| /* |
| * Copyright (c) 2019 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/pacing/pacing_controller.h" |
| |
| #include <algorithm> |
| #include <list> |
| #include <memory> |
| #include <string> |
| #include <utility> |
| #include <vector> |
| |
| #include "api/transport/network_types.h" |
| #include "api/units/data_rate.h" |
| #include "api/units/time_delta.h" |
| #include "modules/pacing/packet_router.h" |
| #include "system_wrappers/include/clock.h" |
| #include "test/explicit_key_value_config.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| using ::testing::_; |
| using ::testing::Field; |
| using ::testing::Pointee; |
| using ::testing::Property; |
| using ::testing::Return; |
| using ::testing::WithoutArgs; |
| |
| using ::webrtc::test::ExplicitKeyValueConfig; |
| |
| namespace webrtc { |
| namespace { |
| constexpr DataRate kFirstClusterRate = DataRate::KilobitsPerSec(900); |
| constexpr DataRate kSecondClusterRate = DataRate::KilobitsPerSec(1800); |
| |
| // The error stems from truncating the time interval of probe packets to integer |
| // values. This results in probing slightly higher than the target bitrate. |
| // For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets. |
| constexpr DataRate kProbingErrorMargin = DataRate::KilobitsPerSec(150); |
| |
| const float kPaceMultiplier = 2.5f; |
| |
| constexpr uint32_t kAudioSsrc = 12345; |
| constexpr uint32_t kVideoSsrc = 234565; |
| |
| constexpr DataRate kTargetRate = DataRate::KilobitsPerSec(800); |
| |
| std::unique_ptr<RtpPacketToSend> BuildPacket(RtpPacketMediaType type, |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| size_t size) { |
| auto packet = std::make_unique<RtpPacketToSend>(nullptr); |
| packet->set_packet_type(type); |
| packet->SetSsrc(ssrc); |
| packet->SetSequenceNumber(sequence_number); |
| packet->set_capture_time(Timestamp::Millis(capture_time_ms)); |
| packet->SetPayloadSize(size); |
| return packet; |
| } |
| |
| class MediaStream { |
| public: |
| MediaStream(SimulatedClock& clock, |
| RtpPacketMediaType type, |
| uint32_t ssrc, |
| size_t packet_size) |
| : clock_(clock), type_(type), ssrc_(ssrc), packet_size_(packet_size) {} |
| |
| std::unique_ptr<RtpPacketToSend> BuildNextPacket() { |
| return BuildPacket(type_, ssrc_, seq_num_++, clock_.TimeInMilliseconds(), |
| packet_size_); |
| } |
| std::unique_ptr<RtpPacketToSend> BuildNextPacket(size_t size) { |
| return BuildPacket(type_, ssrc_, seq_num_++, clock_.TimeInMilliseconds(), |
| size); |
| } |
| |
| private: |
| SimulatedClock& clock_; |
| const RtpPacketMediaType type_; |
| const uint32_t ssrc_; |
| const size_t packet_size_; |
| uint16_t seq_num_ = 1000; |
| }; |
| |
| // Mock callback proxy, where both new and old api redirects to common mock |
| // methods that focus on core aspects. |
| class MockPacingControllerCallback : public PacingController::PacketSender { |
| public: |
| void SendPacket(std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& cluster_info) override { |
| SendPacket(packet->Ssrc(), packet->SequenceNumber(), |
| packet->capture_time().ms(), |
| packet->packet_type() == RtpPacketMediaType::kRetransmission, |
| packet->packet_type() == RtpPacketMediaType::kPadding); |
| } |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| DataSize target_size) override { |
| std::vector<std::unique_ptr<RtpPacketToSend>> ret; |
| size_t padding_size = SendPadding(target_size.bytes()); |
| if (padding_size > 0) { |
| auto packet = std::make_unique<RtpPacketToSend>(nullptr); |
| packet->SetPayloadSize(padding_size); |
| packet->set_packet_type(RtpPacketMediaType::kPadding); |
| ret.emplace_back(std::move(packet)); |
| } |
| return ret; |
| } |
| |
| MOCK_METHOD(void, |
| SendPacket, |
| (uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_timestamp, |
| bool retransmission, |
| bool padding)); |
| MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>, |
| FetchFec, |
| (), |
| (override)); |
| MOCK_METHOD(size_t, SendPadding, (size_t target_size)); |
| MOCK_METHOD(void, |
| OnAbortedRetransmissions, |
| (uint32_t, rtc::ArrayView<const uint16_t>), |
| (override)); |
| MOCK_METHOD(absl::optional<uint32_t>, |
| GetRtxSsrcForMedia, |
| (uint32_t), |
| (const, override)); |
| }; |
| |
| // Mock callback implementing the raw api. |
| class MockPacketSender : public PacingController::PacketSender { |
| public: |
| MOCK_METHOD(void, |
| SendPacket, |
| (std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& cluster_info), |
| (override)); |
| MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>, |
| FetchFec, |
| (), |
| (override)); |
| |
| MOCK_METHOD(std::vector<std::unique_ptr<RtpPacketToSend>>, |
| GeneratePadding, |
| (DataSize target_size), |
| (override)); |
| MOCK_METHOD(void, |
| OnAbortedRetransmissions, |
| (uint32_t, rtc::ArrayView<const uint16_t>), |
| (override)); |
| MOCK_METHOD(absl::optional<uint32_t>, |
| GetRtxSsrcForMedia, |
| (uint32_t), |
| (const, override)); |
| }; |
| |
| class PacingControllerPadding : public PacingController::PacketSender { |
| public: |
| static const size_t kPaddingPacketSize = 224; |
| |
| PacingControllerPadding() : padding_sent_(0), total_bytes_sent_(0) {} |
| |
| void SendPacket(std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& pacing_info) override { |
| total_bytes_sent_ += packet->payload_size(); |
| } |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override { |
| return {}; |
| } |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| DataSize target_size) override { |
| size_t num_packets = |
| (target_size.bytes() + kPaddingPacketSize - 1) / kPaddingPacketSize; |
| std::vector<std::unique_ptr<RtpPacketToSend>> packets; |
| for (size_t i = 0; i < num_packets; ++i) { |
| packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr)); |
| packets.back()->SetPadding(kPaddingPacketSize); |
| packets.back()->set_packet_type(RtpPacketMediaType::kPadding); |
| padding_sent_ += kPaddingPacketSize; |
| } |
| return packets; |
| } |
| |
| void OnAbortedRetransmissions(uint32_t, |
| rtc::ArrayView<const uint16_t>) override {} |
| absl::optional<uint32_t> GetRtxSsrcForMedia(uint32_t) const override { |
