| /* |
| * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/video_coding/packet_buffer.h" |
| |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <cstdint> |
| #include <limits> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/types/variant.h" |
| #include "api/array_view.h" |
| #include "api/rtp_packet_info.h" |
| #include "api/video/encoded_frame.h" |
| #include "api/video/video_frame_type.h" |
| #include "common_video/h264/h264_common.h" |
| #include "modules/rtp_rtcp/source/rtp_header_extensions.h" |
| #include "modules/rtp_rtcp/source/rtp_packet_received.h" |
| #include "modules/rtp_rtcp/source/rtp_video_header.h" |
| #include "modules/rtp_rtcp/source/video_rtp_depacketizer_av1.h" |
| #include "modules/video_coding/codecs/h264/include/h264_globals.h" |
| #include "modules/video_coding/frame_object.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/mod_ops.h" |
| #include "system_wrappers/include/clock.h" |
| #include "system_wrappers/include/field_trial.h" |
| |
| namespace webrtc { |
| namespace video_coding { |
| |
| PacketBuffer::Packet::Packet(const RtpPacketReceived& rtp_packet, |
| const RTPVideoHeader& video_header, |
| int64_t ntp_time_ms, |
| int64_t receive_time_ms) |
| : marker_bit(rtp_packet.Marker()), |
| payload_type(rtp_packet.PayloadType()), |
| seq_num(rtp_packet.SequenceNumber()), |
| timestamp(rtp_packet.Timestamp()), |
| ntp_time_ms(ntp_time_ms), |
| times_nacked(-1), |
| video_header(video_header), |
| packet_info(rtp_packet.Ssrc(), |
| rtp_packet.Csrcs(), |
| rtp_packet.Timestamp(), |
| /*audio_level=*/absl::nullopt, |
| rtp_packet.GetExtension<AbsoluteCaptureTimeExtension>(), |
| receive_time_ms) {} |
| |
| PacketBuffer::PacketBuffer(Clock* clock, |
| size_t start_buffer_size, |
| size_t max_buffer_size) |
| : clock_(clock), |
| max_size_(max_buffer_size), |
| first_seq_num_(0), |
| first_packet_received_(false), |
| is_cleared_to_first_seq_num_(false), |
| buffer_(start_buffer_size), |
| sps_pps_idr_is_h264_keyframe_( |
| field_trial::IsEnabled("WebRTC-SpsPpsIdrIsH264Keyframe")) { |
| RTC_DCHECK_LE(start_buffer_size, max_buffer_size); |
| // Buffer size must always be a power of 2. |
| RTC_DCHECK((start_buffer_size & (start_buffer_size - 1)) == 0); |
| RTC_DCHECK((max_buffer_size & (max_buffer_size - 1)) == 0); |
| } |
| |
| PacketBuffer::~PacketBuffer() { |
| Clear(); |
| } |
| |
| PacketBuffer::InsertResult PacketBuffer::InsertPacket( |
| PacketBuffer::Packet* packet) { |
| PacketBuffer::InsertResult result; |
| rtc::CritScope lock(&crit_); |
| |
| uint16_t seq_num = packet->seq_num; |
| size_t index = seq_num % buffer_.size(); |
| |
| if (!first_packet_received_) { |
| first_seq_num_ = seq_num; |
| first_packet_received_ = true; |
| } else if (AheadOf(first_seq_num_, seq_num)) { |
| // If we have explicitly cleared past this packet then it's old, |
| // don't insert it, just silently ignore it. |
| if (is_cleared_to_first_seq_num_) { |
| return result; |
| } |
| |
| first_seq_num_ = seq_num; |
| } |
| |
| if (buffer_[index].used) { |
| // Duplicate packet, just delete the payload. |
| if (buffer_[index].seq_num() == packet->seq_num) { |
| return result; |
| } |
| |
| // The packet buffer is full, try to expand the buffer. |
| while (ExpandBufferSize() && buffer_[seq_num % buffer_.size()].used) { |
| } |
| index = seq_num % buffer_.size(); |
| |
| // Packet buffer is still full since we were unable to expand the buffer. |
| if (buffer_[index].used) { |
| // Clear the buffer, delete payload, and return false to signal that a |
