST(VideoRtpDepacketizerVp9Test, ParseBasicHeader) {
uint8_t packet[4] = {0};
packet[0] = 0x0C; // I:0 P:0 L:0 F:0 B:1 E:1 V:0 Z:0
RTPVideoHeader video_header;
int offset = VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(offset, 1);
RTPVideoHeaderVP9 expected;
expected.InitRTPVideoHeaderVP9();
expected.beginning_of_frame = true;
expected.end_of_frame = true;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
}
TEST(VideoRtpDepacketizerVp9Test, ParseOneBytePictureId) {
uint8_t packet[10] = {0};
packet[0] = 0x80; // I:1 P:0 L:0 F:0 B:0 E:0 V:0 Z:0
packet[1] = kMaxOneBytePictureId;
RTPVideoHeader video_header;
int offset = VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(offset, 2);
RTPVideoHeaderVP9 expected;
expected.InitRTPVideoHeaderVP9();
expected.picture_id = kMaxOneBytePictureId;
expected.max_picture_id = kMaxOneBytePictureId;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
}
TEST(VideoRtpDepacketizerVp9Test, ParseTwoBytePictureId) {
uint8_t packet[10] = {0};
packet[0] = 0x80; // I:1 P:0 L:0 F:0 B:0 E:0 V:0 Z:0
packet[1] = 0x80 | ((kMaxTwoBytePictureId >> 8) & 0x7F);
packet[2] = kMaxTwoBytePictureId & 0xFF;
RTPVideoHeader video_header;
int offset = VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(offset, 3);
RTPVideoHeaderVP9 expected;
expected.InitRTPVideoHeaderVP9();
expected.picture_id = kMaxTwoBytePictureId;
expected.max_picture_id = kMaxTwoBytePictureId;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
}
TEST(VideoRtpDepacketizerVp9Test, ParseLayerInfoWithNonFlexibleMode) {
const uint8_t kTemporalIdx = 2;
const uint8_t kUbit = 1;
const uint8_t kSpatialIdx = 1;
const uint8_t kDbit = 1;
const uint8_t kTl0PicIdx = 17;
uint8_t packet[13] = {0};
packet[0] = 0x20; // I:0 P:0 L:1 F:0 B:0 E:0 V:0 Z:0
packet[1] = (kTemporalIdx << 5) | (kUbit << 4) | (kSpatialIdx << 1) | kDbit;
packet[2] = kTl0PicIdx;
RTPVideoHeader video_header;
int offset = VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(offset, 3);
RTPVideoHeaderVP9 expected;
expected.InitRTPVideoHeaderVP9();
// T:2 U:1 S:1 D:1
// TL0PICIDX:17
expected.temporal_idx = kTemporalIdx;
expected.temporal_up_switch = kUbit ? true : false;
expected.spatial_idx = kSpatialIdx;
expected.inter_layer_predicted = kDbit ? true : false;
expected.tl0_pic_idx = kTl0PicIdx;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
}
TEST(VideoRtpDepacketizerVp9Test, ParseLayerInfoWithFlexibleMode) {
const uint8_t kTemporalIdx = 2;
const uint8_t kUbit = 1;
const uint8_t kSpatialIdx = 0;
const uint8_t kDbit = 0;
uint8_t packet[13] = {0};
packet[0] = 0x38; // I:0 P:0 L:1 F:1 B:1 E:0 V:0 Z:0
packet[1] = (kTemporalIdx << 5) | (kUbit << 4) | (kSpatialIdx << 1) | kDbit;
RTPVideoHeader video_header;
int offset = VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(offset, 2);
RTPVideoHeaderVP9 expected;
expected.InitRTPVideoHeaderVP9();
// I:0 P:0 L:1 F:1 B:1 E:0 V:0 Z:0
// L: T:2 U:1 S:0 D:0
expected.beginning_of_frame = true;
expected.flexible_mode = true;
expected.temporal_idx = kTemporalIdx;
expected.temporal_up_switch = kUbit ? true : false;
expected.spatial_idx = kSpatialIdx;
expected.inter_layer_predicted = kDbit ? true : false;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
}
TEST(VideoRtpDepacketizerVp9Test, ParseRefIdx) {
const int16_t kPictureId = 17;
const uint8_t kPdiff1 = 17;
const uint8_t kPdiff2 = 18;
const uint8_t kPdiff3 = 127;
uint8_t packet[13] = {0};
packet[0] = 0xD8; // I:1 P:1 L:0 F:1 B:1 E:0 V:0 Z:0
packet[1] = 0x80 | ((kPictureId >> 8) & 0x7F); // Two byte pictureID.