| return absl::nullopt; |
| } |
| |
| size_t padding_sent() { return padding_sent_; } |
| size_t total_bytes_sent() { return total_bytes_sent_; } |
| |
| private: |
| size_t padding_sent_; |
| size_t total_bytes_sent_; |
| }; |
| |
| class PacingControllerProbing : public PacingController::PacketSender { |
| public: |
| PacingControllerProbing() : packets_sent_(0), padding_sent_(0) {} |
| |
| void SendPacket(std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& pacing_info) override { |
| if (packet->packet_type() != RtpPacketMediaType::kPadding) { |
| ++packets_sent_; |
| } |
| last_pacing_info_ = pacing_info; |
| } |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> FetchFec() override { |
| return {}; |
| } |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> GeneratePadding( |
| DataSize target_size) override { |
| // From RTPSender: |
| // Max in the RFC 3550 is 255 bytes, we limit it to be modulus 32 for SRTP. |
| const DataSize kMaxPadding = DataSize::Bytes(224); |
| |
| std::vector<std::unique_ptr<RtpPacketToSend>> packets; |
| while (target_size > DataSize::Zero()) { |
| DataSize padding_size = std::min(kMaxPadding, target_size); |
| packets.emplace_back(std::make_unique<RtpPacketToSend>(nullptr)); |
| packets.back()->SetPadding(padding_size.bytes()); |
| packets.back()->set_packet_type(RtpPacketMediaType::kPadding); |
| padding_sent_ += padding_size.bytes(); |
| target_size -= padding_size; |
| } |
| return packets; |
| } |
| |
| void OnAbortedRetransmissions(uint32_t, |
| rtc::ArrayView<const uint16_t>) override {} |
| absl::optional<uint32_t> GetRtxSsrcForMedia(uint32_t) const override { |
| return absl::nullopt; |
| } |
| |
| int packets_sent() const { return packets_sent_; } |
| int padding_sent() const { return padding_sent_; } |
| int total_packets_sent() const { return packets_sent_ + padding_sent_; } |
| PacedPacketInfo last_pacing_info() const { return last_pacing_info_; } |
| |
| private: |
| int packets_sent_; |
| int padding_sent_; |
| PacedPacketInfo last_pacing_info_; |
| }; |
| |
| class PacingControllerTest : public ::testing::Test { |
| protected: |
| PacingControllerTest() : clock_(123456), trials_("") {} |
| |
| void SendAndExpectPacket(PacingController* pacer, |
| RtpPacketMediaType type, |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| size_t size) { |
| pacer->EnqueuePacket( |
| BuildPacket(type, ssrc, sequence_number, capture_time_ms, size)); |
| |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc, sequence_number, capture_time_ms, |
| type == RtpPacketMediaType::kRetransmission, false)); |
| } |
| |
| void AdvanceTimeUntil(webrtc::Timestamp time) { |
| Timestamp now = clock_.CurrentTime(); |
| clock_.AdvanceTime(std::max(TimeDelta::Zero(), time - now)); |
| } |
| |
| void ConsumeInitialBudget(PacingController* pacer) { |
| const uint32_t kSsrc = 54321; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = clock_.TimeInMilliseconds(); |
| const size_t kPacketSize = 250; |
| |
| EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite()); |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(pacer, RtpPacketMediaType::kVideo, kSsrc, |
| sequence_number++, capture_time_ms, kPacketSize); |
| } |
| |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| } |
| |
| SimulatedClock clock_; |
| |
| MediaStream audio_ = MediaStream(clock_, |
| /*type*/ RtpPacketMediaType::kAudio, |
| /*ssrc*/ kAudioSsrc, |
| /*packet_size*/ 100); |
| MediaStream video_ = MediaStream(clock_, |
| /*type*/ RtpPacketMediaType::kVideo, |
| /*ssrc*/ kVideoSsrc, |
| /*packet_size*/ 1000); |
| |
| ::testing::NiceMock<MockPacingControllerCallback> callback_; |
| ExplicitKeyValueConfig trials_; |
| }; |
| |
| TEST_F(PacingControllerTest, DefaultNoPaddingInSilence) { |
| const test::ExplicitKeyValueConfig trials(""); |
| PacingController pacer(&clock_, &callback_, trials); |
| pacer.SetPacingRates(kTargetRate, DataRate::Zero()); |
| // Video packet to reset last send time and provide padding data. |
| pacer.EnqueuePacket(video_.BuildNextPacket()); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer.ProcessPackets(); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| // Waiting 500 ms should not trigger sending of padding. |
| clock_.AdvanceTimeMilliseconds(500); |
| pacer.ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, PaddingInSilenceWithTrial) { |
| const test::ExplicitKeyValueConfig trials( |
| "WebRTC-Pacer-PadInSilence/Enabled/"); |
| PacingController pacer(&clock_, &callback_, trials); |
| pacer.SetPacingRates(kTargetRate, DataRate::Zero()); |
| // Video packet to reset last send time and provide padding data. |
| pacer.EnqueuePacket(video_.BuildNextPacket()); |
| EXPECT_CALL(callback_, SendPacket).Times(2); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer.ProcessPackets(); |
| EXPECT_CALL(callback_, SendPadding).WillOnce(Return(1000)); |
| // Waiting 500 ms should trigger sending of padding. |
| clock_.AdvanceTimeMilliseconds(500); |
| pacer.ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, CongestionWindowAffectsAudioInTrial) { |
| const test::ExplicitKeyValueConfig trials("WebRTC-Pacer-BlockAudio/Enabled/"); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| PacingController pacer(&clock_, &callback_, trials); |
| pacer.SetPacingRates(DataRate::KilobitsPerSec(10000), DataRate::Zero()); |
| // Video packet fills congestion window. |
| pacer.EnqueuePacket(video_.BuildNextPacket()); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| pacer.SetCongested(true); |
| // Audio packet blocked due to congestion. |
| pacer.EnqueuePacket(audio_.BuildNextPacket()); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| // Forward time to where we send keep-alive. |
| EXPECT_CALL(callback_, SendPadding(1)).Times(2); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| // Audio packet unblocked when congestion window clear. |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| pacer.SetCongested(false); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, DefaultCongestionWindowDoesNotAffectAudio) { |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| const test::ExplicitKeyValueConfig trials(""); |