| // new keyframe is needed. |
| RTC_LOG(LS_WARNING) << "Clear PacketBuffer and request key frame."; |
| Clear(); |
| result.buffer_cleared = true; |
| return result; |
| } |
| } |
| |
| int64_t now_ms = clock_->TimeInMilliseconds(); |
| last_received_packet_ms_ = now_ms; |
| if (packet->video_header.frame_type == VideoFrameType::kVideoFrameKey || |
| last_received_keyframe_rtp_timestamp_ == packet->timestamp) { |
| last_received_keyframe_packet_ms_ = now_ms; |
| last_received_keyframe_rtp_timestamp_ = packet->timestamp; |
| } |
| |
| StoredPacket& new_entry = buffer_[index]; |
| new_entry.continuous = false; |
| new_entry.used = true; |
| new_entry.data = std::move(*packet); |
| |
| UpdateMissingPackets(seq_num); |
| |
| result.frames = FindFrames(seq_num); |
| return result; |
| } |
| |
| void PacketBuffer::ClearTo(uint16_t seq_num) { |
| rtc::CritScope lock(&crit_); |
| // We have already cleared past this sequence number, no need to do anything. |
| if (is_cleared_to_first_seq_num_ && |
| AheadOf<uint16_t>(first_seq_num_, seq_num)) { |
| return; |
| } |
| |
| // If the packet buffer was cleared between a frame was created and returned. |
| if (!first_packet_received_) |
| return; |
| |
| // Avoid iterating over the buffer more than once by capping the number of |
| // iterations to the |size_| of the buffer. |
| ++seq_num; |
| size_t diff = ForwardDiff<uint16_t>(first_seq_num_, seq_num); |
| size_t iterations = std::min(diff, buffer_.size()); |
| for (size_t i = 0; i < iterations; ++i) { |
| size_t index = first_seq_num_ % buffer_.size(); |
| if (AheadOf<uint16_t>(seq_num, buffer_[index].seq_num())) { |
| buffer_[index].data.video_payload = {}; |
| buffer_[index].used = false; |
| } |
| ++first_seq_num_; |
| } |
| |
| // If |diff| is larger than |iterations| it means that we don't increment |
| // |first_seq_num_| until we reach |seq_num|, so we set it here. |
| first_seq_num_ = seq_num; |
| |
| is_cleared_to_first_seq_num_ = true; |
| auto clear_to_it = missing_packets_.upper_bound(seq_num); |
| if (clear_to_it != missing_packets_.begin()) { |
| --clear_to_it; |
| missing_packets_.erase(missing_packets_.begin(), clear_to_it); |
| } |
| } |
| |
| void PacketBuffer::ClearInterval(uint16_t start_seq_num, |
| uint16_t stop_seq_num) { |
| size_t iterations = ForwardDiff<uint16_t>(start_seq_num, stop_seq_num + 1); |
| RTC_DCHECK_LE(iterations, buffer_.size()); |
| uint16_t seq_num = start_seq_num; |
| for (size_t i = 0; i < iterations; ++i) { |
| size_t index = seq_num % buffer_.size(); |
| RTC_DCHECK_EQ(buffer_[index].seq_num(), seq_num); |
| buffer_[index].data.video_payload = {}; |
| buffer_[index].used = false; |
| |
| ++seq_num; |
| } |
| } |
| |
| void PacketBuffer::Clear() { |
| rtc::CritScope lock(&crit_); |
| for (StoredPacket& entry : buffer_) { |
| entry.data.video_payload = {}; |
| entry.used = false; |
| } |
| |
| first_packet_received_ = false; |
| is_cleared_to_first_seq_num_ = false; |
| last_received_packet_ms_.reset(); |
| last_received_keyframe_packet_ms_.reset(); |
| newest_inserted_seq_num_.reset(); |
| missing_packets_.clear(); |
| } |
| |
| PacketBuffer::InsertResult PacketBuffer::InsertPadding(uint16_t seq_num) { |
| PacketBuffer::InsertResult result; |
| rtc::CritScope lock(&crit_); |
| UpdateMissingPackets(seq_num); |
| result.frames = FindFrames(static_cast<uint16_t>(seq_num + 1)); |
| return result; |
| } |
| |
| absl::optional<int64_t> PacketBuffer::LastReceivedPacketMs() const { |
| rtc::CritScope lock(&crit_); |
| return last_received_packet_ms_; |
| } |
| |
