blob: 88c0d43bedfe8e3864f4a1c34611d1c02e5d0a6d [file] [log] [blame]
/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdint.h>
#include <cstddef>
#include <memory>
#include <string>
#include <vector>
#include "absl/algorithm/container.h"
#include "absl/base/macros.h"
#include "absl/container/inlined_vector.h"
#include "absl/strings/string_view.h"
#include "api/array_view.h"
#include "api/environment/environment_factory.h"
#include "api/field_trials_view.h"
#include "api/video/encoded_image.h"
#include "api/video/i420_buffer.h"
#include "api/video/video_bitrate_allocation.h"
#include "api/video/video_codec_type.h"
#include "api/video/video_frame.h"
#include "api/video/video_frame_type.h"
#include "api/video_codecs/spatial_layer.h"
#include "api/video_codecs/video_codec.h"
#include "api/video_codecs/video_encoder.h"
#include "common_video/generic_frame_descriptor/generic_frame_info.h"
#include "modules/video_coding/codecs/interface/common_constants.h"
#include "modules/video_coding/codecs/interface/libvpx_interface.h"
#include "modules/video_coding/codecs/vp9/include/vp9_globals.h"
#include "modules/video_coding/codecs/vp9/libvpx_vp9_encoder.h"
#include "modules/video_coding/frame_dependencies_calculator.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "modules/video_coding/include/video_error_codes.h"
#include "rtc_base/checks.h"
#include "test/fuzzers/fuzz_data_helper.h"
// Fuzzer simulates various svc configurations and libvpx encoder dropping
// layer frames.
// Validates vp9 encoder wrapper produces consistent frame references.
namespace webrtc {
namespace {
using test::FuzzDataHelper;
constexpr int kBitrateEnabledBps = 100'000;
class FrameValidator : public EncodedImageCallback {
public:
~FrameValidator() override = default;
Result OnEncodedImage(const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_specific_info) override {
RTC_CHECK(codec_specific_info);
RTC_CHECK_EQ(codec_specific_info->codecType, kVideoCodecVP9);
if (codec_specific_info->codecSpecific.VP9.first_frame_in_picture) {
++picture_id_;
}
int64_t frame_id = frame_id_++;
LayerFrame& layer_frame = frames_[frame_id % kMaxFrameHistorySize];
layer_frame.picture_id = picture_id_;
layer_frame.spatial_id = encoded_image.SpatialIndex().value_or(0);
layer_frame.frame_id = frame_id;
layer_frame.temporal_id =
codec_specific_info->codecSpecific.VP9.temporal_idx;
if (layer_frame.temporal_id == kNoTemporalIdx) {
layer_frame.temporal_id = 0;
}
layer_frame.vp9_non_ref_for_inter_layer_pred =
codec_specific_info->codecSpecific.VP9.non_ref_for_inter_layer_pred;
CheckVp9References(layer_frame, codec_specific_info->codecSpecific.VP9);
if (codec_specific_info->generic_frame_info.has_value()) {
absl::InlinedVector<int64_t, 5> frame_dependencies =
dependencies_calculator_.FromBuffersUsage(
frame_id,
codec_specific_info->generic_frame_info->encoder_buffers);
CheckGenericReferences(frame_dependencies,
*codec_specific_info->generic_frame_info);
CheckGenericAndCodecSpecificReferencesAreConsistent(
frame_dependencies, *codec_specific_info, layer_frame);
}
return Result(Result::OK);
}
private:
// With 4 spatial layers and patterns up to 8 pictures, it should be enough to
// keep the last 32 frames to validate dependencies.