| PacingController pacer(&clock_, &callback_, trials); |
| pacer.SetPacingRates(DataRate::BitsPerSec(10000000), DataRate::Zero()); |
| // Video packet fills congestion window. |
| pacer.EnqueuePacket(video_.BuildNextPacket()); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| pacer.SetCongested(true); |
| // Audio not blocked due to congestion. |
| pacer.EnqueuePacket(audio_.BuildNextPacket()); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, BudgetAffectsAudioInTrial) { |
| ExplicitKeyValueConfig trials("WebRTC-Pacer-BlockAudio/Enabled/"); |
| PacingController pacer(&clock_, &callback_, trials); |
| const size_t kPacketSize = 1000; |
| const int kProcessIntervalsPerSecond = 1000 / 5; |
| DataRate pacing_rate = |
| DataRate::BitsPerSec(kPacketSize / 3 * 8 * kProcessIntervalsPerSecond); |
| pacer.SetPacingRates(pacing_rate, DataRate::Zero()); |
| // Video fills budget for following process periods. |
| pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize)); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| // Audio packet blocked due to budget limit. |
| pacer.EnqueuePacket(audio_.BuildNextPacket()); |
| Timestamp wait_start_time = clock_.CurrentTime(); |
| Timestamp wait_end_time = Timestamp::MinusInfinity(); |
| EXPECT_CALL(callback_, SendPacket).WillOnce(WithoutArgs([&]() { |
| wait_end_time = clock_.CurrentTime(); |
| })); |
| while (!wait_end_time.IsFinite()) { |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| } |
| const TimeDelta expected_wait_time = |
| DataSize::Bytes(kPacketSize) / pacing_rate; |
| // Verify delay is near expectation, within timing margin. |
| EXPECT_LT(((wait_end_time - wait_start_time) - expected_wait_time).Abs(), |
| PacingController::kMinSleepTime); |
| } |
| |
| TEST_F(PacingControllerTest, DefaultBudgetDoesNotAffectAudio) { |
| const size_t kPacketSize = 1000; |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| const test::ExplicitKeyValueConfig trials(""); |
| PacingController pacer(&clock_, &callback_, trials); |
| const int kProcessIntervalsPerSecond = 1000 / 5; |
| pacer.SetPacingRates( |
| DataRate::BitsPerSec(kPacketSize / 3 * 8 * kProcessIntervalsPerSecond), |
| DataRate::Zero()); |
| // Video fills budget for following process periods. |
| pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize)); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| // Audio packet not blocked due to budget limit. |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| pacer.EnqueuePacket(audio_.BuildNextPacket()); |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, FirstSentPacketTimeIsSet) { |
| const Timestamp kStartTime = clock_.CurrentTime(); |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // No packet sent. |
| EXPECT_FALSE(pacer->FirstSentPacketTime().has_value()); |
| pacer->EnqueuePacket(video_.BuildNextPacket()); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| EXPECT_EQ(kStartTime, pacer->FirstSentPacketTime()); |
| } |
| |
| TEST_F(PacingControllerTest, QueueAndPacePackets) { |
| const uint32_t kSsrc = 12345; |
| uint16_t sequence_number = 1234; |
| const DataSize kPackeSize = DataSize::Bytes(250); |
| const TimeDelta kSendInterval = TimeDelta::Millis(5); |
| |
| // Due to the multiplicative factor we can send 5 packets during a 5ms send |
| // interval. (send interval * network capacity * multiplier / packet size) |
| const size_t kPacketsToSend = (kSendInterval * kTargetRate).bytes() * |
| kPaceMultiplier / kPackeSize.bytes(); |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| for (size_t i = 0; i < kPacketsToSend; ++i) { |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPackeSize.bytes()); |
| } |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| |
| // Enqueue one extra packet. |
| int64_t queued_packet_timestamp = clock_.TimeInMilliseconds(); |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kSsrc, |
| sequence_number, queued_packet_timestamp, |
| kPackeSize.bytes())); |
| EXPECT_EQ(kPacketsToSend + 1, pacer->QueueSizePackets()); |
| |
| // Send packets until the initial kPacketsToSend packets are done. |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer->QueueSizePackets() > 1) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| EXPECT_LT(clock_.CurrentTime() - start_time, kSendInterval); |
| |
| // Proceed till last packet can be sent. |
| EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number, |
| queued_packet_timestamp, false, false)) |
| .Times(1); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| EXPECT_GE(clock_.CurrentTime() - start_time, kSendInterval); |
| EXPECT_EQ(pacer->QueueSizePackets(), 0u); |
| } |
| |
| TEST_F(PacingControllerTest, PaceQueuedPackets) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 250; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize); |
| } |
| |
| for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize)); |
| } |
| EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10, |
| pacer->QueueSizePackets()); |
| |
| while (pacer->QueueSizePackets() > packets_to_send_per_interval * 10) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| EXPECT_EQ(pacer->QueueSizePackets(), packets_to_send_per_interval * 10); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, _, false, false)) |
| .Times(pacer->QueueSizePackets()); |
| const TimeDelta expected_pace_time = |
| DataSize::Bytes(pacer->QueueSizePackets() * kPacketSize) / |
| (kPaceMultiplier * kTargetRate); |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time; |
| EXPECT_LT((actual_pace_time - expected_pace_time).Abs(), |
| PacingController::kMinSleepTime); |
| |
| EXPECT_EQ(0u, pacer->QueueSizePackets()); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| EXPECT_EQ(0u, pacer->QueueSizePackets()); |
| pacer->ProcessPackets(); |
| |
| // Send some more packet, just show that we can..? |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), 250); |
| } |
| EXPECT_EQ(packets_to_send_per_interval, pacer->QueueSizePackets()); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| EXPECT_EQ(0u, pacer->QueueSizePackets()); |