| absl::optional<int64_t> PacketBuffer::LastReceivedKeyframePacketMs() const { |
| rtc::CritScope lock(&crit_); |
| return last_received_keyframe_packet_ms_; |
| } |
| |
| bool PacketBuffer::ExpandBufferSize() { |
| if (buffer_.size() == max_size_) { |
| RTC_LOG(LS_WARNING) << "PacketBuffer is already at max size (" << max_size_ |
| << "), failed to increase size."; |
| return false; |
| } |
| |
| size_t new_size = std::min(max_size_, 2 * buffer_.size()); |
| std::vector<StoredPacket> new_buffer(new_size); |
| for (StoredPacket& entry : buffer_) { |
| if (entry.used) { |
| new_buffer[entry.seq_num() % new_size] = std::move(entry); |
| } |
| } |
| buffer_ = std::move(new_buffer); |
| RTC_LOG(LS_INFO) << "PacketBuffer size expanded to " << new_size; |
| return true; |
| } |
| |
| bool PacketBuffer::PotentialNewFrame(uint16_t seq_num) const { |
| size_t index = seq_num % buffer_.size(); |
| int prev_index = index > 0 ? index - 1 : buffer_.size() - 1; |
| const StoredPacket& entry = buffer_[index]; |
| const StoredPacket& prev_entry = buffer_[prev_index]; |
| |
| if (!entry.used) |
| return false; |
| if (entry.seq_num() != seq_num) |
| return false; |
| if (entry.frame_begin()) |
| return true; |
| if (!prev_entry.used) |
| return false; |
| if (prev_entry.seq_num() != static_cast<uint16_t>(entry.seq_num() - 1)) |
| return false; |
| if (prev_entry.data.timestamp != entry.data.timestamp) |
| return false; |
| if (prev_entry.continuous) |
| return true; |
| |
| return false; |
| } |
| |
| std::vector<std::unique_ptr<RtpFrameObject>> PacketBuffer::FindFrames( |
| uint16_t seq_num) { |
| std::vector<std::unique_ptr<RtpFrameObject>> found_frames; |
| for (size_t i = 0; i < buffer_.size() && PotentialNewFrame(seq_num); ++i) { |
| size_t index = seq_num % buffer_.size(); |
| buffer_[index].continuous = true; |
| |
| // If all packets of the frame is continuous, find the first packet of the |
| // frame and create an RtpFrameObject. |
| if (buffer_[index].frame_end()) { |
| uint16_t start_seq_num = seq_num; |
| |
| // Find the start index by searching backward until the packet with |
| // the |frame_begin| flag is set. |
| int start_index = index; |
| size_t tested_packets = 0; |
| int64_t frame_timestamp = buffer_[start_index].data.timestamp; |
| |
| // Identify H.264 keyframes by means of SPS, PPS, and IDR. |
| bool is_h264 = buffer_[start_index].data.codec() == kVideoCodecH264; |
| bool has_h264_sps = false; |
| bool has_h264_pps = false; |
| bool has_h264_idr = false; |
| bool is_h264_keyframe = false; |
| int idr_width = -1; |
| int idr_height = -1; |
| while (true) { |
| ++tested_packets; |
| |
| if (!is_h264 && buffer_[start_index].frame_begin()) |
| break; |
| |
| if (is_h264) { |
| const auto* h264_header = absl::get_if<RTPVideoHeaderH264>( |
| &buffer_[start_index].data.video_header.video_type_header); |
| if (!h264_header || h264_header->nalus_length >= kMaxNalusPerPacket) |
| return found_frames; |
| |
| for (size_t j = 0; j < h264_header->nalus_length; ++j) { |
| if (h264_header->nalus[j].type == H264::NaluType::kSps) { |
| has_h264_sps = true; |
| } else if (h264_header->nalus[j].type == H264::NaluType::kPps) { |
| has_h264_pps = true; |
| } else if (h264_header->nalus[j].type == H264::NaluType::kIdr) { |
| has_h264_idr = true; |
| } |
| } |
| if ((sps_pps_idr_is_h264_keyframe_ && has_h264_idr && has_h264_sps && |
| has_h264_pps) || |
| (!sps_pps_idr_is_h264_keyframe_ && has_h264_idr)) { |
| is_h264_keyframe = true; |
| // Store the resolution of key frame which is the packet with |
