blob: eddac4f5de3d14a322fe80b0a21282b49c9c1dfb [file] [log] [blame]
/*
* Copyright (c) 2011 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/timing.h"
#include <assert.h>
#include <algorithm>
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/time/timestamp_extrapolator.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
namespace webrtc {
VCMTiming::VCMTiming(Clock* clock)
: clock_(clock),
ts_extrapolator_(std::make_unique<TimestampExtrapolator>(
clock_->TimeInMilliseconds())),
codec_timer_(std::make_unique<VCMCodecTimer>()),
render_delay_ms_(kDefaultRenderDelayMs),
min_playout_delay_ms_(0),
max_playout_delay_ms_(10000),
jitter_delay_ms_(0),
current_delay_ms_(0),
prev_frame_timestamp_(0),
timing_frame_info_(),
num_decoded_frames_(0),
low_latency_renderer_enabled_("enabled", true) {
ParseFieldTrial({&low_latency_renderer_enabled_},
field_trial::FindFullName("WebRTC-LowLatencyRenderer"));
}
void VCMTiming::Reset() {
MutexLock lock(&mutex_);
ts_extrapolator_->Reset(clock_->TimeInMilliseconds());
codec_timer_ = std::make_unique<VCMCodecTimer>();
render_delay_ms_ = kDefaultRenderDelayMs;
min_playout_delay_ms_ = 0;
jitter_delay_ms_ = 0;
current_delay_ms_ = 0;
prev_frame_timestamp_ = 0;
}
void VCMTiming::set_render_delay(int render_delay_ms) {
MutexLock lock(&mutex_);
render_delay_ms_ = render_delay_ms;
}
void VCMTiming::set_min_playout_delay(int min_playout_delay_ms) {
MutexLock lock(&mutex_);
min_playout_delay_ms_ = min_playout_delay_ms;
}
int VCMTiming::min_playout_delay() {
MutexLock lock(&mutex_);
return min_playout_delay_ms_;
}
void VCMTiming::set_max_playout_delay(int max_playout_delay_ms) {
MutexLock lock(&mutex_);
max_playout_delay_ms_ = max_playout_delay_ms;
}
int VCMTiming::max_playout_delay() {
MutexLock lock(&mutex_);
return max_playout_delay_ms_;
}
void VCMTiming::SetJitterDelay(int jitter_delay_ms) {
MutexLock lock(&mutex_);
if (jitter_delay_ms != jitter_delay_ms_) {
jitter_delay_ms_ = jitter_delay_ms;
// When in initial state, set current delay to minimum delay.
if (current_delay_ms_ == 0) {
current_delay_ms_ = jitter_delay_ms_;
}
}
}
void VCMTiming::UpdateCurrentDelay(uint32_t frame_timestamp) {
MutexLock lock(&mutex_);
int target_delay_ms = TargetDelayInternal();
if (current_delay_ms_ == 0) {
// Not initialized, set current delay to target.
current_delay_ms_ = target_delay_ms;
} else if (target_delay_ms != current_delay_ms_) {
int64_t delay_diff_ms =
static_cast<int64_t>(target_delay_ms) - current_delay_ms_;
// Never change the delay with more than 100 ms every second. If we're
// changing the delay in too large steps we will get noticeable freezes. By
// limiting the change we can increase the delay in smaller steps, which
// will be experienced as the video is played in slow motion. When lowering
// the delay the video will be played at a faster pace.
int64_t max_change_ms = 0;
if (frame_timestamp < 0x0000ffff && prev_frame_timestamp_ > 0xffff0000) {
// wrap
max_change_ms = kDelayMaxChangeMsPerS *
(frame_timestamp + (static_cast<int64_t>(1) << 32) -
prev_frame_timestamp_) /
90000;
} else {
max_change_ms = kDelayMaxChangeMsPerS *
(frame_timestamp - prev_frame_timestamp_) / 90000;
}
if (max_change_ms <= 0) {
// Any changes less than 1 ms are truncated and will be postponed.
// Negative change will be due to reordering and should be ignored.