| } |
| |
| TEST_F(PacingControllerTest, RepeatedRetransmissionsAllowed) { |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // Send one packet, then two retransmissions of that packet. |
| for (size_t i = 0; i < 3; i++) { |
| constexpr uint32_t ssrc = 333; |
| constexpr uint16_t sequence_number = 444; |
| constexpr size_t bytes = 250; |
| bool is_retransmission = (i != 0); // Original followed by retransmissions. |
| SendAndExpectPacket(pacer.get(), |
| is_retransmission ? RtpPacketMediaType::kRetransmission |
| : RtpPacketMediaType::kVideo, |
| ssrc, sequence_number, clock_.TimeInMilliseconds(), |
| bytes); |
| clock_.AdvanceTimeMilliseconds(5); |
| } |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| } |
| |
| TEST_F(PacingControllerTest, |
| CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number, clock_.TimeInMilliseconds(), 250); |
| |
| // Expect packet on second ssrc to be queued and sent as well. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc + 1, |
| sequence_number, clock_.TimeInMilliseconds(), 250); |
| |
| clock_.AdvanceTimeMilliseconds(1000); |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| } |
| |
| TEST_F(PacingControllerTest, Padding) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 250; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| const size_t kPacketsToSend = 20; |
| for (size_t i = 0; i < kPacketsToSend; ++i) { |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize); |
| } |
| const TimeDelta expected_pace_time = |
| DataSize::Bytes(pacer->QueueSizePackets() * kPacketSize) / |
| (kPaceMultiplier * kTargetRate); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| // Only the media packets should be sent. |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| const TimeDelta actual_pace_time = clock_.CurrentTime() - start_time; |
| EXPECT_LE((actual_pace_time - expected_pace_time).Abs(), |
| PacingController::kMinSleepTime); |
| |
| // Pacing media happens at 2.5x, but padding was configured with 1.0x |
| // factor. We have to wait until the padding debt is gone before we start |
| // sending padding. |
| const TimeDelta time_to_padding_debt_free = |
| (expected_pace_time * kPaceMultiplier) - actual_pace_time; |
| clock_.AdvanceTime(time_to_padding_debt_free - |
| PacingController::kMinSleepTime); |
| pacer->ProcessPackets(); |
| |
| // Send 10 padding packets. |
| const size_t kPaddingPacketsToSend = 10; |
| DataSize padding_sent = DataSize::Zero(); |
| size_t packets_sent = 0; |
| Timestamp first_send_time = Timestamp::MinusInfinity(); |
| Timestamp last_send_time = Timestamp::MinusInfinity(); |
| |
| EXPECT_CALL(callback_, SendPadding) |
| .Times(kPaddingPacketsToSend) |
| .WillRepeatedly([&](size_t target_size) { |
| ++packets_sent; |
| if (packets_sent < kPaddingPacketsToSend) { |
| // Don't count bytes of last packet, instead just |
| // use this as the time the last packet finished |
| // sending. |
| padding_sent += DataSize::Bytes(target_size); |
| } |
| if (first_send_time.IsInfinite()) { |
| first_send_time = clock_.CurrentTime(); |
| } else { |
| last_send_time = clock_.CurrentTime(); |
| } |
| return target_size; |
| }); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, false, true)) |
| .Times(kPaddingPacketsToSend); |
| |
| while (packets_sent < kPaddingPacketsToSend) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| // Verify rate of sent padding. |
| TimeDelta padding_duration = last_send_time - first_send_time; |
| DataRate padding_rate = padding_sent / padding_duration; |
| EXPECT_EQ(padding_rate, kTargetRate); |
| } |
| |
| TEST_F(PacingControllerTest, NoPaddingBeforeNormalPacket) { |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| |
| pacer->ProcessPackets(); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| |
| pacer->ProcessPackets(); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, capture_time_ms, 250); |
| bool padding_sent = false; |
| EXPECT_CALL(callback_, SendPadding).WillOnce([&](size_t padding) { |
| padding_sent = true; |
| return padding; |
| }); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| while (!padding_sent) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| } |
| |
| TEST_F(PacingControllerTest, VerifyAverageBitrateVaryingMediaPayload) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| const TimeDelta kAveragingWindowLength = TimeDelta::Seconds(10); |
| PacingControllerPadding callback; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_); |
| pacer->SetProbingEnabled(false); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| Timestamp start_time = clock_.CurrentTime(); |
| size_t media_bytes = 0; |
| while (clock_.CurrentTime() - start_time < kAveragingWindowLength) { |
| // Maybe add some new media packets corresponding to expected send rate. |
| int rand_value = rand(); // NOLINT (rand_r instead of rand) |
| while ( |
| media_bytes < |
| (kTargetRate * (clock_.CurrentTime() - start_time)).bytes<size_t>()) { |
| size_t media_payload = rand_value % 400 + 800; // [400, 1200] bytes. |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, capture_time_ms, |
| media_payload)); |
| media_bytes += media_payload; |
| } |
| |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| EXPECT_NEAR( |
| kTargetRate.bps(), |
| (DataSize::Bytes(callback.total_bytes_sent()) / kAveragingWindowLength) |
| .bps(), |
| (kTargetRate * 0.01 /* 1% error marging */).bps()); |
| } |
| |
| TEST_F(PacingControllerTest, Priority) { |
| uint32_t ssrc_low_priority = 12345; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| int64_t capture_time_ms_low_priority = 1234567; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| ConsumeInitialBudget(pacer.get()); |
| |
| // Expect normal and low priority to be queued and high to pass through. |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, |
| ssrc_low_priority, sequence_number++, |
| capture_time_ms_low_priority, 250)); |
| |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc, |
| sequence_number++, capture_time_ms, 250)); |
| } |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kAudio, ssrc, |
| sequence_number++, capture_time_ms, 250)); |
