blob: 80f4d02ea9ed46c2571a28577111d2f915d3b4f3 [file] [log] [blame]
/*
* Copyright 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "test/network/cross_traffic.h"
#include <atomic>
#include <memory>
#include <optional>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "api/test/network_emulation_manager.h"
#include "api/test/simulated_network.h"
#include "api/units/data_rate.h"
#include "rtc_base/event.h"
#include "rtc_base/logging.h"
#include "rtc_base/network_constants.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "test/network/network_emulation_manager.h"
#include "test/network/simulated_network.h"
#include "test/network/traffic_route.h"
#include "test/time_controller/simulated_time_controller.h"
namespace webrtc {
namespace test {
namespace {
constexpr uint32_t kTestIpAddress = 0xC0A80011; // 192.168.0.17
class CountingReceiver : public EmulatedNetworkReceiverInterface {
public:
void OnPacketReceived(EmulatedIpPacket packet) override {
packets_count_++;
total_packets_size_ += packet.size();
}
std::atomic<int> packets_count_{0};
std::atomic<uint64_t> total_packets_size_{0};
};
struct TrafficCounterFixture {
SimulatedClock clock{0};
CountingReceiver counter;
TaskQueueForTest task_queue_;
EmulatedEndpointImpl endpoint{EmulatedEndpointImpl::Options{
/*id=*/1,
rtc::IPAddress(kTestIpAddress),
EmulatedEndpointConfig(),
EmulatedNetworkStatsGatheringMode::kDefault,
},
/*is_enabled=*/true, task_queue_.Get(), &clock};
};
} // namespace
TEST(CrossTrafficTest, TriggerPacketBurst) {
TrafficCounterFixture fixture;
CrossTrafficRouteImpl traffic(&fixture.clock, &fixture.counter,
&fixture.endpoint);
traffic.TriggerPacketBurst(100, 1000);
EXPECT_EQ(fixture.counter.packets_count_, 100);
EXPECT_EQ(fixture.counter.total_packets_size_, 100 * 1000ul);
}
TEST(CrossTrafficTest, PulsedPeaksCrossTraffic) {
TrafficCounterFixture fixture;
CrossTrafficRouteImpl traffic(&fixture.clock, &fixture.counter,
&fixture.endpoint);
PulsedPeaksConfig config;
config.peak_rate = DataRate::KilobitsPerSec(1000);
config.min_packet_size = DataSize::Bytes(1);
config.min_packet_interval = TimeDelta::Millis(25);
config.send_duration = TimeDelta::Millis(500);
config.hold_duration = TimeDelta::Millis(250);
PulsedPeaksCrossTraffic pulsed_peaks(config, &traffic);
const auto kRunTime = TimeDelta::Seconds(1);
while (fixture.clock.TimeInMilliseconds() < kRunTime.ms()) {
pulsed_peaks.Process(Timestamp::Millis(fixture.clock.TimeInMilliseconds()));
fixture.clock.AdvanceTimeMilliseconds(1);
}
RTC_LOG(LS_INFO) << fixture.counter.packets_count_ << " packets; "
<< fixture.counter.total_packets_size_ << " bytes";
// Using 50% duty cycle.
const auto kExpectedDataSent = kRunTime * config.peak_rate * 0.5;
EXPECT_NEAR(fixture.counter.total_packets_size_, kExpectedDataSent.bytes(),
kExpectedDataSent.bytes() * 0.1);
}
TEST(CrossTrafficTest, RandomWalkCrossTraffic) {
TrafficCounterFixture fixture;
CrossTrafficRouteImpl traffic(&fixture.clock, &fixture.counter,
&fixture.endpoint);
RandomWalkConfig config;
config.peak_rate = DataRate::KilobitsPerSec(1000);
config.min_packet_size = DataSize::Bytes(1);
config.min_packet_interval = TimeDelta::Millis(25);
config.update_interval = TimeDelta::Millis(500);
config.variance = 0.0;
config.bias = 1.0;
RandomWalkCrossTraffic random_walk(config, &traffic);
const auto kRunTime = TimeDelta::Seconds(1);
while (fixture.clock.TimeInMilliseconds() < kRunTime.ms()) {
random_walk.Process(Timestamp::Millis(fixture.clock.TimeInMilliseconds()));
fixture.clock.AdvanceTimeMilliseconds(1);
}
RTC_LOG(LS_INFO) << fixture.counter.packets_count_ << " packets; "
<< fixture.counter.total_packets_size_ << " bytes";
// Sending at peak rate since bias = 1.
const auto kExpectedDataSent = kRunTime * config.peak_rate;
EXPECT_NEAR(fixture.counter.total_packets_size_, kExpectedDataSent.bytes(),
kExpectedDataSent.bytes() * 0.1);
}
TEST(TcpMessageRouteTest, DeliveredOnLossyNetwork) {
NetworkEmulationManagerImpl net({.time_mode = TimeMode::kSimulated});
BuiltInNetworkBehaviorConfig send;
// 800 kbps means that the 100 kB message would be delivered in ca 1 second
// under ideal conditions and no overhead.
send.link_capacity = DataRate::KilobitsPerSec(100 * 8);
send.loss_percent = 50;
send.queue_delay_ms = 100;
send.delay_standard_deviation_ms = 20;
send.allow_reordering = true;
auto ret = send;
ret.loss_percent = 10;
auto* tcp_route =
net.CreateTcpRoute(net.CreateRoute({net.CreateEmulatedNode(send)}),
net.CreateRoute({net.CreateEmulatedNode(ret)}));
int deliver_count = 0;
// 100 kB is more than what fits into a single packet.
constexpr size_t kMessageSize = 100000;
tcp_route->SendMessage(kMessageSize, [&] {
RTC_LOG(LS_INFO) << "Received at " << ToString(net.Now());
deliver_count++;
});
// If there was no loss, we would have delivered the message in ca 1 second,
// with 50% it should take much longer.
net.time_controller()->AdvanceTime(TimeDelta::Seconds(5));
ASSERT_EQ(deliver_count, 0);
// But given enough time the messsage will be delivered, but only once.
net.time_controller()->AdvanceTime(TimeDelta::Seconds(60));
EXPECT_EQ(deliver_count, 1);
}
} // namespace test
} // namespace webrtc