| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // Unit tests for PayloadSplitter class. |
| |
| #include "webrtc/modules/audio_coding/neteq/payload_splitter.h" |
| |
| #include <assert.h> |
| |
| #include <memory> |
| #include <utility> // pair |
| |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "webrtc/modules/audio_coding/codecs/builtin_audio_decoder_factory.h" |
| #include "webrtc/modules/audio_coding/codecs/mock/mock_audio_decoder_factory.h" |
| #include "webrtc/modules/audio_coding/neteq/mock/mock_decoder_database.h" |
| #include "webrtc/modules/audio_coding/neteq/packet.h" |
| |
| using ::testing::Return; |
| using ::testing::ReturnNull; |
| |
| namespace webrtc { |
| |
| static const int kRedPayloadType = 100; |
| static const size_t kPayloadLength = 10; |
| static const size_t kRedHeaderLength = 4; // 4 bytes RED header. |
| static const uint16_t kSequenceNumber = 0; |
| static const uint32_t kBaseTimestamp = 0x12345678; |
| |
| // A possible Opus packet that contains FEC is the following. |
| // The frame is 20 ms in duration. |
| // |
| // 0 1 2 3 |
| // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| // |0|0|0|0|1|0|0|0|x|1|x|x|x|x|x|x|x| | |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | |
| // | Compressed frame 1 (N-2 bytes)... : |
| // : | |
| // | | |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| void CreateOpusFecPayload(uint8_t* payload, size_t payload_length, |
| uint8_t payload_value) { |
| if (payload_length < 2) { |
| return; |
| } |
| payload[0] = 0x08; |
| payload[1] = 0x40; |
| memset(&payload[2], payload_value, payload_length - 2); |
| } |
| |
| // RED headers (according to RFC 2198): |
| // |
| // 0 1 2 3 |
| // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| // |F| block PT | timestamp offset | block length | |
| // +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| // |
| // Last RED header: |
| // 0 1 2 3 4 5 6 7 |
| // +-+-+-+-+-+-+-+-+ |
| // |0| Block PT | |
| // +-+-+-+-+-+-+-+-+ |
| |
| // Creates a RED packet, with |num_payloads| payloads, with payload types given |
| // by the values in array |payload_types| (which must be of length |
| // |num_payloads|). Each redundant payload is |timestamp_offset| samples |
| // "behind" the the previous payload. |
| Packet* CreateRedPayload(size_t num_payloads, |
| uint8_t* payload_types, |
| int timestamp_offset, |
| bool embed_opus_fec = false) { |
| Packet* packet = new Packet; |
| packet->header.payloadType = kRedPayloadType; |
| packet->header.timestamp = kBaseTimestamp; |
| packet->header.sequenceNumber = kSequenceNumber; |
| packet->payload.SetSize((kPayloadLength + 1) + |
| (num_payloads - 1) * |
| (kPayloadLength + kRedHeaderLength)); |
| uint8_t* payload_ptr = packet->payload.data(); |
| for (size_t i = 0; i < num_payloads; ++i) { |
| // Write the RED headers. |
| if (i == num_payloads - 1) { |
| // Special case for last payload. |
| *payload_ptr = payload_types[i] & 0x7F; // F = 0; |
| ++payload_ptr; |
| break; |
| } |
| *payload_ptr = payload_types[i] & 0x7F; |
| // Not the last block; set F = 1. |
| *payload_ptr |= 0x80; |
| ++payload_ptr; |
| int this_offset = (num_payloads - i - 1) * timestamp_offset; |
| *payload_ptr = this_offset >> 6; |
| ++payload_ptr; |
| assert(kPayloadLength <= 1023); // Max length described by 10 bits. |
| *payload_ptr = ((this_offset & 0x3F) << 2) | (kPayloadLength >> 8); |
| ++payload_ptr; |
| *payload_ptr = kPayloadLength & 0xFF; |
| ++payload_ptr; |
| } |
| for (size_t i = 0; i < num_payloads; ++i) { |
| // Write |i| to all bytes in each payload. |
| if (embed_opus_fec) { |
| CreateOpusFecPayload(payload_ptr, kPayloadLength, |
| static_cast<uint8_t>(i)); |
| } else { |
| memset(payload_ptr, static_cast<int>(i), kPayloadLength); |
| } |