| |
| // Expect all high and normal priority to be sent out first. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _)) |
| .Times(packets_to_send_per_interval + 1); |
| |
| while (pacer->QueueSizePackets() > 1) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| EXPECT_EQ(1u, pacer->QueueSizePackets()); |
| |
| EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _, |
| capture_time_ms_low_priority, _, _)); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, RetransmissionPriority) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 45678; |
| int64_t capture_time_ms_retransmission = 56789; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| pacer->ProcessPackets(); |
| EXPECT_EQ(0u, pacer->QueueSizePackets()); |
| |
| // Alternate retransmissions and normal packets. |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, capture_time_ms, 250)); |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc, |
| sequence_number++, |
| capture_time_ms_retransmission, 250)); |
| } |
| EXPECT_EQ(2 * packets_to_send_per_interval, pacer->QueueSizePackets()); |
| |
| // Expect all retransmissions to be sent out first despite having a later |
| // capture time. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, false, _)).Times(0); |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc, _, capture_time_ms_retransmission, true, _)) |
| .Times(packets_to_send_per_interval); |
| |
| while (pacer->QueueSizePackets() > packets_to_send_per_interval) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| EXPECT_EQ(packets_to_send_per_interval, pacer->QueueSizePackets()); |
| |
| // Expect the remaining (non-retransmission) packets to be sent. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, true, _)).Times(0); |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, false, _)) |
| .Times(packets_to_send_per_interval); |
| |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| EXPECT_EQ(0u, pacer->QueueSizePackets()); |
| } |
| |
| TEST_F(PacingControllerTest, HighPrioDoesntAffectBudget) { |
| const size_t kPacketSize = 250; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // As high prio packets doesn't affect the budget, we should be able to send |
| // a high number of them at once. |
| const size_t kNumAudioPackets = 25; |
| for (size_t i = 0; i < kNumAudioPackets; ++i) { |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, ssrc, |
| sequence_number++, capture_time_ms, kPacketSize); |
| } |
| pacer->ProcessPackets(); |
| // Low prio packets does affect the budget. |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t kPacketsToSendPerInterval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * kPacketSize * 200); |
| for (size_t i = 0; i < kPacketsToSendPerInterval; ++i) { |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize); |
| } |
| |
| // Send all packets and measure pace time. |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| // Measure pacing time. Expect only low-prio packets to affect this. |
| TimeDelta pacing_time = clock_.CurrentTime() - start_time; |
| TimeDelta expected_pacing_time = |
| DataSize::Bytes(kPacketsToSendPerInterval * kPacketSize) / |
| (kTargetRate * kPaceMultiplier); |
| EXPECT_NEAR(pacing_time.us<double>(), expected_pacing_time.us<double>(), |
| PacingController::kMinSleepTime.us<double>()); |
| } |
| |
| TEST_F(PacingControllerTest, SendsOnlyPaddingWhenCongested) { |
| uint32_t ssrc = 202020; |
| uint16_t sequence_number = 1000; |
| int kPacketSize = 250; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // Send an initial packet so we have a last send time. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Set congested state, we should not send anything until the 500ms since |
| // last send time limit for keep-alives is triggered. |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| pacer->SetCongested(true); |
| size_t blocked_packets = 0; |
| int64_t expected_time_until_padding = 500; |
| while (expected_time_until_padding > 5) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize)); |
| blocked_packets++; |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->ProcessPackets(); |
| expected_time_until_padding -= 5; |
| } |
| |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, SendPadding(1)).WillOnce(Return(1)); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->ProcessPackets(); |
| EXPECT_EQ(blocked_packets, pacer->QueueSizePackets()); |
| } |
| |
| TEST_F(PacingControllerTest, DoesNotAllowOveruseAfterCongestion) { |
| uint32_t ssrc = 202020; |
| uint16_t seq_num = 1000; |
| int size = 1000; |
| auto now_ms = [this] { return clock_.TimeInMilliseconds(); }; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| // The pacing rate is low enough that the budget should not allow two packets |
| // to be sent in a row. |
| pacer->SetPacingRates(DataRate::BitsPerSec(400 * 8 * 1000 / 5), |
| DataRate::Zero()); |
| // Not yet budget limited or congested, packet is sent. |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size)); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->ProcessPackets(); |
| // Packet blocked due to congestion. |
| pacer->SetCongested(true); |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size)); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->ProcessPackets(); |
| // Packet blocked due to congestion. |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size)); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->ProcessPackets(); |
| // Congestion removed and budget has recovered, packet is sent. |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size)); |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->SetCongested(false); |
| pacer->ProcessPackets(); |
| // Should be blocked due to budget limitation as congestion has be removed. |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, ssrc, seq_num++, now_ms(), size)); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, Pause) { |
| uint32_t ssrc_low_priority = 12345; |
| uint32_t ssrc = 12346; |
| uint32_t ssrc_high_priority = 12347; |
| uint16_t sequence_number = 1234; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite()); |
