| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "system_wrappers/include/rtp_to_ntp_estimator.h" |
| |
| #include <stddef.h> |
| |
| #include <cmath> |
| #include <vector> |
| |
| #include "api/array_view.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/numerics/safe_conversions.h" |
| |
| namespace webrtc { |
| namespace { |
| // Maximum number of RTCP SR reports to use to map between RTP and NTP. |
| constexpr size_t kNumRtcpReportsToUse = 20; |
| // Don't allow NTP timestamps to jump more than 1 hour. Chosen arbitrary as big |
| // enough to not affect normal use-cases. Yet it is smaller than RTP wrap-around |
| // half-period (90khz RTP clock wrap-arounds every 13.25 hours). After half of |
| // wrap-around period it is impossible to unwrap RTP timestamps correctly. |
| constexpr uint64_t kMaxAllowedRtcpNtpInterval = uint64_t{60 * 60} << 32; |
| } // namespace |
| |
| void RtpToNtpEstimator::UpdateParameters() { |
| size_t n = measurements_.size(); |
| if (n < 2) |
| return; |
| |
| // Run linear regression: |
| // Given x[] and y[] writes out such k and b that line y=k*x+b approximates |
| // given points in the best way (Least Squares Method). |
| auto x = [](const RtcpMeasurement& m) { |
| return static_cast<double>(m.unwrapped_rtp_timestamp); |
| }; |
| auto y = [](const RtcpMeasurement& m) { |
| return static_cast<double>(static_cast<uint64_t>(m.ntp_time)); |
| }; |
| |
| double avg_x = 0; |
| double avg_y = 0; |
| for (const RtcpMeasurement& m : measurements_) { |
| avg_x += x(m); |
| avg_y += y(m); |
| } |
| avg_x /= n; |
| avg_y /= n; |
| |
| double variance_x = 0; |
| double covariance_xy = 0; |
| for (const RtcpMeasurement& m : measurements_) { |
| double normalized_x = x(m) - avg_x; |
| double normalized_y = y(m) - avg_y; |
| variance_x += normalized_x * normalized_x; |
| covariance_xy += normalized_x * normalized_y; |
| } |
| |
| if (std::fabs(variance_x) < 1e-8) |
| return; |
| |
| double k = covariance_xy / variance_x; |
| double b = avg_y - k * avg_x; |
| params_ = {{.slope = k, .offset = b}}; |
| } |
| |
| RtpToNtpEstimator::UpdateResult RtpToNtpEstimator::UpdateMeasurements( |
| NtpTime ntp, |
| uint32_t rtp_timestamp) { |
| int64_t unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp); |
| |
| RtcpMeasurement new_measurement = { |
| .ntp_time = ntp, .unwrapped_rtp_timestamp = unwrapped_rtp_timestamp}; |
| |
| for (const RtcpMeasurement& measurement : measurements_) { |
| // Use || since two equal timestamps will result in zero frequency. |
| if (measurement.ntp_time == ntp || |
| measurement.unwrapped_rtp_timestamp == unwrapped_rtp_timestamp) { |
| return kSameMeasurement; |
| } |
| } |
| |
| if (!new_measurement.ntp_time.Valid()) |
| return kInvalidMeasurement; |
| |
| uint64_t ntp_new = static_cast<uint64_t>(new_measurement.ntp_time); |
| bool invalid_sample = false; |
| if (!measurements_.empty()) { |
| int64_t old_rtp_timestamp = measurements_.front().unwrapped_rtp_timestamp; |
| uint64_t old_ntp = static_cast<uint64_t>(measurements_.front().ntp_time); |
| if (ntp_new <= old_ntp || ntp_new > old_ntp + kMaxAllowedRtcpNtpInterval) { |
| invalid_sample = true; |
| } else if (unwrapped_rtp_timestamp <= old_rtp_timestamp) { |
| RTC_LOG(LS_WARNING) |
| << "Newer RTCP SR report with older RTP timestamp, dropping"; |
| invalid_sample = true; |
| } else if (unwrapped_rtp_timestamp - old_rtp_timestamp > (1 << 25)) { |
| // Sanity check. No jumps too far into the future in rtp. |
| invalid_sample = true; |
| } |
| } |
| |
| if (invalid_sample) { |
| ++consecutive_invalid_samples_; |
| if (consecutive_invalid_samples_ < kMaxInvalidSamples) { |
| return kInvalidMeasurement; |
| } |
| RTC_LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, " |
| "clearing measurements."; |
| measurements_.clear(); |
| params_ = std::nullopt; |
| } |
| consecutive_invalid_samples_ = 0; |
| |
| // Insert new RTCP SR report. |
| if (measurements_.size() == kNumRtcpReportsToUse) |
| measurements_.pop_back(); |
| |
| measurements_.push_front(new_measurement); |
| |
| // List updated, calculate new parameters. |
| UpdateParameters(); |
| return kNewMeasurement; |
| } |
| |
| NtpTime RtpToNtpEstimator::Estimate(uint32_t rtp_timestamp) const { |
| if (!params_) |
| return NtpTime(); |
| |
| double estimated = |
| static_cast<double>(unwrapper_.Unwrap(rtp_timestamp)) * params_->slope + |
| params_->offset + 0.5f; |
| |
| return NtpTime(rtc::saturated_cast<uint64_t>(estimated)); |
| } |
| |
| double RtpToNtpEstimator::EstimatedFrequencyKhz() const { |
| if (!params_.has_value()) { |
| return 0.0; |
| } |
| static constexpr double kNtpUnitPerMs = 4.294967296E6; // 2^32 / 1000. |
| return kNtpUnitPerMs / params_->slope; |
| } |
| |
| } // namespace webrtc |