| payload_ptr += kPayloadLength; |
| } |
| return packet; |
| } |
| |
| // Create a packet with all payload bytes set to |payload_value|. |
| Packet* CreatePacket(uint8_t payload_type, size_t payload_length, |
| uint8_t payload_value, bool opus_fec = false) { |
| Packet* packet = new Packet; |
| packet->header.payloadType = payload_type; |
| packet->header.timestamp = kBaseTimestamp; |
| packet->header.sequenceNumber = kSequenceNumber; |
| packet->payload.SetSize(payload_length); |
| if (opus_fec) { |
| CreateOpusFecPayload(packet->payload.data(), packet->payload.size(), |
| payload_value); |
| } else { |
| memset(packet->payload.data(), payload_value, packet->payload.size()); |
| } |
| return packet; |
| } |
| |
| // Checks that |packet| has the attributes given in the remaining parameters. |
| void VerifyPacket(const Packet* packet, |
| size_t payload_length, |
| uint8_t payload_type, |
| uint16_t sequence_number, |
| uint32_t timestamp, |
| uint8_t payload_value, |
| bool primary = true) { |
| EXPECT_EQ(payload_length, packet->payload.size()); |
| EXPECT_EQ(payload_type, packet->header.payloadType); |
| EXPECT_EQ(sequence_number, packet->header.sequenceNumber); |
| EXPECT_EQ(timestamp, packet->header.timestamp); |
| EXPECT_EQ(primary, packet->primary); |
| ASSERT_FALSE(packet->payload.empty()); |
| for (size_t i = 0; i < packet->payload.size(); ++i) { |
| EXPECT_EQ(payload_value, packet->payload[i]); |
| } |
| } |
| |
| // Start of test definitions. |
| |
| TEST(PayloadSplitter, CreateAndDestroy) { |
| PayloadSplitter* splitter = new PayloadSplitter; |
| delete splitter; |
| } |
| |
| // Packet A is split into A1 and A2. |
| TEST(RedPayloadSplitter, OnePacketTwoPayloads) { |
| uint8_t payload_types[] = {0, 0}; |
| const int kTimestampOffset = 160; |
| Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset); |
| PacketList packet_list; |
| packet_list.push_back(packet); |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); |
| ASSERT_EQ(2u, packet_list.size()); |
| // Check first packet. The first in list should always be the primary payload. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber, |
| kBaseTimestamp, 1, true); |
| delete packet; |
| packet_list.pop_front(); |
| // Check second packet. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, |
| kBaseTimestamp - kTimestampOffset, 0, false); |
| delete packet; |
| } |
| |
| // Packets A and B are not split at all. Only the RED header in each packet is |
| // removed. |
| TEST(RedPayloadSplitter, TwoPacketsOnePayload) { |
| uint8_t payload_types[] = {0}; |
| const int kTimestampOffset = 160; |
| // Create first packet, with a single RED payload. |
| Packet* packet = CreateRedPayload(1, payload_types, kTimestampOffset); |
| PacketList packet_list; |
| packet_list.push_back(packet); |
| // Create second packet, with a single RED payload. |
| packet = CreateRedPayload(1, payload_types, kTimestampOffset); |
| // Manually change timestamp and sequence number of second packet. |
| packet->header.timestamp += kTimestampOffset; |
| packet->header.sequenceNumber++; |
| packet_list.push_back(packet); |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); |
| ASSERT_EQ(2u, packet_list.size()); |
| // Check first packet. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, |
| kBaseTimestamp, 0, true); |
| delete packet; |
| packet_list.pop_front(); |
| // Check second packet. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1, |
| kBaseTimestamp + kTimestampOffset, 0, true); |
| delete packet; |
| } |
| |
| // Packets A and B are split into packets A1, A2, A3, B1, B2, B3, with |
| // attributes as follows: |
| // |
| // A1* A2 A3 B1* B2 B3 |
| // Payload type 0 1 2 0 1 2 |
| // Timestamp b b-o b-2o b+o b b-o |
| // Sequence number 0 0 0 1 1 1 |