| |
| ConsumeInitialBudget(pacer.get()); |
| |
| pacer->Pause(); |
| |
| int64_t capture_time_ms = clock_.TimeInMilliseconds(); |
| const size_t packets_to_send_per_interval = |
| kTargetRate.bps() * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, |
| ssrc_low_priority, sequence_number++, |
| capture_time_ms, 250)); |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc, |
| sequence_number++, capture_time_ms, 250)); |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kAudio, |
| ssrc_high_priority, sequence_number++, |
| capture_time_ms, 250)); |
| } |
| clock_.AdvanceTimeMilliseconds(10000); |
| int64_t second_capture_time_ms = clock_.TimeInMilliseconds(); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, |
| ssrc_low_priority, sequence_number++, |
| second_capture_time_ms, 250)); |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, ssrc, |
| sequence_number++, second_capture_time_ms, |
| 250)); |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kAudio, |
| ssrc_high_priority, sequence_number++, |
| second_capture_time_ms, 250)); |
| } |
| |
| // Expect everything to be queued. |
| EXPECT_EQ(capture_time_ms, pacer->OldestPacketEnqueueTime().ms()); |
| |
| // Process triggers keep-alive packet. |
| EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) { |
| return padding; |
| }); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| pacer->ProcessPackets(); |
| |
| // Verify no packets sent for the rest of the paused process interval. |
| const TimeDelta kProcessInterval = TimeDelta::Millis(5); |
| TimeDelta expected_time_until_send = PacingController::kPausedProcessInterval; |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| while (expected_time_until_send >= kProcessInterval) { |
| pacer->ProcessPackets(); |
| clock_.AdvanceTime(kProcessInterval); |
| expected_time_until_send -= kProcessInterval; |
| } |
| |
| // New keep-alive packet. |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, SendPadding).WillOnce([](size_t padding) { |
| return padding; |
| }); |
| EXPECT_CALL(callback_, SendPacket(_, _, _, _, true)).Times(1); |
| clock_.AdvanceTime(kProcessInterval); |
| pacer->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Expect high prio packets to come out first followed by normal |
| // prio packets and low prio packets (all in capture order). |
| { |
| ::testing::InSequence sequence; |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc_high_priority, _, capture_time_ms, _, _)) |
| .Times(packets_to_send_per_interval); |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc_high_priority, _, second_capture_time_ms, _, _)) |
| .Times(packets_to_send_per_interval); |
| |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, capture_time_ms, _, _)) |
| .Times(1); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, SendPacket(ssrc, _, second_capture_time_ms, _, _)) |
| .Times(1); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, |
| SendPacket(ssrc_low_priority, _, capture_time_ms, _, _)) |
| .Times(1); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, SendPacket(ssrc_low_priority, _, |
| second_capture_time_ms, _, _)) |
| .Times(1); |
| } |
| } |
| pacer->Resume(); |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite()); |
| } |
| |
| TEST_F(PacingControllerTest, InactiveFromStart) { |
| // Recreate the pacer without the inital time forwarding. |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetProbingEnabled(false); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| |
| // No packets sent, there should be no keep-alives sent either. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| EXPECT_CALL(callback_, SendPacket).Times(0); |
| pacer->ProcessPackets(); |
| |
| const Timestamp start_time = clock_.CurrentTime(); |
| |
| // Determine the margin need so we can advance to the last possible moment |
| // that will not cause a process event. |
| const TimeDelta time_margin = |
| PacingController::kMinSleepTime + TimeDelta::Micros(1); |
| |
| EXPECT_EQ(pacer->NextSendTime() - start_time, |
| PacingController::kPausedProcessInterval); |
| clock_.AdvanceTime(PacingController::kPausedProcessInterval - time_margin); |
| pacer->ProcessPackets(); |
| EXPECT_EQ(pacer->NextSendTime() - start_time, |
| PacingController::kPausedProcessInterval); |
| |
| clock_.AdvanceTime(time_margin); |
| pacer->ProcessPackets(); |
| EXPECT_EQ(pacer->NextSendTime() - start_time, |
| 2 * PacingController::kPausedProcessInterval); |
| } |
| |
| TEST_F(PacingControllerTest, QueueTimeGrowsOverTime) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite()); |
| |
| pacer->SetPacingRates(DataRate::BitsPerSec(30000 * kPaceMultiplier), |
| DataRate::Zero()); |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number, clock_.TimeInMilliseconds(), 1200); |
| |
| clock_.AdvanceTimeMilliseconds(500); |
| EXPECT_EQ(clock_.TimeInMilliseconds() - 500, |
| pacer->OldestPacketEnqueueTime().ms()); |
| pacer->ProcessPackets(); |
| EXPECT_TRUE(pacer->OldestPacketEnqueueTime().IsInfinite()); |
| } |
| |
| TEST_F(PacingControllerTest, ProbingWithInsertedPackets) { |
| const size_t kPacketSize = 1200; |
| const int kInitialBitrateBps = 300000; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| PacingControllerProbing packet_sender; |
| auto pacer = |
| std::make_unique<PacingController>(&clock_, &packet_sender, trials_); |
| std::vector<ProbeClusterConfig> probe_clusters = { |
| {.at_time = clock_.CurrentTime(), |
| .target_data_rate = kFirstClusterRate, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 0}, |
| {.at_time = clock_.CurrentTime(), |
| .target_data_rate = kSecondClusterRate, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 1}}; |
| pacer->CreateProbeClusters(probe_clusters); |
| pacer->SetPacingRates( |
| DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier), |
| DataRate::Zero()); |
| |
| for (int i = 0; i < 10; ++i) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize)); |
| } |
| |
| int64_t start = clock_.TimeInMilliseconds(); |
| while (packet_sender.packets_sent() < 5) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| int packets_sent = packet_sender.packets_sent(); |