return;
}
delay_diff_ms = std::max(delay_diff_ms, -max_change_ms);
delay_diff_ms = std::min(delay_diff_ms, max_change_ms);
current_delay_ms_ = current_delay_ms_ + delay_diff_ms;
}
prev_frame_timestamp_ = frame_timestamp;
}
void VCMTiming::UpdateCurrentDelay(int64_t render_time_ms,
int64_t actual_decode_time_ms) {
MutexLock lock(&mutex_);
uint32_t target_delay_ms = TargetDelayInternal();
int64_t delayed_ms =
actual_decode_time_ms -
(render_time_ms - RequiredDecodeTimeMs() - render_delay_ms_);
if (delayed_ms < 0) {
return;
}
if (current_delay_ms_ + delayed_ms <= target_delay_ms) {
current_delay_ms_ += delayed_ms;
} else {
current_delay_ms_ = target_delay_ms;
}
}
void VCMTiming::StopDecodeTimer(uint32_t /*time_stamp*/,
int32_t decode_time_ms,
int64_t now_ms,
int64_t /*render_time_ms*/) {
StopDecodeTimer(decode_time_ms, now_ms);
}
void VCMTiming::StopDecodeTimer(int32_t decode_time_ms, int64_t now_ms) {
MutexLock lock(&mutex_);
codec_timer_->AddTiming(decode_time_ms, now_ms);
assert(decode_time_ms >= 0);
++num_decoded_frames_;
}
void VCMTiming::IncomingTimestamp(uint32_t time_stamp, int64_t now_ms) {
MutexLock lock(&mutex_);
ts_extrapolator_->Update(now_ms, time_stamp);
}
int64_t VCMTiming::RenderTimeMs(uint32_t frame_timestamp,
int64_t now_ms) const {
MutexLock lock(&mutex_);
return RenderTimeMsInternal(frame_timestamp, now_ms);
}
int64_t VCMTiming::RenderTimeMsInternal(uint32_t frame_timestamp,
int64_t now_ms) const {
constexpr int kLowLatencyRendererMaxPlayoutDelayMs = 500;
if (min_playout_delay_ms_ == 0 &&
(max_playout_delay_ms_ == 0 ||
(low_latency_renderer_enabled_ &&
max_playout_delay_ms_ <= kLowLatencyRendererMaxPlayoutDelayMs))) {
// Render as soon as possible or with low-latency renderer algorithm.
return 0;
}
// Note that TimestampExtrapolator::ExtrapolateLocalTime is not a const
// method; it mutates the object's wraparound state.
int64_t estimated_complete_time_ms =
ts_extrapolator_->ExtrapolateLocalTime(frame_timestamp);
if (estimated_complete_time_ms == -1) {
estimated_complete_time_ms = now_ms;
}
// Make sure the actual delay stays in the range of |min_playout_delay_ms_|
// and |max_playout_delay_ms_|.
int actual_delay = std::max(current_delay_ms_, min_playout_delay_ms_);
actual_delay = std::min(actual_delay, max_playout_delay_ms_);
return estimated_complete_time_ms + actual_delay;
}
int VCMTiming::RequiredDecodeTimeMs() const {
const int decode_time_ms = codec_timer_->RequiredDecodeTimeMs();
assert(decode_time_ms >= 0);
return decode_time_ms;
}
int64_t VCMTiming::MaxWaitingTime(int64_t render_time_ms,
int64_t now_ms) const {
MutexLock lock(&mutex_);
const int64_t max_wait_time_ms =
render_time_ms - now_ms - RequiredDecodeTimeMs() - render_delay_ms_;
return max_wait_time_ms;
}
int VCMTiming::TargetVideoDelay() const {
MutexLock lock(&mutex_);
return TargetDelayInternal();
}
int VCMTiming::TargetDelayInternal() const {
return std::max(min_playout_delay_ms_,
jitter_delay_ms_ + RequiredDecodeTimeMs() + render_delay_ms_);
}
bool VCMTiming::GetTimings(int* max_decode_ms,
int* current_delay_ms,
int* target_delay_ms,
int* jitter_buffer_ms,
int* min_playout_delay_ms,
int* render_delay_ms) const {
MutexLock lock(&mutex_);
*max_decode_ms = RequiredDecodeTimeMs();
*current_delay_ms = current_delay_ms_;
*target_delay_ms = TargetDelayInternal();
*jitter_buffer_ms = jitter_delay_ms_;
*min_playout_delay_ms = min_playout_delay_ms_;
*render_delay_ms = render_delay_ms_;
return (num_decoded_frames_ > 0);
}
void VCMTiming::SetTimingFrameInfo(const TimingFrameInfo& info) {
MutexLock lock(&mutex_);
timing_frame_info_.emplace(info);
}
absl::optional<TimingFrameInfo> VCMTiming::GetTimingFrameInfo() {
MutexLock lock(&mutex_);
return timing_frame_info_;
}
void VCMTiming::SetMaxCompositionDelayInFrames(
absl::optional<int> max_composition_delay_in_frames) {
MutexLock lock(&mutex_);
max_composition_delay_in_frames_ = max_composition_delay_in_frames;
}
absl::optional<int> VCMTiming::MaxCompositionDelayInFrames() const {
MutexLock lock(&mutex_);
return max_composition_delay_in_frames_;
}
} // namespace webrtc