blob: 93453c328500d7c60afb0bbff33e97fffeedf26b [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/string_encode.h"
#include <string.h>
#include "api/array_view.h"
#include "rtc_base/strings/string_format.h"
#include "test/gtest.h"
namespace rtc {
class HexEncodeTest : public ::testing::Test {
public:
HexEncodeTest() : dec_res_(0) {
for (size_t i = 0; i < sizeof(data_); ++i) {
data_[i] = (i + 128) & 0xff;
}
memset(decoded_, 0x7f, sizeof(decoded_));
}
char data_[10];
absl::string_view data_view_{data_, sizeof(data_)};
char decoded_[11];
size_t dec_res_;
};
// Test that we can convert to/from hex with no delimiter.
TEST_F(HexEncodeTest, TestWithNoDelimiter) {
std::string encoded = hex_encode(data_view_);
EXPECT_EQ("80818283848586878889", encoded);
dec_res_ = hex_decode(ArrayView<char>(decoded_), encoded);
ASSERT_EQ(sizeof(data_), dec_res_);
ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_));
}
// Test that we can convert to/from hex with a colon delimiter.
TEST_F(HexEncodeTest, TestWithDelimiter) {
std::string encoded = hex_encode_with_delimiter(data_view_, ':');
EXPECT_EQ("80:81:82:83:84:85:86:87:88:89", encoded);
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_), encoded, ':');
ASSERT_EQ(sizeof(data_), dec_res_);
ASSERT_EQ(0, memcmp(data_, decoded_, dec_res_));
}
// Test that encoding with one delimiter and decoding with another fails.
TEST_F(HexEncodeTest, TestWithWrongDelimiter) {
std::string encoded = hex_encode_with_delimiter(data_view_, ':');
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_), encoded, '/');
ASSERT_EQ(0U, dec_res_);
}
// Test that encoding without a delimiter and decoding with one fails.
TEST_F(HexEncodeTest, TestExpectedDelimiter) {
std::string encoded = hex_encode(data_view_);
EXPECT_EQ(sizeof(data_) * 2, encoded.size());
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_), encoded, ':');
ASSERT_EQ(0U, dec_res_);
}
// Test that encoding with a delimiter and decoding without one fails.
TEST_F(HexEncodeTest, TestExpectedNoDelimiter) {
std::string encoded = hex_encode_with_delimiter(data_view_, ':');
EXPECT_EQ(sizeof(data_) * 3 - 1, encoded.size());
dec_res_ = hex_decode(ArrayView<char>(decoded_), encoded);
ASSERT_EQ(0U, dec_res_);
}
// Test that we handle a zero-length buffer with no delimiter.
TEST_F(HexEncodeTest, TestZeroLengthNoDelimiter) {
std::string encoded = hex_encode("");
EXPECT_TRUE(encoded.empty());
dec_res_ = hex_decode(ArrayView<char>(decoded_), encoded);
ASSERT_EQ(0U, dec_res_);
}
// Test that we handle a zero-length buffer with a delimiter.
TEST_F(HexEncodeTest, TestZeroLengthWithDelimiter) {
std::string encoded = hex_encode_with_delimiter("", ':');
EXPECT_TRUE(encoded.empty());
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_), encoded, ':');
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding into a too-small output buffer fails.
TEST_F(HexEncodeTest, TestDecodeTooShort) {
dec_res_ =
hex_decode_with_delimiter(ArrayView<char>(decoded_, 4), "0123456789", 0);
ASSERT_EQ(0U, dec_res_);
ASSERT_EQ(0x7f, decoded_[4]);
}
// Test that decoding non-hex data fails.
TEST_F(HexEncodeTest, TestDecodeBogusData) {
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_), "axyz", 0);
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding an odd number of hex characters fails.
TEST_F(HexEncodeTest, TestDecodeOddHexDigits) {
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_), "012", 0);
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding a string with too many delimiters fails.