| // |
| // b = kBaseTimestamp, o = kTimestampOffset, * = primary. |
| TEST(RedPayloadSplitter, TwoPacketsThreePayloads) { |
| uint8_t payload_types[] = {2, 1, 0}; // Primary is the last one. |
| const int kTimestampOffset = 160; |
| // Create first packet, with 3 RED payloads. |
| Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset); |
| PacketList packet_list; |
| packet_list.push_back(packet); |
| // Create first packet, with 3 RED payloads. |
| packet = CreateRedPayload(3, payload_types, kTimestampOffset); |
| // Manually change timestamp and sequence number of second packet. |
| packet->header.timestamp += kTimestampOffset; |
| packet->header.sequenceNumber++; |
| packet_list.push_back(packet); |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kOK, splitter.SplitRed(&packet_list)); |
| ASSERT_EQ(6u, packet_list.size()); |
| // Check first packet, A1. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber, |
| kBaseTimestamp, 2, true); |
| delete packet; |
| packet_list.pop_front(); |
| // Check second packet, A2. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber, |
| kBaseTimestamp - kTimestampOffset, 1, false); |
| delete packet; |
| packet_list.pop_front(); |
| // Check third packet, A3. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, |
| kBaseTimestamp - 2 * kTimestampOffset, 0, false); |
| delete packet; |
| packet_list.pop_front(); |
| // Check fourth packet, B1. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[2], kSequenceNumber + 1, |
| kBaseTimestamp + kTimestampOffset, 2, true); |
| delete packet; |
| packet_list.pop_front(); |
| // Check fifth packet, B2. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[1], kSequenceNumber + 1, |
| kBaseTimestamp, 1, false); |
| delete packet; |
| packet_list.pop_front(); |
| // Check sixth packet, B3. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber + 1, |
| kBaseTimestamp - kTimestampOffset, 0, false); |
| delete packet; |
| } |
| |
| // Creates a list with 4 packets with these payload types: |
| // 0 = CNGnb |
| // 1 = PCMu |
| // 2 = DTMF (AVT) |
| // 3 = iLBC |
| // We expect the method CheckRedPayloads to discard the iLBC packet, since it |
| // is a non-CNG, non-DTMF payload of another type than the first speech payload |
| // found in the list (which is PCMu). |
| TEST(RedPayloadSplitter, CheckRedPayloads) { |
| PacketList packet_list; |
| for (uint8_t i = 0; i <= 3; ++i) { |
| // Create packet with payload type |i|, payload length 10 bytes, all 0. |
| Packet* packet = CreatePacket(i, 10, 0); |
| packet_list.push_back(packet); |
| } |
| |
| // Use a real DecoderDatabase object here instead of a mock, since it is |
| // easier to just register the payload types and let the actual implementation |
| // do its job. |
| DecoderDatabase decoder_database( |
| new rtc::RefCountedObject<MockAudioDecoderFactory>); |
| decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderCNGnb, "cng-nb"); |
| decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu, "pcmu"); |
| decoder_database.RegisterPayload(2, NetEqDecoder::kDecoderAVT, "avt"); |
| decoder_database.RegisterPayload(3, NetEqDecoder::kDecoderILBC, "ilbc"); |
| |
| PayloadSplitter splitter; |
| splitter.CheckRedPayloads(&packet_list, decoder_database); |
| |
| ASSERT_EQ(3u, packet_list.size()); // Should have dropped the last packet. |
| // Verify packets. The loop verifies that payload types 0, 1, and 2 are in the |
| // list. |
| for (int i = 0; i <= 2; ++i) { |
| Packet* packet = packet_list.front(); |
| VerifyPacket(packet, 10, i, kSequenceNumber, kBaseTimestamp, 0, true); |
| delete packet; |
| packet_list.pop_front(); |
| } |
| EXPECT_TRUE(packet_list.empty()); |
| } |
| |
| // Packet A is split into A1, A2 and A3. But the length parameter is off, so |