| // smallest index and valid resolution; typically its IDR or SPS |
| // packet; there may be packet preceeding this packet, IDR's |
| // resolution will be applied to them. |
| if (buffer_[start_index].data.width() > 0 && |
| buffer_[start_index].data.height() > 0) { |
| idr_width = buffer_[start_index].data.width(); |
| idr_height = buffer_[start_index].data.height(); |
| } |
| } |
| } |
| |
| if (tested_packets == buffer_.size()) |
| break; |
| |
| start_index = start_index > 0 ? start_index - 1 : buffer_.size() - 1; |
| |
| // In the case of H264 we don't have a frame_begin bit (yes, |
| // |frame_begin| might be set to true but that is a lie). So instead |
| // we traverese backwards as long as we have a previous packet and |
| // the timestamp of that packet is the same as this one. This may cause |
| // the PacketBuffer to hand out incomplete frames. |
| // See: https://bugs.chromium.org/p/webrtc/issues/detail?id=7106 |
| if (is_h264 && |
| (!buffer_[start_index].used || |
| buffer_[start_index].data.timestamp != frame_timestamp)) { |
| break; |
| } |
| |
| --start_seq_num; |
| } |
| |
| if (is_h264) { |
| // Warn if this is an unsafe frame. |
| if (has_h264_idr && (!has_h264_sps || !has_h264_pps)) { |
| RTC_LOG(LS_WARNING) |
| << "Received H.264-IDR frame " |
| "(SPS: " |
| << has_h264_sps << ", PPS: " << has_h264_pps << "). Treating as " |
| << (sps_pps_idr_is_h264_keyframe_ ? "delta" : "key") |
| << " frame since WebRTC-SpsPpsIdrIsH264Keyframe is " |
| << (sps_pps_idr_is_h264_keyframe_ ? "enabled." : "disabled"); |
| } |
| |
| // Now that we have decided whether to treat this frame as a key frame |
| // or delta frame in the frame buffer, we update the field that |
| // determines if the RtpFrameObject is a key frame or delta frame. |
| const size_t first_packet_index = start_seq_num % buffer_.size(); |
| if (is_h264_keyframe) { |
| buffer_[first_packet_index].data.video_header.frame_type = |
| VideoFrameType::kVideoFrameKey; |
| if (idr_width > 0 && idr_height > 0) { |
| // IDR frame was finalized and we have the correct resolution for |
| // IDR; update first packet to have same resolution as IDR. |
| buffer_[first_packet_index].data.video_header.width = idr_width; |
| buffer_[first_packet_index].data.video_header.height = idr_height; |
| } |
| } else { |
| buffer_[first_packet_index].data.video_header.frame_type = |
| VideoFrameType::kVideoFrameDelta; |
| } |
| |
| // With IPPP, if this is not a keyframe, make sure there are no gaps |
| // in the packet sequence numbers up until this point. |
| const uint8_t h264tid = |
| buffer_[start_index].data.video_header.frame_marking.temporal_id; |
| if (h264tid == kNoTemporalIdx && !is_h264_keyframe && |
| missing_packets_.upper_bound(start_seq_num) != |
| missing_packets_.begin()) { |
| return found_frames; |
| } |
| } |
| |
| if (auto frame = AssembleFrame(start_seq_num, seq_num)) { |
| found_frames.push_back(std::move(frame)); |
| } else { |
| RTC_LOG(LS_ERROR) << "Failed to assemble frame from packets " |
| << start_seq_num << "-" << seq_num; |
| } |
| |
| missing_packets_.erase(missing_packets_.begin(), |
| missing_packets_.upper_bound(seq_num)); |
| ClearInterval(start_seq_num, seq_num); |
| } |
| ++seq_num; |
| } |
| return found_frames; |
| } |
| |
| std::unique_ptr<RtpFrameObject> PacketBuffer::AssembleFrame( |
| uint16_t first_seq_num, |
| uint16_t last_seq_num) { |
| const uint16_t end_seq_num = last_seq_num + 1; |
| const uint16_t num_packets = end_seq_num - first_seq_num; |
| int max_nack_count = -1; |
