blob: f3d023ec620212142d41458e9c04070ad3dd1aae [file] [log] [blame]
/*
* Copyright (c) 2014 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "webrtc/modules/audio_processing/intelligibility/intelligibility_enhancer.h"
#include <math.h>
#include <stdlib.h>
#include <algorithm>
#include <limits>
#include <numeric>
#include "webrtc/base/checks.h"
#include "webrtc/base/logging.h"
#include "webrtc/common_audio/include/audio_util.h"
#include "webrtc/common_audio/window_generator.h"
namespace webrtc {
namespace {
const size_t kErbResolution = 2;
const int kWindowSizeMs = 16;
const int kChunkSizeMs = 10; // Size provided by APM.
const float kClipFreqKhz = 0.2f;
const float kKbdAlpha = 1.5f;
const float kLambdaBot = -1.f; // Extreme values in bisection
const float kLambdaTop = -1e-5f; // search for lamda.
const float kVoiceProbabilityThreshold = 0.5f;
// Number of chunks after voice activity which is still considered speech.
const size_t kSpeechOffsetDelay = 10;
const float kDecayRate = 0.995f; // Power estimation decay rate.
const float kMaxRelativeGainChange = 0.005f;
const float kRho = 0.0004f; // Default production and interpretation SNR.
const float kPowerNormalizationFactor = 1.f / (1 << 30);
const float kMaxActiveSNR = 128.f; // 21dB
const float kMinInactiveSNR = 32.f; // 15dB
const size_t kGainUpdatePeriod = 10u;
// Returns dot product of vectors |a| and |b| with size |length|.
float DotProduct(const float* a, const float* b, size_t length) {
float ret = 0.f;
for (size_t i = 0; i < length; ++i) {
ret += a[i] * b[i];
}
return ret;
}
// Computes the power across ERB bands from the power spectral density |pow|.
// Stores it in |result|.
void MapToErbBands(const float* pow,
const std::vector<std::vector<float>>& filter_bank,
float* result) {
for (size_t i = 0; i < filter_bank.size(); ++i) {
RTC_DCHECK_GT(filter_bank[i].size(), 0u);
result[i] = kPowerNormalizationFactor *
DotProduct(filter_bank[i].data(), pow, filter_bank[i].size());
}
}
} // namespace
IntelligibilityEnhancer::IntelligibilityEnhancer(int sample_rate_hz,
size_t num_render_channels,
size_t num_noise_bins)
: freqs_(RealFourier::ComplexLength(
RealFourier::FftOrder(sample_rate_hz * kWindowSizeMs / 1000))),
num_noise_bins_(num_noise_bins),
chunk_length_(static_cast<size_t>(sample_rate_hz * kChunkSizeMs / 1000)),
bank_size_(GetBankSize(sample_rate_hz, kErbResolution)),
sample_rate_hz_(sample_rate_hz),
num_render_channels_(num_render_channels),
clear_power_estimator_(freqs_, kDecayRate),
noise_power_estimator_(num_noise_bins, kDecayRate),
filtered_clear_pow_(bank_size_, 0.f),
filtered_noise_pow_(num_noise_bins, 0.f),
center_freqs_(bank_size_),
capture_filter_bank_(CreateErbBank(num_noise_bins)),
render_filter_bank_(CreateErbBank(freqs_)),
gains_eq_(bank_size_),
gain_applier_(freqs_, kMaxRelativeGainChange),
audio_s16_(chunk_length_),
chunks_since_voice_(kSpeechOffsetDelay),
is_speech_(false),
snr_(kMaxActiveSNR),
is_active_(false),
num_chunks_(0u),
num_active_chunks_(0u),
noise_estimation_buffer_(num_noise_bins),
noise_estimation_queue_(kMaxNumNoiseEstimatesToBuffer,
std::vector<float>(num_noise_bins),
RenderQueueItemVerifier<float>(num_noise_bins)) {
RTC_DCHECK_LE(kRho, 1.f);
const size_t erb_index = static_cast<size_t>(
ceilf(11.17f * logf((kClipFreqKhz + 0.312f) / (kClipFreqKhz + 14.6575f)) +
43.f));
start_freq_ = std::max(static_cast<size_t>(1), erb_index * kErbResolution);
size_t window_size = static_cast<size_t>(1) << RealFourier::FftOrder(freqs_);
std::vector<float> kbd_window(window_size);
WindowGenerator::KaiserBesselDerived(kKbdAlpha, window_size,
kbd_window.data());
render_mangler_.reset(new LappedTransform(
num_render_channels_, num_render_channels_, chunk_length_,
kbd_window.data(), window_size, window_size / 2, this));
}
IntelligibilityEnhancer::~IntelligibilityEnhancer() {
// Don't rely on this log, since the destructor isn't called when the app/tab
// is killed.