| // Validate first cluster bitrate. Note that we have to account for number |
| // of intervals and hence (packets_sent - 1) on the first cluster. |
| EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 / |
| (clock_.TimeInMilliseconds() - start), |
| kFirstClusterRate.bps(), kProbingErrorMargin.bps()); |
| // Probing always starts with a small padding packet. |
| EXPECT_EQ(1, packet_sender.padding_sent()); |
| |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| start = clock_.TimeInMilliseconds(); |
| while (packet_sender.packets_sent() < 10) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| packets_sent = packet_sender.packets_sent() - packets_sent; |
| // Validate second cluster bitrate. |
| EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 / |
| (clock_.TimeInMilliseconds() - start), |
| kSecondClusterRate.bps(), kProbingErrorMargin.bps()); |
| } |
| |
| TEST_F(PacingControllerTest, SkipsProbesWhenProcessIntervalTooLarge) { |
| const size_t kPacketSize = 1200; |
| const int kInitialBitrateBps = 300000; |
| const uint32_t ssrc = 12346; |
| const int kProbeClusterId = 3; |
| |
| uint16_t sequence_number = 1234; |
| |
| PacingControllerProbing packet_sender; |
| |
| const test::ExplicitKeyValueConfig trials( |
| "WebRTC-Bwe-ProbingBehavior/max_probe_delay:2ms/"); |
| auto pacer = |
| std::make_unique<PacingController>(&clock_, &packet_sender, trials); |
| pacer->SetPacingRates( |
| DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier), |
| DataRate::BitsPerSec(kInitialBitrateBps)); |
| |
| for (int i = 0; i < 10; ++i) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize)); |
| } |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| // Probe at a very high rate. |
| std::vector<ProbeClusterConfig> probe_clusters = { |
| {.at_time = clock_.CurrentTime(), |
| .target_data_rate = DataRate::KilobitsPerSec(10000), // 10 Mbps, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = kProbeClusterId}}; |
| pacer->CreateProbeClusters(probe_clusters); |
| |
| // We need one packet to start the probe. |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize)); |
| const int packets_sent_before_probe = packet_sender.packets_sent(); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 1); |
| |
| // Figure out how long between probe packets. |
| Timestamp start_time = clock_.CurrentTime(); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| TimeDelta time_between_probes = clock_.CurrentTime() - start_time; |
| // Advance that distance again + 1ms. |
| clock_.AdvanceTime(time_between_probes); |
| |
| // Send second probe packet. |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize)); |
| pacer->ProcessPackets(); |
| EXPECT_EQ(packet_sender.packets_sent(), packets_sent_before_probe + 2); |
| PacedPacketInfo last_pacing_info = packet_sender.last_pacing_info(); |
| EXPECT_EQ(last_pacing_info.probe_cluster_id, kProbeClusterId); |
| |
| // We're exactly where we should be for the next probe. |
| const Timestamp probe_time = clock_.CurrentTime(); |
| EXPECT_EQ(pacer->NextSendTime(), clock_.CurrentTime()); |
| |
| BitrateProberConfig probing_config(&trials); |
| EXPECT_GT(probing_config.max_probe_delay.Get(), TimeDelta::Zero()); |
| // Advance to within max probe delay, should still return same target. |
| clock_.AdvanceTime(probing_config.max_probe_delay.Get()); |
| EXPECT_EQ(pacer->NextSendTime(), probe_time); |
| |
| // Too high probe delay, drop it! |
| clock_.AdvanceTime(TimeDelta::Micros(1)); |
| |
| int packets_sent_before_timeout = packet_sender.total_packets_sent(); |
| // Expected next process time is unchanged, but calling should not |
| // generate new packets. |
| EXPECT_EQ(pacer->NextSendTime(), probe_time); |
| pacer->ProcessPackets(); |
| EXPECT_EQ(packet_sender.total_packets_sent(), packets_sent_before_timeout); |
| |
| // Next packet sent is not part of probe. |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| const int expected_probe_id = PacedPacketInfo::kNotAProbe; |
| EXPECT_EQ(packet_sender.last_pacing_info().probe_cluster_id, |
| expected_probe_id); |
| } |
| |
| TEST_F(PacingControllerTest, ProbingWithPaddingSupport) { |
| const size_t kPacketSize = 1200; |
| const int kInitialBitrateBps = 300000; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| PacingControllerProbing packet_sender; |
| auto pacer = |
| std::make_unique<PacingController>(&clock_, &packet_sender, trials_); |
| std::vector<ProbeClusterConfig> probe_clusters = { |
| {.at_time = clock_.CurrentTime(), |
| .target_data_rate = kFirstClusterRate, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 0}}; |
| pacer->CreateProbeClusters(probe_clusters); |
| |
| pacer->SetPacingRates( |
| DataRate::BitsPerSec(kInitialBitrateBps * kPaceMultiplier), |
| DataRate::Zero()); |
| |
| for (int i = 0; i < 3; ++i) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize)); |
| } |
| |
| int64_t start = clock_.TimeInMilliseconds(); |
| int process_count = 0; |
| while (process_count < 5) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| ++process_count; |
| } |
| int packets_sent = packet_sender.packets_sent(); |
| int padding_sent = packet_sender.padding_sent(); |
| EXPECT_GT(packets_sent, 0); |
| EXPECT_GT(padding_sent, 0); |
| // Note that the number of intervals here for kPacketSize is |
| // packets_sent due to padding in the same cluster. |
| EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) / |
| (clock_.TimeInMilliseconds() - start), |
| kFirstClusterRate.bps(), kProbingErrorMargin.bps()); |
| } |
| |
| TEST_F(PacingControllerTest, PaddingOveruse) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 1200; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // Initially no padding rate. |
| pacer->ProcessPackets(); |
| pacer->SetPacingRates(DataRate::BitsPerSec(60000 * kPaceMultiplier), |
| DataRate::Zero()); |
| |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize); |
| pacer->ProcessPackets(); |
| |
| // Add 30kbit padding. When increasing budget, media budget will increase from |