packet[2] = kPictureId;
packet[3] = (kPdiff1 << 1) | 1; // P_DIFF N:1
packet[4] = (kPdiff2 << 1) | 1; // P_DIFF N:1
packet[5] = (kPdiff3 << 1) | 0; // P_DIFF N:0
RTPVideoHeader video_header;
int offset = VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(offset, 6);
RTPVideoHeaderVP9 expected;
expected.InitRTPVideoHeaderVP9();
// I:1 P:1 L:0 F:1 B:1 E:0 V:0 Z:0
// I: PICTURE ID:17
// I:
// P,F: P_DIFF:17 N:1 => refPicId = 17 - 17 = 0
// P,F: P_DIFF:18 N:1 => refPicId = (kMaxPictureId + 1) + 17 - 18 = 0x7FFF
// P,F: P_DIFF:127 N:0 => refPicId = (kMaxPictureId + 1) + 17 - 127 = 32658
expected.beginning_of_frame = true;
expected.inter_pic_predicted = true;
expected.flexible_mode = true;
expected.picture_id = kPictureId;
expected.num_ref_pics = 3;
expected.pid_diff[0] = kPdiff1;
expected.pid_diff[1] = kPdiff2;
expected.pid_diff[2] = kPdiff3;
expected.ref_picture_id[0] = 0;
expected.ref_picture_id[1] = 0x7FFF;
expected.ref_picture_id[2] = 32658;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
}
TEST(VideoRtpDepacketizerVp9Test, ParseRefIdxFailsWithNoPictureId) {
const uint8_t kPdiff = 3;
uint8_t packet[13] = {0};
packet[0] = 0x58; // I:0 P:1 L:0 F:1 B:1 E:0 V:0 Z:0
packet[1] = (kPdiff << 1); // P,F: P_DIFF:3 N:0
RTPVideoHeader video_header;
EXPECT_EQ(VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header), 0);
}
TEST(VideoRtpDepacketizerVp9Test, ParseRefIdxFailsWithTooManyRefPics) {
const uint8_t kPdiff = 3;
uint8_t packet[13] = {0};
packet[0] = 0xD8; // I:1 P:1 L:0 F:1 B:1 E:0 V:0 Z:0
packet[1] = kMaxOneBytePictureId; // I: PICTURE ID:127
packet[2] = (kPdiff << 1) | 1; // P,F: P_DIFF:3 N:1
packet[3] = (kPdiff << 1) | 1; // P,F: P_DIFF:3 N:1
packet[4] = (kPdiff << 1) | 1; // P,F: P_DIFF:3 N:1
packet[5] = (kPdiff << 1) | 0; // P,F: P_DIFF:3 N:0
RTPVideoHeader video_header;
EXPECT_EQ(VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header), 0);
}
TEST(VideoRtpDepacketizerVp9Test, ParseSsData) {
const uint8_t kYbit = 0;
const size_t kNs = 2;
const size_t kNg = 2;
uint8_t packet[23] = {0};
packet[0] = 0x0A; // I:0 P:0 L:0 F:0 B:1 E:0 V:1 Z:0
packet[1] = ((kNs - 1) << 5) | (kYbit << 4) | (1 << 3); // N_S Y G:1 -
packet[2] = kNg; // N_G
packet[3] = (0 << 5) | (1 << 4) | (0 << 2) | 0; // T:0 U:1 R:0 -
packet[4] = (2 << 5) | (0 << 4) | (1 << 2) | 0; // T:2 U:0 R:1 -
packet[5] = 33;
RTPVideoHeader video_header;
int offset = VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(offset, 6);
RTPVideoHeaderVP9 expected;
expected.InitRTPVideoHeaderVP9();
expected.beginning_of_frame = true;
expected.ss_data_available = true;
expected.num_spatial_layers = kNs;
expected.spatial_layer_resolution_present = kYbit ? true : false;
expected.gof.num_frames_in_gof = kNg;
expected.gof.temporal_idx[0] = 0;
expected.gof.temporal_idx[1] = 2;
expected.gof.temporal_up_switch[0] = true;
expected.gof.temporal_up_switch[1] = false;
expected.gof.num_ref_pics[0] = 0;
expected.gof.num_ref_pics[1] = 1;
expected.gof.pid_diff[1][0] = 33;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
}
TEST(VideoRtpDepacketizerVp9Test, ParseFirstPacketInKeyFrame) {
uint8_t packet[2] = {0};
packet[0] = 0x08; // I:0 P:0 L:0 F:0 B:1 E:0 V:0 Z:0
RTPVideoHeader video_header;
VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(video_header.frame_type, VideoFrameType::kVideoFrameKey);
EXPECT_TRUE(video_header.is_first_packet_in_frame);
EXPECT_FALSE(video_header.is_last_packet_in_frame);