static constexpr size_t kMaxFrameHistorySize = 32;
struct LayerFrame {
int64_t frame_id;
int64_t picture_id;
int spatial_id;
int temporal_id;
bool vp9_non_ref_for_inter_layer_pred;
};
void CheckVp9References(const LayerFrame& layer_frame,
const CodecSpecificInfoVP9& vp9_info) {
if (layer_frame.frame_id == 0) {
RTC_CHECK(!vp9_info.inter_layer_predicted);
} else {
const LayerFrame& previous_frame = Frame(layer_frame.frame_id - 1);
if (vp9_info.inter_layer_predicted) {
RTC_CHECK(!previous_frame.vp9_non_ref_for_inter_layer_pred);
RTC_CHECK_EQ(layer_frame.picture_id, previous_frame.picture_id);
}
if (previous_frame.picture_id == layer_frame.picture_id) {
RTC_CHECK_GT(layer_frame.spatial_id, previous_frame.spatial_id);
// The check below would fail for temporal shift structures. Remove it
// or move it to !flexible_mode section when vp9 encoder starts
// supporting such structures.
RTC_CHECK_EQ(layer_frame.temporal_id, previous_frame.temporal_id);
}
}
if (!vp9_info.flexible_mode) {
if (vp9_info.gof.num_frames_in_gof > 0) {
gof_.CopyGofInfoVP9(vp9_info.gof);
}
RTC_CHECK_EQ(gof_.temporal_idx[vp9_info.gof_idx],
layer_frame.temporal_id);
}
}
void CheckGenericReferences(rtc::ArrayView<const int64_t> frame_dependencies,
const GenericFrameInfo& generic_info) const {
for (int64_t dependency_frame_id : frame_dependencies) {
RTC_CHECK_GE(dependency_frame_id, 0);
const LayerFrame& dependency = Frame(dependency_frame_id);
RTC_CHECK_GE(generic_info.spatial_id, dependency.spatial_id);
RTC_CHECK_GE(generic_info.temporal_id, dependency.temporal_id);
}
}
void CheckGenericAndCodecSpecificReferencesAreConsistent(
rtc::ArrayView<const int64_t> frame_dependencies,
const CodecSpecificInfo& info,
const LayerFrame& layer_frame) const {
const CodecSpecificInfoVP9& vp9_info = info.codecSpecific.VP9;
const GenericFrameInfo& generic_info = *info.generic_frame_info;
RTC_CHECK_EQ(generic_info.spatial_id, layer_frame.spatial_id);
RTC_CHECK_EQ(generic_info.temporal_id, layer_frame.temporal_id);
auto picture_id_diffs =
rtc::MakeArrayView(vp9_info.p_diff, vp9_info.num_ref_pics);
RTC_CHECK_EQ(
frame_dependencies.size(),
picture_id_diffs.size() + (vp9_info.inter_layer_predicted ? 1 : 0));
for (int64_t dependency_frame_id : frame_dependencies) {
RTC_CHECK_GE(dependency_frame_id, 0);
const LayerFrame& dependency = Frame(dependency_frame_id);
if (dependency.spatial_id != layer_frame.spatial_id) {
RTC_CHECK(vp9_info.inter_layer_predicted);
RTC_CHECK_EQ(layer_frame.picture_id, dependency.picture_id);
RTC_CHECK_GT(layer_frame.spatial_id, dependency.spatial_id);
} else {
RTC_CHECK(vp9_info.inter_pic_predicted);
RTC_CHECK_EQ(layer_frame.spatial_id, dependency.spatial_id);
RTC_CHECK(absl::c_linear_search(
picture_id_diffs, layer_frame.picture_id - dependency.picture_id));
}
}
}
const LayerFrame& Frame(int64_t frame_id) const {
auto& frame = frames_[frame_id % kMaxFrameHistorySize];
RTC_CHECK_EQ(frame.frame_id, frame_id);
return frame;
}
GofInfoVP9 gof_;
int64_t frame_id_ = 0;
int64_t picture_id_ = 1;
FrameDependenciesCalculator dependencies_calculator_;
LayerFrame frames_[kMaxFrameHistorySize];
};
class FieldTrials : public FieldTrialsView {
public:
explicit FieldTrials(FuzzDataHelper& config)
: flags_(config.ReadOrDefaultValue<uint8_t>(0)) {}
~FieldTrials() override = default;
std::string Lookup(absl::string_view key) const override {
static constexpr absl::string_view kBinaryFieldTrials[] = {
"WebRTC-Vp9ExternalRefCtrl",
"WebRTC-Vp9IssueKeyFrameOnLayerDeactivation",
};
for (size_t i = 0; i < ABSL_ARRAYSIZE(kBinaryFieldTrials); ++i) {
if (key == kBinaryFieldTrials[i]) {
return (flags_ & (1u << i)) ? "Enabled" : "Disabled";
}
}
// Ignore following field trials.
