blob: 3df4b77b69c1dc0779c1ee62e0d54a7f5d873dfb [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "system_wrappers/include/rtp_to_ntp_estimator.h"
#include <stddef.h>
#include <cmath>
#include <vector>
#include "api/array_view.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_conversions.h"
namespace webrtc {
namespace {
// Maximum number of RTCP SR reports to use to map between RTP and NTP.
constexpr size_t kNumRtcpReportsToUse = 20;
// Don't allow NTP timestamps to jump more than 1 hour. Chosen arbitrary as big
// enough to not affect normal use-cases. Yet it is smaller than RTP wrap-around
// half-period (90khz RTP clock wrap-arounds every 13.25 hours). After half of
// wrap-around period it is impossible to unwrap RTP timestamps correctly.
constexpr uint64_t kMaxAllowedRtcpNtpInterval = uint64_t{60 * 60} << 32;
} // namespace
void RtpToNtpEstimator::UpdateParameters() {
size_t n = measurements_.size();
if (n < 2)
return;
// Run linear regression:
// Given x[] and y[] writes out such k and b that line y=k*x+b approximates
// given points in the best way (Least Squares Method).
auto x = [](const RtcpMeasurement& m) {
return static_cast<double>(m.unwrapped_rtp_timestamp);
};
auto y = [](const RtcpMeasurement& m) {
return static_cast<double>(static_cast<uint64_t>(m.ntp_time));
};
double avg_x = 0;
double avg_y = 0;
for (const RtcpMeasurement& m : measurements_) {
avg_x += x(m);
avg_y += y(m);
}
avg_x /= n;
avg_y /= n;
double variance_x = 0;
double covariance_xy = 0;
for (const RtcpMeasurement& m : measurements_) {
double normalized_x = x(m) - avg_x;
double normalized_y = y(m) - avg_y;
variance_x += normalized_x * normalized_x;
covariance_xy += normalized_x * normalized_y;
}
if (std::fabs(variance_x) < 1e-8)
return;
double k = covariance_xy / variance_x;
double b = avg_y - k * avg_x;
params_ = {{.slope = k, .offset = b}};
}
RtpToNtpEstimator::UpdateResult RtpToNtpEstimator::UpdateMeasurements(
NtpTime ntp,
uint32_t rtp_timestamp) {
int64_t unwrapped_rtp_timestamp = unwrapper_.Unwrap(rtp_timestamp);
RtcpMeasurement new_measurement = {
.ntp_time = ntp, .unwrapped_rtp_timestamp = unwrapped_rtp_timestamp};
for (const RtcpMeasurement& measurement : measurements_) {
// Use || since two equal timestamps will result in zero frequency.
if (measurement.ntp_time == ntp ||
measurement.unwrapped_rtp_timestamp == unwrapped_rtp_timestamp) {
return kSameMeasurement;
}
}
if (!new_measurement.ntp_time.Valid())
return kInvalidMeasurement;
uint64_t ntp_new = static_cast<uint64_t>(new_measurement.ntp_time);
bool invalid_sample = false;
if (!measurements_.empty()) {
int64_t old_rtp_timestamp = measurements_.front().unwrapped_rtp_timestamp;
uint64_t old_ntp = static_cast<uint64_t>(measurements_.front().ntp_time);
if (ntp_new <= old_ntp || ntp_new > old_ntp + kMaxAllowedRtcpNtpInterval) {
invalid_sample = true;
} else if (unwrapped_rtp_timestamp <= old_rtp_timestamp) {
RTC_LOG(LS_WARNING)
<< "Newer RTCP SR report with older RTP timestamp, dropping";
invalid_sample = true;
} else if (unwrapped_rtp_timestamp - old_rtp_timestamp > (1 << 25)) {
// Sanity check. No jumps too far into the future in rtp.
invalid_sample = true;
}
}
if (invalid_sample) {
++consecutive_invalid_samples_;
if (consecutive_invalid_samples_ < kMaxInvalidSamples) {
return kInvalidMeasurement;
}
RTC_LOG(LS_WARNING) << "Multiple consecutively invalid RTCP SR reports, "
"clearing measurements.";
measurements_.clear();
params_ = std::nullopt;
}
consecutive_invalid_samples_ = 0;
// Insert new RTCP SR report.
if (measurements_.size() == kNumRtcpReportsToUse)
measurements_.pop_back();
measurements_.push_front(new_measurement);
// List updated, calculate new parameters.
UpdateParameters();
return kNewMeasurement;
}
NtpTime RtpToNtpEstimator::Estimate(uint32_t rtp_timestamp) const {
if (!params_)
return NtpTime();
double estimated =
static_cast<double>(unwrapper_.Unwrap(rtp_timestamp)) * params_->slope +
params_->offset + 0.5f;
return NtpTime(rtc::saturated_cast<uint64_t>(estimated));
}
double RtpToNtpEstimator::EstimatedFrequencyKhz() const {
if (!params_.has_value()) {
return 0.0;
}
static constexpr double kNtpUnitPerMs = 4.294967296E6; // 2^32 / 1000.
return kNtpUnitPerMs / params_->slope;
}
} // namespace webrtc