}
TEST(VideoRtpDepacketizerVp9Test, ParseLastPacketInDeltaFrame) {
uint8_t packet[2] = {0};
packet[0] = 0x44; // I:0 P:1 L:0 F:0 B:0 E:1 V:0 Z:0
RTPVideoHeader video_header;
VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(video_header.frame_type, VideoFrameType::kVideoFrameDelta);
EXPECT_FALSE(video_header.is_first_packet_in_frame);
EXPECT_TRUE(video_header.is_last_packet_in_frame);
}
TEST(VideoRtpDepacketizerVp9Test, ParseResolution) {
const uint16_t kWidth[2] = {640, 1280};
const uint16_t kHeight[2] = {360, 720};
uint8_t packet[20] = {0};
packet[0] = 0x0A; // I:0 P:0 L:0 F:0 B:1 E:0 V:1 Z:0
packet[1] = (1 << 5) | (1 << 4) | 0; // N_S:1 Y:1 G:0
packet[2] = kWidth[0] >> 8;
packet[3] = kWidth[0] & 0xFF;
packet[4] = kHeight[0] >> 8;
packet[5] = kHeight[0] & 0xFF;
packet[6] = kWidth[1] >> 8;
packet[7] = kWidth[1] & 0xFF;
packet[8] = kHeight[1] >> 8;
packet[9] = kHeight[1] & 0xFF;
RTPVideoHeader video_header;
VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(video_header.width, kWidth[0]);
EXPECT_EQ(video_header.height, kHeight[0]);
}
TEST(VideoRtpDepacketizerVp9Test, ParseFailsForNoPayloadLength) {
rtc::ArrayView<const uint8_t> empty;
RTPVideoHeader video_header;
EXPECT_EQ(VideoRtpDepacketizerVp9::ParseRtpPayload(empty, &video_header), 0);
}
TEST(VideoRtpDepacketizerVp9Test, ParseFailsForTooShortBufferToFitPayload) {
uint8_t packet[] = {0};
RTPVideoHeader video_header;
EXPECT_EQ(VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header), 0);
}
TEST(VideoRtpDepacketizerVp9Test, ParseNonRefForInterLayerPred) {
RTPVideoHeader video_header;
RTPVideoHeaderVP9 expected;
expected.InitRTPVideoHeaderVP9();
uint8_t packet[2] = {0};
packet[0] = 0x08; // I:0 P:0 L:0 F:0 B:1 E:0 V:0 Z:0
VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
expected.beginning_of_frame = true;
expected.non_ref_for_inter_layer_pred = false;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
packet[0] = 0x05; // I:0 P:0 L:0 F:0 B:0 E:1 V:0 Z:1
VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
expected.beginning_of_frame = false;
expected.end_of_frame = true;
expected.non_ref_for_inter_layer_pred = true;
VerifyHeader(expected,
absl::get<RTPVideoHeaderVP9>(video_header.video_type_header));
}
TEST(VideoRtpDepacketizerVp9Test, ReferencesInputCopyOnWriteBuffer) {
constexpr size_t kHeaderSize = 1;
uint8_t packet[4] = {0};
packet[0] = 0x0C; // I:0 P:0 L:0 F:0 B:1 E:1 V:0 Z:0
rtc::CopyOnWriteBuffer rtp_payload(packet);
VideoRtpDepacketizerVp9 depacketizer;
std::optional<VideoRtpDepacketizer::ParsedRtpPayload> parsed =
depacketizer.Parse(rtp_payload);
ASSERT_TRUE(parsed);
EXPECT_EQ(parsed->video_payload.size(), rtp_payload.size() - kHeaderSize);
// Compare pointers to check there was no copy on write buffer unsharing.
EXPECT_EQ(parsed->video_payload.cdata(), rtp_payload.cdata() + kHeaderSize);
}
TEST(VideoRtpDepacketizerVp9Test, InterLayerPredOnlyFrameMerkedAsDelta) {
// Set P=0 and D=1 and vefify that the depaketizers marks this packet as a
// part of a delta frame (not a keyframe).
uint8_t packet[13] = {0};
packet[0] = 0b0010'0000; // I:0 P:0 L:1 F:0 B:0 E:0 V:0 Z:0
packet[1] = 0b0000'0001; // T:000 U:0 S:000 D:1
packet[2] = 0; // TL0PICIDX
RTPVideoHeader video_header;
VideoRtpDepacketizerVp9::ParseRtpPayload(packet, &video_header);
EXPECT_EQ(video_header.frame_type, VideoFrameType::kVideoFrameDelta);
}
} // namespace
} // namespace webrtc