if (key == "WebRTC-CongestionWindow" ||
key == "WebRTC-UseBaseHeavyVP8TL3RateAllocation" ||
key == "WebRTC-VideoRateControl" ||
key == "WebRTC-GetEncoderInfoOverride" ||
key == "WebRTC-VP9-GetEncoderInfoOverride" ||
key == "WebRTC-VP9-PerformanceFlags" ||
key == "WebRTC-VP9QualityScaler" ||
key == "WebRTC-VP9-SvcForSimulcast" ||
key == "WebRTC-StableTargetRate") {
return "";
}
// TODO: bugs.webrtc.org/15827 - Fuzz frame drop config.
if (key == "WebRTC-LibvpxVp9Encoder-SvcFrameDropConfig") {
return "";
}
// Crash when using unexpected field trial to decide if it should be fuzzed
// or have a constant value.
RTC_CHECK(false) << "Unfuzzed field trial " << key << "\n";
}
private:
const uint8_t flags_;
};
VideoCodec CodecSettings(FuzzDataHelper& rng) {
uint16_t config = rng.ReadOrDefaultValue<uint16_t>(0);
// Test up to to 4 spatial and 4 temporal layers.
int num_spatial_layers = 1 + (config & 0b11);
int num_temporal_layers = 1 + ((config >> 2) & 0b11);
VideoCodec codec_settings = {};
codec_settings.codecType = kVideoCodecVP9;
codec_settings.maxFramerate = 30;
codec_settings.width = 320 << (num_spatial_layers - 1);
codec_settings.height = 180 << (num_spatial_layers - 1);
if (num_spatial_layers > 1) {
for (int sid = 0; sid < num_spatial_layers; ++sid) {
SpatialLayer& spatial_layer = codec_settings.spatialLayers[sid];
codec_settings.width = 320 << sid;
codec_settings.height = 180 << sid;
spatial_layer.width = codec_settings.width;
spatial_layer.height = codec_settings.height;
spatial_layer.targetBitrate = kBitrateEnabledBps * num_temporal_layers;
spatial_layer.maxFramerate = codec_settings.maxFramerate;
spatial_layer.numberOfTemporalLayers = num_temporal_layers;
}
}
codec_settings.VP9()->numberOfSpatialLayers = num_spatial_layers;
codec_settings.VP9()->numberOfTemporalLayers = num_temporal_layers;
int inter_layer_pred = (config >> 4) & 0b11;
// There are only 3 valid values.
codec_settings.VP9()->interLayerPred = static_cast<InterLayerPredMode>(
inter_layer_pred < 3 ? inter_layer_pred : 0);
codec_settings.VP9()->flexibleMode = (config & (1u << 6)) != 0;
codec_settings.SetFrameDropEnabled((config & (1u << 7)) != 0);
codec_settings.mode = VideoCodecMode::kRealtimeVideo;
return codec_settings;
}
VideoEncoder::Settings EncoderSettings() {
return VideoEncoder::Settings(VideoEncoder::Capabilities(false),
/*number_of_cores=*/1,
/*max_payload_size=*/0);
}
bool IsSupported(int num_spatial_layers,
int num_temporal_layers,
const VideoBitrateAllocation& allocation) {
// VP9 encoder doesn't support certain configurations.