LOG(LS_INFO) << "Intelligibility Enhancer was active for "
<< static_cast<float>(num_active_chunks_) / num_chunks_
<< "% of the call.";
}
void IntelligibilityEnhancer::SetCaptureNoiseEstimate(
std::vector<float> noise, float gain) {
RTC_DCHECK_EQ(noise.size(), num_noise_bins_);
for (auto& bin : noise) {
bin *= gain;
}
// Disregarding return value since buffer overflow is acceptable, because it
// is not critical to get each noise estimate.
if (noise_estimation_queue_.Insert(&noise)) {
};
}
void IntelligibilityEnhancer::ProcessRenderAudio(float* const* audio,
int sample_rate_hz,
size_t num_channels) {
RTC_CHECK_EQ(sample_rate_hz_, sample_rate_hz);
RTC_CHECK_EQ(num_render_channels_, num_channels);
while (noise_estimation_queue_.Remove(&noise_estimation_buffer_)) {
noise_power_estimator_.Step(noise_estimation_buffer_.data());
}
is_speech_ = IsSpeech(audio[0]);
render_mangler_->ProcessChunk(audio, audio);
}
void IntelligibilityEnhancer::ProcessAudioBlock(
const std::complex<float>* const* in_block,
size_t in_channels,
size_t frames,
size_t /* out_channels */,
std::complex<float>* const* out_block) {
RTC_DCHECK_EQ(freqs_, frames);
if (is_speech_) {
clear_power_estimator_.Step(in_block[0]);
}
SnrBasedEffectActivation();
++num_chunks_;
if (is_active_) {
++num_active_chunks_;
if (num_chunks_ % kGainUpdatePeriod == 0) {
MapToErbBands(clear_power_estimator_.power().data(), render_filter_bank_,
filtered_clear_pow_.data());
MapToErbBands(noise_power_estimator_.power().data(), capture_filter_bank_,
filtered_noise_pow_.data());
SolveForGainsGivenLambda(kLambdaTop, start_freq_, gains_eq_.data());
const float power_target = std::accumulate(
filtered_clear_pow_.data(),
filtered_clear_pow_.data() + bank_size_,
0.f);
const float power_top =
DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
SolveForGainsGivenLambda(kLambdaBot, start_freq_, gains_eq_.data());
const float power_bot =
DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
if (power_target >= power_bot && power_target <= power_top) {
SolveForLambda(power_target);
UpdateErbGains();
} // Else experiencing power underflow, so do nothing.
}
}
for (size_t i = 0; i < in_channels; ++i) {
gain_applier_.Apply(in_block[i], out_block[i]);
}
}
void IntelligibilityEnhancer::SnrBasedEffectActivation() {
const float* clear_psd = clear_power_estimator_.power().data();
const float* noise_psd = noise_power_estimator_.power().data();
const float clear_power =
std::accumulate(clear_psd, clear_psd + freqs_, 0.f);
const float noise_power =
std::accumulate(noise_psd, noise_psd + freqs_, 0.f);
snr_ = kDecayRate * snr_ + (1.f - kDecayRate) * clear_power /
(noise_power + std::numeric_limits<float>::epsilon());
if (is_active_) {
if (snr_ > kMaxActiveSNR) {
LOG(LS_INFO) << "Intelligibility Enhancer was deactivated at chunk "
<< num_chunks_;
is_active_ = false;
// Set the target gains to unity.
float* gains = gain_applier_.target();
for (size_t i = 0; i < freqs_; ++i) {
gains[i] = 1.f;
}
}
} else {
if (snr_ < kMinInactiveSNR) {
LOG(LS_INFO) << "Intelligibility Enhancer was activated at chunk "
<< num_chunks_;
is_active_ = true;
}
}
}
void IntelligibilityEnhancer::SolveForLambda(float power_target) {
const float kConvergeThresh = 0.001f; // TODO(ekmeyerson): Find best values
const int kMaxIters = 100; // for these, based on experiments.
const float reciprocal_power_target =
1.f / (power_target + std::numeric_limits<float>::epsilon());
float lambda_bot = kLambdaBot;
float lambda_top = kLambdaTop;
float power_ratio = 2.f; // Ratio of achieved power to target power.