TEST_F(HexEncodeTest, TestDecodeWithDelimiterTooManyDelimiters) {
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_, 4),
"01::23::45::67", ':');
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding a string with a leading delimiter fails.
TEST_F(HexEncodeTest, TestDecodeWithDelimiterLeadingDelimiter) {
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_, 4),
":01:23:45:67", ':');
ASSERT_EQ(0U, dec_res_);
}
// Test that decoding a string with a trailing delimiter fails.
TEST_F(HexEncodeTest, TestDecodeWithDelimiterTrailingDelimiter) {
dec_res_ = hex_decode_with_delimiter(ArrayView<char>(decoded_, 4),
"01:23:45:67:", ':');
ASSERT_EQ(0U, dec_res_);
}
// Tests counting substrings.
TEST(TokenizeTest, CountSubstrings) {
std::vector<std::string> fields;
EXPECT_EQ(5ul, tokenize("one two three four five", ' ', &fields));
fields.clear();
EXPECT_EQ(1ul, tokenize("one", ' ', &fields));
// Extra spaces should be ignored.
fields.clear();
EXPECT_EQ(5ul, tokenize(" one two three four five ", ' ', &fields));
fields.clear();
EXPECT_EQ(1ul, tokenize(" one ", ' ', &fields));
fields.clear();
EXPECT_EQ(0ul, tokenize(" ", ' ', &fields));
}
// Tests comparing substrings.
TEST(TokenizeTest, CompareSubstrings) {
std::vector<std::string> fields;
tokenize("find middle one", ' ', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("middle", fields.at(1).c_str());
fields.clear();
// Extra spaces should be ignored.
tokenize(" find middle one ", ' ', &fields);
ASSERT_EQ(3ul, fields.size());
ASSERT_STREQ("middle", fields.at(1).c_str());
fields.clear();
tokenize(" ", ' ', &fields);
ASSERT_EQ(0ul, fields.size());
}
TEST(TokenizeFirstTest, NoLeadingSpaces) {
std::string token;
std::string rest;
ASSERT_TRUE(tokenize_first("A &*${}", ' ', &token, &rest));
ASSERT_STREQ("A", token.c_str());
ASSERT_STREQ("&*${}", rest.c_str());
ASSERT_TRUE(tokenize_first("A B& *${}", ' ', &token, &rest));
ASSERT_STREQ("A", token.c_str());
ASSERT_STREQ("B& *${}", rest.c_str());
ASSERT_TRUE(tokenize_first("A B& *${} ", ' ', &token, &rest));
ASSERT_STREQ("A", token.c_str());
ASSERT_STREQ("B& *${} ", rest.c_str());
}
TEST(TokenizeFirstTest, LeadingSpaces) {
std::string token;
std::string rest;
ASSERT_TRUE(tokenize_first(" A B C", ' ', &token, &rest));
ASSERT_STREQ("", token.c_str());
ASSERT_STREQ("A B C", rest.c_str());
ASSERT_TRUE(tokenize_first(" A B C ", ' ', &token, &rest));
ASSERT_STREQ("", token.c_str());
ASSERT_STREQ("A B C ", rest.c_str());
}
TEST(TokenizeFirstTest, SingleToken) {
std::string token;
std::string rest;
// In the case where we cannot find delimiter the whole string is a token.
ASSERT_FALSE(tokenize_first("ABC", ' ', &token, &rest));
ASSERT_TRUE(tokenize_first("ABC ", ' ', &token, &rest));
ASSERT_STREQ("ABC", token.c_str());
ASSERT_STREQ("", rest.c_str());
ASSERT_TRUE(tokenize_first(" ABC ", ' ', &token, &rest));
ASSERT_STREQ("", token.c_str());
ASSERT_STREQ("ABC ", rest.c_str());
}
// Tests counting substrings.
TEST(SplitTest, CountSubstrings) {
EXPECT_EQ(5ul, split("one,two,three,four,five", ',').size());
EXPECT_EQ(1ul, split("one", ',').size());
// Empty fields between commas count.