| // the last payloads should be discarded. |
| TEST(RedPayloadSplitter, WrongPayloadLength) { |
| uint8_t payload_types[] = {0, 0, 0}; |
| const int kTimestampOffset = 160; |
| Packet* packet = CreateRedPayload(3, payload_types, kTimestampOffset); |
| // Manually tamper with the payload length of the packet. |
| // This is one byte too short for the second payload (out of three). |
| // We expect only the first payload to be returned. |
| packet->payload.SetSize(packet->payload.size() - (kPayloadLength + 1)); |
| PacketList packet_list; |
| packet_list.push_back(packet); |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kRedLengthMismatch, |
| splitter.SplitRed(&packet_list)); |
| ASSERT_EQ(1u, packet_list.size()); |
| // Check first packet. |
| packet = packet_list.front(); |
| VerifyPacket(packet, kPayloadLength, payload_types[0], kSequenceNumber, |
| kBaseTimestamp - 2 * kTimestampOffset, 0, false); |
| delete packet; |
| packet_list.pop_front(); |
| } |
| |
| // Test that iSAC, iSAC-swb, RED, DTMF, CNG, and "Arbitrary" payloads do not |
| // get split. |
| TEST(AudioPayloadSplitter, NonSplittable) { |
| // Set up packets with different RTP payload types. The actual values do not |
| // matter, since we are mocking the decoder database anyway. |
| PacketList packet_list; |
| for (uint8_t i = 0; i < 6; ++i) { |
| // Let the payload type be |i|, and the payload value 10 * |i|. |
| packet_list.push_back(CreatePacket(i, kPayloadLength, 10 * i)); |
| } |
| |
| MockDecoderDatabase decoder_database; |
| // Tell the mock decoder database to return DecoderInfo structs with different |
| // codec types. |
| // Use scoped pointers to avoid having to delete them later. |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info0( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderISAC, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(0)) |
| .WillRepeatedly(Return(info0.get())); |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info1( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderISACswb, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(1)) |
| .WillRepeatedly(Return(info1.get())); |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info2( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderRED, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(2)) |
| .WillRepeatedly(Return(info2.get())); |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info3( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderAVT, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(3)) |
| .WillRepeatedly(Return(info3.get())); |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info4( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderCNGnb, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(4)) |
| .WillRepeatedly(Return(info4.get())); |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info5( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderArbitrary, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(5)) |
| .WillRepeatedly(Return(info5.get())); |
| |
| PayloadSplitter splitter; |
| EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); |
| EXPECT_EQ(6u, packet_list.size()); |
| |
| // Check that all payloads are intact. |
| uint8_t payload_type = 0; |
| PacketList::iterator it = packet_list.begin(); |
| while (it != packet_list.end()) { |
| VerifyPacket((*it), kPayloadLength, payload_type, kSequenceNumber, |
| kBaseTimestamp, 10 * payload_type); |
| ++payload_type; |
| delete (*it); |
| it = packet_list.erase(it); |
| } |
| |
| // The destructor is called when decoder_database goes out of scope. |
| EXPECT_CALL(decoder_database, Die()); |
| } |
| |
| // Test unknown payload type. |
| TEST(AudioPayloadSplitter, UnknownPayloadType) { |
| PacketList packet_list; |