// BitrateAllocator shouldn't produce them.
if (allocation.get_sum_bps() == 0) {
// Ignore allocation that turns off all the layers.
// In such a case it is up to upper layer code not to call Encode.
return false;
}
for (int tid = 0; tid < num_temporal_layers; ++tid) {
int min_enabled_spatial_id = -1;
int max_enabled_spatial_id = -1;
int num_enabled_spatial_layers = 0;
for (int sid = 0; sid < num_spatial_layers; ++sid) {
if (allocation.GetBitrate(sid, tid) > 0) {
if (min_enabled_spatial_id == -1) {
min_enabled_spatial_id = sid;
}
max_enabled_spatial_id = sid;
++num_enabled_spatial_layers;
}
}
if (num_enabled_spatial_layers == 0) {
// Each temporal layer should be enabled because skipping a full frame is
// not supported in non-flexible mode.
return false;
}
if (max_enabled_spatial_id - min_enabled_spatial_id + 1 !=
num_enabled_spatial_layers) {
// To avoid odd spatial dependencies, there should be no gaps in active
// spatial layers.
return false;
}
}
return true;
}
struct LibvpxState {
LibvpxState() {
pkt.kind = VPX_CODEC_CX_FRAME_PKT;
pkt.data.frame.buf = pkt_buffer;
pkt.data.frame.sz = ABSL_ARRAYSIZE(pkt_buffer);
layer_id.spatial_layer_id = -1;
}
uint8_t pkt_buffer[1000] = {};
vpx_codec_enc_cfg_t config = {};
vpx_codec_priv_output_cx_pkt_cb_pair_t callback = {};
vpx_image_t img = {};
vpx_svc_ref_frame_config_t ref_config = {};
vpx_svc_layer_id_t layer_id = {};
vpx_svc_frame_drop_t frame_drop = {};
vpx_codec_cx_pkt pkt = {};
};
class StubLibvpx : public LibvpxInterface {
public:
explicit StubLibvpx(LibvpxState* state) : state_(state) { RTC_CHECK(state_); }
vpx_codec_err_t codec_enc_config_default(vpx_codec_iface_t* iface,
vpx_codec_enc_cfg_t* cfg,
unsigned int usage) const override {
state_->config = *cfg;
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_enc_init(vpx_codec_ctx_t* ctx,
vpx_codec_iface_t* iface,
const vpx_codec_enc_cfg_t* cfg,
vpx_codec_flags_t flags) const override {
RTC_CHECK(ctx);
ctx->err = VPX_CODEC_OK;
return VPX_CODEC_OK;
}
vpx_image_t* img_wrap(vpx_image_t* img,
vpx_img_fmt_t fmt,
unsigned int d_w,
unsigned int d_h,
unsigned int stride_align,
unsigned char* img_data) const override {
state_->img.fmt = fmt;
state_->img.d_w = d_w;
state_->img.d_h = d_h;
return &state_->img;
}
vpx_codec_err_t codec_encode(vpx_codec_ctx_t* ctx,
const vpx_image_t* img,
vpx_codec_pts_t pts,
uint64_t duration,
vpx_enc_frame_flags_t flags,
uint64_t deadline) const override {
if (flags & VPX_EFLAG_FORCE_KF) {
state_->pkt.data.frame.flags = VPX_FRAME_IS_KEY;
} else {
state_->pkt.data.frame.flags = 0;
}
state_->pkt.data.frame.duration = duration;
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
void* param) const override {
if (ctrl_id == VP9E_REGISTER_CX_CALLBACK) {
state_->callback =
*reinterpret_cast<vpx_codec_priv_output_cx_pkt_cb_pair_t*>(param);
}
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(
vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_svc_ref_frame_config_t* param) const override {
switch (ctrl_id) {
case VP9E_SET_SVC_REF_FRAME_CONFIG:
state_->ref_config = *param;
break;