EXPECT_EQ(5ul, split("one,,three,four,five", ',').size());
EXPECT_EQ(3ul, split(",three,", ',').size());
EXPECT_EQ(1ul, split("", ',').size());
}
// Tests comparing substrings.
TEST(SplitTest, CompareSubstrings) {
std::vector<absl::string_view> fields = split("find,middle,one", ',');
ASSERT_EQ(3ul, fields.size());
ASSERT_EQ("middle", fields.at(1));
// Empty fields between commas count.
fields = split("find,,middle,one", ',');
ASSERT_EQ(4ul, fields.size());
ASSERT_EQ("middle", fields.at(2));
fields = split("", ',');
ASSERT_EQ(1ul, fields.size());
ASSERT_EQ("", fields.at(0));
}
TEST(SplitTest, EmptyTokens) {
std::vector<absl::string_view> fields = split("a.b.c", '.');
ASSERT_EQ(3ul, fields.size());
EXPECT_EQ("a", fields[0]);
EXPECT_EQ("b", fields[1]);
EXPECT_EQ("c", fields[2]);
fields = split("..c", '.');
ASSERT_EQ(3ul, fields.size());
EXPECT_TRUE(fields[0].empty());
EXPECT_TRUE(fields[1].empty());
EXPECT_EQ("c", fields[2]);
fields = split("", '.');
ASSERT_EQ(1ul, fields.size());
EXPECT_TRUE(fields[0].empty());
}
TEST(ToString, SanityCheck) {
EXPECT_EQ(ToString(true), "true");
EXPECT_EQ(ToString(false), "false");
const char* c = "message";
EXPECT_EQ(ToString(c), c);
EXPECT_EQ(ToString(std::string(c)), c);
char nonconst_c[] = "message";
EXPECT_EQ(ToString(nonconst_c), c);
EXPECT_EQ(ToString(&nonconst_c[0]), c);
EXPECT_EQ(ToString(short{-123}), "-123");
EXPECT_EQ(ToString((unsigned short)123), "123");
EXPECT_EQ(ToString(int{-123}), "-123");
EXPECT_EQ(ToString((unsigned int)123), "123");
EXPECT_EQ(ToString((long int)-123), "-123");
EXPECT_EQ(ToString((unsigned long int)123), "123");
EXPECT_EQ(ToString((long long int)-123), "-123");
EXPECT_EQ(ToString((unsigned long long int)123), "123");
EXPECT_EQ(ToString(0.5), "0.5");
int i = 10;
EXPECT_EQ(StringFormat("%p", &i), ToString(&i));
}
template <typename T>
void ParsesTo(std::string s, T t) {
T value;
EXPECT_TRUE(FromString(s, &value));
EXPECT_EQ(value, t);
}
TEST(FromString, DecodeValid) {
ParsesTo("true", true);
ParsesTo("false", false);
ParsesTo("105", 105);
ParsesTo("0.25", 0.25);
}
template <typename T>
void FailsToParse(std::string s) {
T value;
EXPECT_FALSE(FromString(s, &value)) << "[" << s << "]";
}
TEST(FromString, DecodeInvalid) {
FailsToParse<bool>("True");
FailsToParse<bool>("0");
FailsToParse<bool>("yes");
FailsToParse<int>("0.5");
FailsToParse<int>("XIV");
FailsToParse<double>("");
FailsToParse<double>(" ");
FailsToParse<int>("1 2");
}
template <typename T>
void RoundTrip(T t) {
std::string s = ToString(t);
T value;
EXPECT_TRUE(FromString(s, &value));
EXPECT_EQ(value, t);
}
TEST(FromString, RoundTrip) {
RoundTrip<int>(123);
RoundTrip(false);
RoundTrip(true);
RoundTrip(0.5);
RoundTrip(-15l);
}
} // namespace rtc