| /* |
| * Copyright (c) 2013 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| // TODO(pbos): Move Config from common.h to here. |
| |
| #ifndef WEBRTC_CONFIG_H_ |
| #define WEBRTC_CONFIG_H_ |
| |
| #include <string> |
| #include <vector> |
| |
| #include "webrtc/common_types.h" |
| #include "webrtc/typedefs.h" |
| |
| namespace webrtc { |
| |
| // Settings for NACK, see RFC 4585 for details. |
| struct NackConfig { |
| NackConfig() : rtp_history_ms(0) {} |
| // Send side: the time RTP packets are stored for retransmissions. |
| // Receive side: the time the receiver is prepared to wait for |
| // retransmissions. |
| // Set to '0' to disable. |
| int rtp_history_ms; |
| }; |
| |
| // Settings for forward error correction, see RFC 5109 for details. Set the |
| // payload types to '-1' to disable. |
| struct FecConfig { |
| FecConfig() |
| : ulpfec_payload_type(-1), |
| red_payload_type(-1), |
| red_rtx_payload_type(-1) {} |
| std::string ToString() const; |
| // Payload type used for ULPFEC packets. |
| int ulpfec_payload_type; |
| |
| // Payload type used for RED packets. |
| int red_payload_type; |
| |
| // RTX payload type for RED payload. |
| int red_rtx_payload_type; |
| }; |
| |
| // RTP header extension, see RFC 5285. |
| struct RtpExtension { |
| RtpExtension(const std::string& name, int id) : name(name), id(id) {} |
| std::string ToString() const; |
| bool operator==(const RtpExtension& rhs) const { |
| return name == rhs.name && id == rhs.id; |
| } |
| static bool IsSupportedForAudio(const std::string& name); |
| static bool IsSupportedForVideo(const std::string& name); |
| |
| static const char* kTOffset; |
| static const char* kAbsSendTime; |
| static const char* kVideoRotation; |
| static const char* kAudioLevel; |
| static const char* kTransportSequenceNumber; |
| std::string name; |
| int id; |
| }; |
| |
| struct VideoStream { |
| VideoStream(); |
| ~VideoStream(); |
| std::string ToString() const; |
| |
| size_t width; |
| size_t height; |
| int max_framerate; |
| |
| int min_bitrate_bps; |
| int target_bitrate_bps; |
| int max_bitrate_bps; |
| |
| int max_qp; |
| |
| // Bitrate thresholds for enabling additional temporal layers. Since these are |
| // thresholds in between layers, we have one additional layer. One threshold |
| // gives two temporal layers, one below the threshold and one above, two give |
| // three, and so on. |
| // The VideoEncoder may redistribute bitrates over the temporal layers so a |
| // bitrate threshold of 100k and an estimate of 105k does not imply that we |
| // get 100k in one temporal layer and 5k in the other, just that the bitrate |
| // in the first temporal layer should not exceed 100k. |
| // TODO(pbos): Apart from a special case for two-layer screencast these |
| // thresholds are not propagated to the VideoEncoder. To be implemented. |
| std::vector<int> temporal_layer_thresholds_bps; |
| }; |
| |
| struct VideoEncoderConfig { |
| enum class ContentType { |
| kRealtimeVideo, |
| kScreen, |
| }; |
| |
| VideoEncoderConfig(); |
| ~VideoEncoderConfig(); |
| std::string ToString() const; |
| |
| std::vector<VideoStream> streams; |
| std::vector<SpatialLayer> spatial_layers; |
| ContentType content_type; |
| void* encoder_specific_settings; |
| |
| // Padding will be used up to this bitrate regardless of the bitrate produced |
| // by the encoder. Padding above what's actually produced by the encoder helps |
| // maintaining a higher bitrate estimate. Padding will however not be sent |
| // unless the estimated bandwidth indicates that the link can handle it. |
| int min_transmit_bitrate_bps; |
| }; |
| |
| // Controls the capacity of the packet buffer in NetEq. The capacity is the |
| // maximum number of packets that the buffer can contain. If the limit is |
| // exceeded, the buffer will be flushed. The capacity does not affect the actual |
| // audio delay in the general case, since this is governed by the target buffer |
| // level (calculated from the jitter profile). It is only in the rare case of |
| // severe network freezes that a higher capacity will lead to a (transient) |
| // increase in audio delay. |
| struct NetEqCapacityConfig { |
| NetEqCapacityConfig() : enabled(false), capacity(0) {} |
| explicit NetEqCapacityConfig(int value) : enabled(true), capacity(value) {} |
| bool enabled; |
| int capacity; |
| }; |
| |
| struct NetEqFastAccelerate { |
| NetEqFastAccelerate() : enabled(false) {} |
| explicit NetEqFastAccelerate(bool value) : enabled(value) {} |
| bool enabled; |
| }; |
| |
| struct VoicePacing { |
| VoicePacing() : enabled(false) {} |
| explicit VoicePacing(bool value) : enabled(value) {} |
| bool enabled; |
| }; |
| |
| } // namespace webrtc |
| |
| #endif // WEBRTC_CONFIG_H_ |