case VP9E_GET_SVC_REF_FRAME_CONFIG:
*param = state_->ref_config;
break;
default:
break;
}
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_svc_layer_id_t* param) const override {
switch (ctrl_id) {
case VP9E_SET_SVC_LAYER_ID:
state_->layer_id = *param;
break;
case VP9E_GET_SVC_LAYER_ID:
*param = state_->layer_id;
break;
default:
break;
}
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_svc_frame_drop_t* param) const override {
if (ctrl_id == VP9E_SET_SVC_FRAME_DROP_LAYER) {
state_->frame_drop = *param;
}
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_enc_config_set(
vpx_codec_ctx_t* ctx,
const vpx_codec_enc_cfg_t* cfg) const override {
state_->config = *cfg;
return VPX_CODEC_OK;
}
vpx_image_t* img_alloc(vpx_image_t* img,
vpx_img_fmt_t fmt,
unsigned int d_w,
unsigned int d_h,
unsigned int align) const override {
return nullptr;
}
void img_free(vpx_image_t* img) const override {}
vpx_codec_err_t codec_enc_init_multi(vpx_codec_ctx_t* ctx,
vpx_codec_iface_t* iface,
vpx_codec_enc_cfg_t* cfg,
int num_enc,
vpx_codec_flags_t flags,
vpx_rational_t* dsf) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_destroy(vpx_codec_ctx_t* ctx) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
uint32_t param) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
int param) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
int* param) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_roi_map* param) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_active_map* param) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_scaling_mode* param) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_svc_extra_cfg_t* param) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(
vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_svc_spatial_layer_sync_t* param) const override {
return VPX_CODEC_OK;
}
vpx_codec_err_t codec_control(vpx_codec_ctx_t* ctx,
vp8e_enc_control_id ctrl_id,
vpx_rc_funcs_t* param) const override {
return VPX_CODEC_OK;
}
const vpx_codec_cx_pkt_t* codec_get_cx_data(
vpx_codec_ctx_t* ctx,
vpx_codec_iter_t* iter) const override {
return nullptr;
}
const char* codec_error_detail(vpx_codec_ctx_t* ctx) const override {
return nullptr;
}
const char* codec_error(vpx_codec_ctx_t* ctx) const override {
return nullptr;
}
const char* codec_err_to_string(vpx_codec_err_t err) const override {
return nullptr;
}
private:
LibvpxState* const state_;
};
enum Actions {
kEncode,
kSetRates,
};
// When a layer frame is marked for drop, drops all layer frames from that
// pictures with larger spatial ids.
constexpr bool DropAbove(uint8_t layers_mask, int sid) {
uint8_t full_mask = (uint8_t{1} << (sid + 1)) - 1;
return (layers_mask & full_mask) != full_mask;
}
// inline unittests
static_assert(DropAbove(0b1011, /*sid=*/0) == false, "");
static_assert(DropAbove(0b1011, /*sid=*/1) == false, "");
static_assert(DropAbove(0b1011, /*sid=*/2) == true, "");
static_assert(DropAbove(0b1011, /*sid=*/3) == true, "");
// When a layer frame is marked for drop, drops all layer frames from that
// pictures with smaller spatial ids.