| static const uint8_t kPayloadType = 17; // Just a random number. |
| size_t kPayloadLengthBytes = 4711; // Random number. |
| packet_list.push_back(CreatePacket(kPayloadType, kPayloadLengthBytes, 0)); |
| |
| MockDecoderDatabase decoder_database; |
| // Tell the mock decoder database to return NULL when asked for decoder info. |
| // This signals that the decoder database does not recognize the payload type. |
| EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) |
| .WillRepeatedly(ReturnNull()); |
| |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kUnknownPayloadType, |
| splitter.SplitAudio(&packet_list, decoder_database)); |
| EXPECT_EQ(1u, packet_list.size()); |
| |
| |
| // Delete the packets and payloads to avoid having the test leak memory. |
| PacketList::iterator it = packet_list.begin(); |
| while (it != packet_list.end()) { |
| delete (*it); |
| it = packet_list.erase(it); |
| } |
| |
| // The destructor is called when decoder_database goes out of scope. |
| EXPECT_CALL(decoder_database, Die()); |
| } |
| |
| class SplitBySamplesTest : public ::testing::TestWithParam<NetEqDecoder> { |
| protected: |
| virtual void SetUp() { |
| decoder_type_ = GetParam(); |
| switch (decoder_type_) { |
| case NetEqDecoder::kDecoderPCMu: |
| case NetEqDecoder::kDecoderPCMa: |
| bytes_per_ms_ = 8; |
| samples_per_ms_ = 8; |
| break; |
| case NetEqDecoder::kDecoderPCMu_2ch: |
| case NetEqDecoder::kDecoderPCMa_2ch: |
| bytes_per_ms_ = 2 * 8; |
| samples_per_ms_ = 8; |
| break; |
| case NetEqDecoder::kDecoderG722: |
| bytes_per_ms_ = 8; |
| samples_per_ms_ = 16; |
| break; |
| case NetEqDecoder::kDecoderPCM16B: |
| bytes_per_ms_ = 16; |
| samples_per_ms_ = 8; |
| break; |
| case NetEqDecoder::kDecoderPCM16Bwb: |
| bytes_per_ms_ = 32; |
| samples_per_ms_ = 16; |
| break; |
| case NetEqDecoder::kDecoderPCM16Bswb32kHz: |
| bytes_per_ms_ = 64; |
| samples_per_ms_ = 32; |
| break; |
| case NetEqDecoder::kDecoderPCM16Bswb48kHz: |
| bytes_per_ms_ = 96; |
| samples_per_ms_ = 48; |
| break; |
| case NetEqDecoder::kDecoderPCM16B_2ch: |
| bytes_per_ms_ = 2 * 16; |
| samples_per_ms_ = 8; |
| break; |
| case NetEqDecoder::kDecoderPCM16Bwb_2ch: |
| bytes_per_ms_ = 2 * 32; |
| samples_per_ms_ = 16; |
| break; |
| case NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch: |
| bytes_per_ms_ = 2 * 64; |
| samples_per_ms_ = 32; |
| break; |
| case NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch: |
| bytes_per_ms_ = 2 * 96; |
| samples_per_ms_ = 48; |
| break; |
| case NetEqDecoder::kDecoderPCM16B_5ch: |
| bytes_per_ms_ = 5 * 16; |
| samples_per_ms_ = 8; |
| break; |
| default: |
| assert(false); |
| break; |
| } |
| } |
| size_t bytes_per_ms_; |
| int samples_per_ms_; |
| NetEqDecoder decoder_type_; |
| }; |
| |
| // Test splitting sample-based payloads. |
| TEST_P(SplitBySamplesTest, PayloadSizes) { |
| PacketList packet_list; |
| static const uint8_t kPayloadType = 17; // Just a random number. |
| for (int payload_size_ms = 10; payload_size_ms <= 60; payload_size_ms += 10) { |
| // The payload values are set to be the same as the payload_size, so that |
| // one can distinguish from which packet the split payloads come from. |
| size_t payload_size_bytes = payload_size_ms * bytes_per_ms_; |
| packet_list.push_back(CreatePacket(kPayloadType, payload_size_bytes, |
| payload_size_ms)); |
| } |
| |
| MockDecoderDatabase decoder_database; |
| // Tell the mock decoder database to return DecoderInfo structs with different |
| // codec types. |
| // Use scoped pointers to avoid having to delete them later. |
| // (Sample rate is set to 8000 Hz, but does not matter.) |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info( |
| new DecoderDatabase::DecoderInfo(decoder_type_, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) |