int iters = 0;
while (std::fabs(power_ratio - 1.f) > kConvergeThresh && iters <= kMaxIters) {
const float lambda = (lambda_bot + lambda_top) / 2.f;
SolveForGainsGivenLambda(lambda, start_freq_, gains_eq_.data());
const float power =
DotProduct(gains_eq_.data(), filtered_clear_pow_.data(), bank_size_);
if (power < power_target) {
lambda_bot = lambda;
} else {
lambda_top = lambda;
}
power_ratio = std::fabs(power * reciprocal_power_target);
++iters;
}
}
void IntelligibilityEnhancer::UpdateErbGains() {
// (ERB gain) = filterbank' * (freq gain)
float* gains = gain_applier_.target();
for (size_t i = 0; i < freqs_; ++i) {
gains[i] = 0.f;
for (size_t j = 0; j < bank_size_; ++j) {
gains[i] += render_filter_bank_[j][i] * gains_eq_[j];
}
}
}
size_t IntelligibilityEnhancer::GetBankSize(int sample_rate,
size_t erb_resolution) {
float freq_limit = sample_rate / 2000.f;
size_t erb_scale = static_cast<size_t>(ceilf(
11.17f * logf((freq_limit + 0.312f) / (freq_limit + 14.6575f)) + 43.f));
return erb_scale * erb_resolution;
}
std::vector<std::vector<float>> IntelligibilityEnhancer::CreateErbBank(
size_t num_freqs) {
std::vector<std::vector<float>> filter_bank(bank_size_);
size_t lf = 1, rf = 4;
for (size_t i = 0; i < bank_size_; ++i) {
float abs_temp = fabsf((i + 1.f) / static_cast<float>(kErbResolution));
center_freqs_[i] = 676170.4f / (47.06538f - expf(0.08950404f * abs_temp));
center_freqs_[i] -= 14678.49f;
}
float last_center_freq = center_freqs_[bank_size_ - 1];
for (size_t i = 0; i < bank_size_; ++i) {
center_freqs_[i] *= 0.5f * sample_rate_hz_ / last_center_freq;
}
for (size_t i = 0; i < bank_size_; ++i) {
filter_bank[i].resize(num_freqs);
}
for (size_t i = 1; i <= bank_size_; ++i) {
static const size_t kOne = 1; // Avoids repeated static_cast<>s below.
size_t lll =
static_cast<size_t>(round(center_freqs_[std::max(kOne, i - lf) - 1] *
num_freqs / (0.5f * sample_rate_hz_)));
size_t ll = static_cast<size_t>(round(center_freqs_[std::max(kOne, i) - 1] *
num_freqs / (0.5f * sample_rate_hz_)));
lll = std::min(num_freqs, std::max(lll, kOne)) - 1;
ll = std::min(num_freqs, std::max(ll, kOne)) - 1;
size_t rrr = static_cast<size_t>(
round(center_freqs_[std::min(bank_size_, i + rf) - 1] * num_freqs /
(0.5f * sample_rate_hz_)));
size_t rr = static_cast<size_t>(
round(center_freqs_[std::min(bank_size_, i + 1) - 1] * num_freqs /
(0.5f * sample_rate_hz_)));
rrr = std::min(num_freqs, std::max(rrr, kOne)) - 1;
rr = std::min(num_freqs, std::max(rr, kOne)) - 1;
float step = ll == lll ? 0.f : 1.f / (ll - lll);
float element = 0.f;
for (size_t j = lll; j <= ll; ++j) {
filter_bank[i - 1][j] = element;
element += step;
}
step = rr == rrr ? 0.f : 1.f / (rrr - rr);
element = 1.f;
for (size_t j = rr; j <= rrr; ++j) {
filter_bank[i - 1][j] = element;
element -= step;
}
for (size_t j = ll; j <= rr; ++j) {
filter_bank[i - 1][j] = 1.f;
}
}
for (size_t i = 0; i < num_freqs; ++i) {
float sum = 0.f;
for (size_t j = 0; j < bank_size_; ++j) {
sum += filter_bank[j][i];
}
for (size_t j = 0; j < bank_size_; ++j) {
filter_bank[j][i] /= sum;
}
}
return filter_bank;
}
void IntelligibilityEnhancer::SolveForGainsGivenLambda(float lambda,
size_t start_freq,
float* sols) {
const float kMinPower = 1e-5f;
const float* pow_x0 = filtered_clear_pow_.data();
const float* pow_n0 = filtered_noise_pow_.data();
for (size_t n = 0; n < start_freq; ++n) {
sols[n] = 1.f;
}
// Analytic solution for optimal gains. See paper for derivation.
for (size_t n = start_freq; n < bank_size_; ++n) {
if (pow_x0[n] < kMinPower || pow_n0[n] < kMinPower) {
sols[n] = 1.f;
} else {
const float gamma0 = 0.5f * kRho * pow_x0[n] * pow_n0[n] +
lambda * pow_x0[n] * pow_n0[n] * pow_n0[n];
const float beta0 =
lambda * pow_x0[n] * (2.f - kRho) * pow_x0[n] * pow_n0[n];
const float alpha0 =
lambda * pow_x0[n] * (1.f - kRho) * pow_x0[n] * pow_x0[n];
RTC_DCHECK_LT(alpha0, 0.f);
// The quadratic equation should always have real roots, but to guard
// against numerical errors we limit it to a minimum of zero.
sols[n] = std::max(
0.f, (-beta0 - std::sqrt(std::max(
0.f, beta0 * beta0 - 4.f * alpha0 * gamma0))) /
(2.f * alpha0));
}
}
}
bool IntelligibilityEnhancer::IsSpeech(const float* audio) {
FloatToS16(audio, chunk_length_, audio_s16_.data());
vad_.ProcessChunk(audio_s16_.data(), chunk_length_, sample_rate_hz_);
if (vad_.last_voice_probability() > kVoiceProbabilityThreshold) {
chunks_since_voice_ = 0;
} else if (chunks_since_voice_ < kSpeechOffsetDelay) {
++chunks_since_voice_;
}
return chunks_since_voice_ < kSpeechOffsetDelay;
}
} // namespace webrtc