constexpr bool DropBelow(uint8_t layers_mask, int sid, int num_layers) {
return (layers_mask >> sid) != (1 << (num_layers - sid)) - 1;
}
// inline unittests
static_assert(DropBelow(0b1101, /*sid=*/0, 4) == true, "");
static_assert(DropBelow(0b1101, /*sid=*/1, 4) == true, "");
static_assert(DropBelow(0b1101, /*sid=*/2, 4) == false, "");
static_assert(DropBelow(0b1101, /*sid=*/3, 4) == false, "");
} // namespace
void FuzzOneInput(const uint8_t* data, size_t size) {
FuzzDataHelper helper(rtc::MakeArrayView(data, size));
FrameValidator validator;
FieldTrials field_trials(helper);
// Setup call callbacks for the fake
LibvpxState state;
// Initialize encoder
LibvpxVp9Encoder encoder(CreateEnvironment(&field_trials), {},
std::make_unique<StubLibvpx>(&state));
VideoCodec codec = CodecSettings(helper);
if (encoder.InitEncode(&codec, EncoderSettings()) != WEBRTC_VIDEO_CODEC_OK) {
return;
}
RTC_CHECK_EQ(encoder.RegisterEncodeCompleteCallback(&validator),
WEBRTC_VIDEO_CODEC_OK);
{
// Enable all the layers initially. Encoder doesn't support producing
// frames when no layers are enabled.
LibvpxVp9Encoder::RateControlParameters parameters;
parameters.framerate_fps = 30.0;
for (int sid = 0; sid < codec.VP9()->numberOfSpatialLayers; ++sid) {
for (int tid = 0; tid < codec.VP9()->numberOfTemporalLayers; ++tid) {
parameters.bitrate.SetBitrate(sid, tid, kBitrateEnabledBps);
}
}
encoder.SetRates(parameters);
}
std::vector<VideoFrameType> frame_types(1);
VideoFrame fake_image = VideoFrame::Builder()
.set_video_frame_buffer(I420Buffer::Create(
int{codec.width}, int{codec.height}))
.build();
// Start producing frames at random.
while (helper.CanReadBytes(1)) {
uint8_t action = helper.Read<uint8_t>();
switch (action & 0b11) {
case kEncode: {
// bitmask of the action: SSSS-K00, where
// four S bit indicate which spatial layers should be produced,
// K bit indicates if frame should be a key frame.
frame_types[0] = (action & 0b100) ? VideoFrameType::kVideoFrameKey
: VideoFrameType::kVideoFrameDelta;
encoder.Encode(fake_image, &frame_types);
uint8_t encode_spatial_layers = (action >> 4);
for (size_t sid = 0; sid < state.config.ss_number_layers; ++sid) {
if (state.config.ss_target_bitrate[sid] == 0) {
// Don't encode disabled spatial layers.
continue;
}
bool drop = true;
switch (state.frame_drop.framedrop_mode) {
case FULL_SUPERFRAME_DROP:
drop = encode_spatial_layers == 0;
break;
case LAYER_DROP:
drop = (encode_spatial_layers & (1 << sid)) == 0;
break;
case CONSTRAINED_LAYER_DROP:
drop = DropBelow(encode_spatial_layers, sid,
state.config.ss_number_layers);
break;
case CONSTRAINED_FROM_ABOVE_DROP:
drop = DropAbove(encode_spatial_layers, sid);
break;
}
if (!drop) {
state.layer_id.spatial_layer_id = sid;
state.callback.output_cx_pkt(&state.pkt, state.callback.user_priv);
}
}
} break;
case kSetRates: {
// bitmask of the action: (S2)(S1)(S0)01,
// where Sx is number of temporal layers to enable for spatial layer x
// In pariculat Sx = 0 indicates spatial layer x should be disabled.
LibvpxVp9Encoder::RateControlParameters parameters;
parameters.framerate_fps = 30.0;
for (int sid = 0; sid < codec.VP9()->numberOfSpatialLayers; ++sid) {
int temporal_layers = (action >> ((1 + sid) * 2)) & 0b11;
for (int tid = 0; tid < temporal_layers; ++tid) {
parameters.bitrate.SetBitrate(sid, tid, kBitrateEnabledBps);
}
}
if (IsSupported(codec.VP9()->numberOfSpatialLayers,
codec.VP9()->numberOfTemporalLayers,
parameters.bitrate)) {
encoder.SetRates(parameters);
}
} break;
default:
// Unspecificed values are noop.
break;
}
}
}
} // namespace webrtc