| .WillRepeatedly(Return(info.get())); |
| |
| PayloadSplitter splitter; |
| EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); |
| // The payloads are expected to be split as follows: |
| // 10 ms -> 10 ms |
| // 20 ms -> 20 ms |
| // 30 ms -> 30 ms |
| // 40 ms -> 20 + 20 ms |
| // 50 ms -> 25 + 25 ms |
| // 60 ms -> 30 + 30 ms |
| int expected_size_ms[] = {10, 20, 30, 20, 20, 25, 25, 30, 30}; |
| int expected_payload_value[] = {10, 20, 30, 40, 40, 50, 50, 60, 60}; |
| int expected_timestamp_offset_ms[] = {0, 0, 0, 0, 20, 0, 25, 0, 30}; |
| size_t expected_num_packets = |
| sizeof(expected_size_ms) / sizeof(expected_size_ms[0]); |
| EXPECT_EQ(expected_num_packets, packet_list.size()); |
| |
| PacketList::iterator it = packet_list.begin(); |
| int i = 0; |
| while (it != packet_list.end()) { |
| size_t length_bytes = expected_size_ms[i] * bytes_per_ms_; |
| uint32_t expected_timestamp = kBaseTimestamp + |
| expected_timestamp_offset_ms[i] * samples_per_ms_; |
| VerifyPacket((*it), length_bytes, kPayloadType, kSequenceNumber, |
| expected_timestamp, expected_payload_value[i]); |
| delete (*it); |
| it = packet_list.erase(it); |
| ++i; |
| } |
| |
| // The destructor is called when decoder_database goes out of scope. |
| EXPECT_CALL(decoder_database, Die()); |
| } |
| |
| INSTANTIATE_TEST_CASE_P( |
| PayloadSplitter, |
| SplitBySamplesTest, |
| ::testing::Values(NetEqDecoder::kDecoderPCMu, |
| NetEqDecoder::kDecoderPCMa, |
| NetEqDecoder::kDecoderPCMu_2ch, |
| NetEqDecoder::kDecoderPCMa_2ch, |
| NetEqDecoder::kDecoderG722, |
| NetEqDecoder::kDecoderPCM16B, |
| NetEqDecoder::kDecoderPCM16Bwb, |
| NetEqDecoder::kDecoderPCM16Bswb32kHz, |
| NetEqDecoder::kDecoderPCM16Bswb48kHz, |
| NetEqDecoder::kDecoderPCM16B_2ch, |
| NetEqDecoder::kDecoderPCM16Bwb_2ch, |
| NetEqDecoder::kDecoderPCM16Bswb32kHz_2ch, |
| NetEqDecoder::kDecoderPCM16Bswb48kHz_2ch, |
| NetEqDecoder::kDecoderPCM16B_5ch)); |
| |
| class SplitIlbcTest : public ::testing::TestWithParam<std::pair<int, int> > { |
| protected: |
| virtual void SetUp() { |
| const std::pair<int, int> parameters = GetParam(); |
| num_frames_ = parameters.first; |
| frame_length_ms_ = parameters.second; |
| frame_length_bytes_ = (frame_length_ms_ == 20) ? 38 : 50; |
| } |
| size_t num_frames_; |
| int frame_length_ms_; |
| size_t frame_length_bytes_; |
| }; |
| |
| // Test splitting sample-based payloads. |
| TEST_P(SplitIlbcTest, NumFrames) { |
| PacketList packet_list; |
| static const uint8_t kPayloadType = 17; // Just a random number. |
| const int frame_length_samples = frame_length_ms_ * 8; |
| size_t payload_length_bytes = frame_length_bytes_ * num_frames_; |
| Packet* packet = CreatePacket(kPayloadType, payload_length_bytes, 0); |
| // Fill payload with increasing integers {0, 1, 2, ...}. |
| for (size_t i = 0; i < packet->payload.size(); ++i) { |
| packet->payload[i] = static_cast<uint8_t>(i); |
| } |
| packet_list.push_back(packet); |
| |
| MockDecoderDatabase decoder_database; |
| // Tell the mock decoder database to return DecoderInfo structs with different |
| // codec types. |
| // Use scoped pointers to avoid having to delete them later. |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) |
| .WillRepeatedly(Return(info.get())); |
| |
| PayloadSplitter splitter; |
| EXPECT_EQ(0, splitter.SplitAudio(&packet_list, decoder_database)); |
| EXPECT_EQ(num_frames_, packet_list.size()); |
| |
| PacketList::iterator it = packet_list.begin(); |
| int frame_num = 0; |
| uint8_t payload_value = 0; |
| while (it != packet_list.end()) { |
| Packet* packet = (*it); |
| EXPECT_EQ(kBaseTimestamp + frame_length_samples * frame_num, |
| packet->header.timestamp); |
| EXPECT_EQ(frame_length_bytes_, packet->payload.size()); |
| EXPECT_EQ(kPayloadType, packet->header.payloadType); |