| int64_t min_recv_time = std::numeric_limits<int64_t>::max(); |
| int64_t max_recv_time = std::numeric_limits<int64_t>::min(); |
| size_t frame_size = 0; |
| |
| std::vector<rtc::ArrayView<const uint8_t>> payloads; |
| RtpPacketInfos::vector_type packet_infos; |
| payloads.reserve(num_packets); |
| packet_infos.reserve(num_packets); |
| |
| for (uint16_t seq_num = first_seq_num; seq_num != end_seq_num; ++seq_num) { |
| const Packet& packet = GetPacket(seq_num); |
| |
| max_nack_count = std::max(max_nack_count, packet.times_nacked); |
| min_recv_time = |
| std::min(min_recv_time, packet.packet_info.receive_time_ms()); |
| max_recv_time = |
| std::max(max_recv_time, packet.packet_info.receive_time_ms()); |
| frame_size += packet.video_payload.size(); |
| payloads.emplace_back(packet.video_payload); |
| packet_infos.push_back(packet.packet_info); |
| } |
| |
| const Packet& first_packet = GetPacket(first_seq_num); |
| rtc::scoped_refptr<EncodedImageBuffer> bitstream; |
| // TODO(danilchap): Hide codec-specific code paths behind an interface. |
| if (first_packet.codec() == VideoCodecType::kVideoCodecAV1) { |
| bitstream = VideoRtpDepacketizerAv1::AssembleFrame(payloads); |
| if (!bitstream) { |
| // Failed to assemble a frame. Discard and continue. |
| return nullptr; |
| } |
| } else { |
| bitstream = EncodedImageBuffer::Create(frame_size); |
| |
| uint8_t* write_at = bitstream->data(); |
| for (rtc::ArrayView<const uint8_t> payload : payloads) { |
| memcpy(write_at, payload.data(), payload.size()); |
| write_at += payload.size(); |
| } |
| RTC_DCHECK_EQ(write_at - bitstream->data(), bitstream->size()); |
| } |
| const Packet& last_packet = GetPacket(last_seq_num); |
| return std::make_unique<RtpFrameObject>( |
| first_seq_num, // |
| last_seq_num, // |
| last_packet.marker_bit, // |
| max_nack_count, // |
| min_recv_time, // |
| max_recv_time, // |
| first_packet.timestamp, // |
| first_packet.ntp_time_ms, // |
| last_packet.video_header.video_timing, // |
| first_packet.payload_type, // |
| first_packet.codec(), // |
| last_packet.video_header.rotation, // |
| last_packet.video_header.content_type, // |
| first_packet.video_header, // |
| last_packet.video_header.color_space, // |
| first_packet.generic_descriptor, // |
| RtpPacketInfos(std::move(packet_infos)), // |
| std::move(bitstream)); |
| } |
| |
| const PacketBuffer::Packet& PacketBuffer::GetPacket(uint16_t seq_num) const { |
| const StoredPacket& entry = buffer_[seq_num % buffer_.size()]; |
| RTC_DCHECK(entry.used); |
| RTC_DCHECK_EQ(seq_num, entry.seq_num()); |
| return entry.data; |
| } |
| |
| void PacketBuffer::UpdateMissingPackets(uint16_t seq_num) { |
| if (!newest_inserted_seq_num_) |
| newest_inserted_seq_num_ = seq_num; |
| |
| const int kMaxPaddingAge = 1000; |
| if (AheadOf(seq_num, *newest_inserted_seq_num_)) { |
| uint16_t old_seq_num = seq_num - kMaxPaddingAge; |
| auto erase_to = missing_packets_.lower_bound(old_seq_num); |
| missing_packets_.erase(missing_packets_.begin(), erase_to); |
| |
| // Guard against inserting a large amount of missing packets if there is a |
| // jump in the sequence number. |
| if (AheadOf(old_seq_num, *newest_inserted_seq_num_)) |
| *newest_inserted_seq_num_ = old_seq_num; |
| |
| ++*newest_inserted_seq_num_; |
| while (AheadOf(seq_num, *newest_inserted_seq_num_)) { |
| missing_packets_.insert(*newest_inserted_seq_num_); |
| ++*newest_inserted_seq_num_; |
| } |
| } else { |
| missing_packets_.erase(seq_num); |
| } |
| } |
| |
| } // namespace video_coding |
| } // namespace webrtc |