| EXPECT_EQ(kSequenceNumber, packet->header.sequenceNumber); |
| EXPECT_EQ(true, packet->primary); |
| ASSERT_FALSE(packet->payload.empty()); |
| for (size_t i = 0; i < packet->payload.size(); ++i) { |
| EXPECT_EQ(payload_value, packet->payload[i]); |
| ++payload_value; |
| } |
| delete (*it); |
| it = packet_list.erase(it); |
| ++frame_num; |
| } |
| |
| // The destructor is called when decoder_database goes out of scope. |
| EXPECT_CALL(decoder_database, Die()); |
| } |
| |
| // Test 1 through 5 frames of 20 and 30 ms size. |
| // Also test the maximum number of frames in one packet for 20 and 30 ms. |
| // The maximum is defined by the largest payload length that can be uniquely |
| // resolved to a frame size of either 38 bytes (20 ms) or 50 bytes (30 ms). |
| INSTANTIATE_TEST_CASE_P( |
| PayloadSplitter, SplitIlbcTest, |
| ::testing::Values(std::pair<int, int>(1, 20), // 1 frame, 20 ms. |
| std::pair<int, int>(2, 20), // 2 frames, 20 ms. |
| std::pair<int, int>(3, 20), // And so on. |
| std::pair<int, int>(4, 20), |
| std::pair<int, int>(5, 20), |
| std::pair<int, int>(24, 20), |
| std::pair<int, int>(1, 30), |
| std::pair<int, int>(2, 30), |
| std::pair<int, int>(3, 30), |
| std::pair<int, int>(4, 30), |
| std::pair<int, int>(5, 30), |
| std::pair<int, int>(18, 30))); |
| |
| // Test too large payload size. |
| TEST(IlbcPayloadSplitter, TooLargePayload) { |
| PacketList packet_list; |
| static const uint8_t kPayloadType = 17; // Just a random number. |
| size_t kPayloadLengthBytes = 950; |
| Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0); |
| packet_list.push_back(packet); |
| |
| MockDecoderDatabase decoder_database; |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) |
| .WillRepeatedly(Return(info.get())); |
| |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kTooLargePayload, |
| splitter.SplitAudio(&packet_list, decoder_database)); |
| EXPECT_EQ(1u, packet_list.size()); |
| |
| // Delete the packets and payloads to avoid having the test leak memory. |
| PacketList::iterator it = packet_list.begin(); |
| while (it != packet_list.end()) { |
| delete (*it); |
| it = packet_list.erase(it); |
| } |
| |
| // The destructor is called when decoder_database goes out of scope. |
| EXPECT_CALL(decoder_database, Die()); |
| } |
| |
| // Payload not an integer number of frames. |
| TEST(IlbcPayloadSplitter, UnevenPayload) { |
| PacketList packet_list; |
| static const uint8_t kPayloadType = 17; // Just a random number. |
| size_t kPayloadLengthBytes = 39; // Not an even number of frames. |
| Packet* packet = CreatePacket(kPayloadType, kPayloadLengthBytes, 0); |
| packet_list.push_back(packet); |
| |
| MockDecoderDatabase decoder_database; |
| std::unique_ptr<DecoderDatabase::DecoderInfo> info( |
| new DecoderDatabase::DecoderInfo(NetEqDecoder::kDecoderILBC, "")); |
| EXPECT_CALL(decoder_database, GetDecoderInfo(kPayloadType)) |
| .WillRepeatedly(Return(info.get())); |
| |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kFrameSplitError, |
| splitter.SplitAudio(&packet_list, decoder_database)); |
| EXPECT_EQ(1u, packet_list.size()); |
| |
| // Delete the packets and payloads to avoid having the test leak memory. |
| PacketList::iterator it = packet_list.begin(); |
| while (it != packet_list.end()) { |
| delete (*it); |
| it = packet_list.erase(it); |
| } |
| |
| // The destructor is called when decoder_database goes out of scope. |
| EXPECT_CALL(decoder_database, Die()); |
| } |
| |
| TEST(FecPayloadSplitter, MixedPayload) { |
| PacketList packet_list; |
| DecoderDatabase decoder_database(CreateBuiltinAudioDecoderFactory()); |
| |
| decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderOpus, "opus"); |
| decoder_database.RegisterPayload(1, NetEqDecoder::kDecoderPCMu, "pcmu"); |
| |
| Packet* packet = CreatePacket(0, 10, 0xFF, true); |
| packet_list.push_back(packet); |
| |
| packet = CreatePacket(0, 10, 0); // Non-FEC Opus payload. |
| packet_list.push_back(packet); |
| |
| packet = CreatePacket(1, 10, 0); // Non-Opus payload. |
| packet_list.push_back(packet); |
| |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kOK, |
| splitter.SplitFec(&packet_list, &decoder_database)); |
| EXPECT_EQ(4u, packet_list.size()); |
| |
| // Check first packet. |
| packet = packet_list.front(); |
| EXPECT_EQ(0, packet->header.payloadType); |
| EXPECT_EQ(kBaseTimestamp - 20 * 48, packet->header.timestamp); |
| EXPECT_EQ(10U, packet->payload.size()); |
| EXPECT_FALSE(packet->primary); |
| delete packet; |
| packet_list.pop_front(); |
| |
| // Check second packet. |
| packet = packet_list.front(); |
| EXPECT_EQ(0, packet->header.payloadType); |
| EXPECT_EQ(kBaseTimestamp, packet->header.timestamp); |
| EXPECT_EQ(10U, packet->payload.size()); |
| EXPECT_TRUE(packet->primary); |
| delete packet; |
| packet_list.pop_front(); |
| |
| // Check third packet. |
| packet = packet_list.front(); |
| VerifyPacket(packet, 10, 0, kSequenceNumber, kBaseTimestamp, 0, true); |
| delete packet; |
| packet_list.pop_front(); |
| |
| // Check fourth packet. |
| packet = packet_list.front(); |
| VerifyPacket(packet, 10, 1, kSequenceNumber, kBaseTimestamp, 0, true); |
| delete packet; |
| } |
| |
| TEST(FecPayloadSplitter, EmbedFecInRed) { |
| PacketList packet_list; |
| DecoderDatabase decoder_database(CreateBuiltinAudioDecoderFactory()); |
| |
| const int kTimestampOffset = 20 * 48; // 20 ms * 48 kHz. |
| uint8_t payload_types[] = {0, 0}; |
| decoder_database.RegisterPayload(0, NetEqDecoder::kDecoderOpus, "opus"); |
| Packet* packet = CreateRedPayload(2, payload_types, kTimestampOffset, true); |
| packet_list.push_back(packet); |
| |
| PayloadSplitter splitter; |
| EXPECT_EQ(PayloadSplitter::kOK, |
| splitter.SplitRed(&packet_list)); |
| EXPECT_EQ(PayloadSplitter::kOK, |
| splitter.SplitFec(&packet_list, &decoder_database)); |
| |
| EXPECT_EQ(4u, packet_list.size()); |
| |
| // Check first packet. FEC packet copied from primary payload in RED. |
| packet = packet_list.front(); |
| EXPECT_EQ(0, packet->header.payloadType); |
| EXPECT_EQ(kBaseTimestamp - kTimestampOffset, packet->header.timestamp); |
| EXPECT_EQ(kPayloadLength, packet->payload.size()); |
| EXPECT_FALSE(packet->primary); |
| EXPECT_EQ(packet->payload[3], 1); |
| delete packet; |
| packet_list.pop_front(); |
| |
| // Check second packet. Normal packet copied from primary payload in RED. |
| packet = packet_list.front(); |
| EXPECT_EQ(0, packet->header.payloadType); |
| EXPECT_EQ(kBaseTimestamp, packet->header.timestamp); |
| EXPECT_EQ(kPayloadLength, packet->payload.size()); |
| EXPECT_TRUE(packet->primary); |
| EXPECT_EQ(packet->payload[3], 1); |
| delete packet; |
| packet_list.pop_front(); |
| |
| // Check third packet. FEC packet copied from secondary payload in RED. |
| packet = packet_list.front(); |
| EXPECT_EQ(0, packet->header.payloadType); |
| EXPECT_EQ(kBaseTimestamp - 2 * kTimestampOffset, packet->header.timestamp); |
| EXPECT_EQ(kPayloadLength, packet->payload.size()); |
| EXPECT_FALSE(packet->primary); |
| EXPECT_EQ(packet->payload[3], 0); |
| delete packet; |
| packet_list.pop_front(); |
| |
| // Check fourth packet. Normal packet copied from primary payload in RED. |
| packet = packet_list.front(); |
| EXPECT_EQ(0, packet->header.payloadType); |
| EXPECT_EQ(kBaseTimestamp - kTimestampOffset, packet->header.timestamp); |
| EXPECT_EQ(kPayloadLength, packet->payload.size()); |
| EXPECT_TRUE(packet->primary); |
| EXPECT_EQ(packet->payload[3], 0); |
| delete packet; |
| packet_list.pop_front(); |
| } |
| |
| } // namespace webrtc |