| // negative (overuse) while padding budget will increase from 0. |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->SetPacingRates(DataRate::BitsPerSec(60000 * kPaceMultiplier), |
| DataRate::BitsPerSec(30000)); |
| |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize); |
| EXPECT_LT(TimeDelta::Millis(5), pacer->ExpectedQueueTime()); |
| // Don't send padding if queue is non-empty, even if padding budget > 0. |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, ProbeClusterId) { |
| MockPacketSender callback; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 1200; |
| |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_); |
| pacer->CreateProbeClusters(std::vector<ProbeClusterConfig>( |
| {{.at_time = clock_.CurrentTime(), |
| .target_data_rate = kFirstClusterRate, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 0}, |
| {.at_time = clock_.CurrentTime(), |
| .target_data_rate = kSecondClusterRate, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 1}})); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, kTargetRate); |
| pacer->SetProbingEnabled(true); |
| for (int i = 0; i < 10; ++i) { |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, ssrc, |
| sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize)); |
| } |
| |
| // First probing cluster. |
| EXPECT_CALL(callback, |
| SendPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 0))) |
| .Times(5); |
| |
| for (int i = 0; i < 5; ++i) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| // Second probing cluster. |
| EXPECT_CALL(callback, |
| SendPacket(_, Field(&PacedPacketInfo::probe_cluster_id, 1))) |
| .Times(5); |
| |
| for (int i = 0; i < 5; ++i) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| // Needed for the Field comparer below. |
| const int kNotAProbe = PacedPacketInfo::kNotAProbe; |
| // No more probing packets. |
| EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) { |
| std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets; |
| padding_packets.emplace_back( |
| BuildPacket(RtpPacketMediaType::kPadding, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), padding_size.bytes())); |
| return padding_packets; |
| }); |
| bool non_probe_packet_seen = false; |
| EXPECT_CALL(callback, SendPacket) |
| .WillOnce([&](std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& cluster_info) { |
| EXPECT_EQ(cluster_info.probe_cluster_id, kNotAProbe); |
| non_probe_packet_seen = true; |
| }); |
| while (!non_probe_packet_seen) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| } |
| |
| TEST_F(PacingControllerTest, OwnedPacketPrioritizedOnType) { |
| MockPacketSender callback; |
| uint32_t ssrc = 123; |
| |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // Insert a packet of each type, from low to high priority. Since priority |
| // is weighted higher than insert order, these should come out of the pacer |
| // in backwards order with the exception of FEC and Video. |
| |
| for (RtpPacketMediaType type : |
| {RtpPacketMediaType::kPadding, |
| RtpPacketMediaType::kForwardErrorCorrection, RtpPacketMediaType::kVideo, |
| RtpPacketMediaType::kRetransmission, RtpPacketMediaType::kAudio}) { |
| pacer->EnqueuePacket(BuildPacket(type, ++ssrc, /*sequence_number=*/123, |
| clock_.TimeInMilliseconds(), |
| /*size=*/150)); |
| } |
| |
| ::testing::InSequence seq; |
| EXPECT_CALL(callback, |
| SendPacket(Pointee(Property(&RtpPacketToSend::packet_type, |
| RtpPacketMediaType::kAudio)), |
| _)); |
| EXPECT_CALL(callback, |
| SendPacket(Pointee(Property(&RtpPacketToSend::packet_type, |
| RtpPacketMediaType::kRetransmission)), |
| _)); |
| |
| // FEC and video actually have the same priority, so will come out in |
| // insertion order. |
| EXPECT_CALL( |
| callback, |
| SendPacket(Pointee(Property(&RtpPacketToSend::packet_type, |
| RtpPacketMediaType::kForwardErrorCorrection)), |
| _)); |
| EXPECT_CALL(callback, |
| SendPacket(Pointee(Property(&RtpPacketToSend::packet_type, |
| RtpPacketMediaType::kVideo)), |
| _)); |
| |
| EXPECT_CALL(callback, |
| SendPacket(Pointee(Property(&RtpPacketToSend::packet_type, |
| RtpPacketMediaType::kPadding)), |
| _)); |
| |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| } |
| |
| TEST_F(PacingControllerTest, SmallFirstProbePacket) { |
| MockPacketSender callback; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback, trials_); |
| std::vector<ProbeClusterConfig> probe_clusters = { |
| {.at_time = clock_.CurrentTime(), |
| .target_data_rate = kFirstClusterRate, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 0}}; |
| pacer->CreateProbeClusters(probe_clusters); |
| |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| |
| // Add high prio media. |
| pacer->EnqueuePacket(audio_.BuildNextPacket(234)); |
| |
| // Expect small padding packet to be requested. |
| EXPECT_CALL(callback, GeneratePadding(DataSize::Bytes(1))) |
| .WillOnce([&](DataSize padding_size) { |
| std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets; |
| padding_packets.emplace_back( |
| BuildPacket(RtpPacketMediaType::kPadding, kAudioSsrc, 1, |
| clock_.TimeInMilliseconds(), 1)); |
| return padding_packets; |
| }); |
| |
| size_t packets_sent = 0; |
| bool media_seen = false; |
| EXPECT_CALL(callback, SendPacket) |
| .Times(::testing::AnyNumber()) |
| .WillRepeatedly([&](std::unique_ptr<RtpPacketToSend> packet, |
| const PacedPacketInfo& cluster_info) { |
| if (packets_sent == 0) { |
| EXPECT_EQ(packet->packet_type(), RtpPacketMediaType::kPadding); |
| } else { |
| if (packet->packet_type() == RtpPacketMediaType::kAudio) { |
| media_seen = true; |
| } |
| } |
| packets_sent++; |
| }); |
| while (!media_seen) { |
| pacer->ProcessPackets(); |
| clock_.AdvanceTimeMilliseconds(5); |
| } |
| } |
| |
| TEST_F(PacingControllerTest, TaskLate) { |
| // Set a low send rate to more easily test timing issues. |
| DataRate kSendRate = DataRate::KilobitsPerSec(30); |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetPacingRates(kSendRate, DataRate::Zero()); |
| |
| // Add four packets of equal size and priority. |
| pacer->EnqueuePacket(video_.BuildNextPacket(1000)); |
| pacer->EnqueuePacket(video_.BuildNextPacket(1000)); |
| pacer->EnqueuePacket(video_.BuildNextPacket(1000)); |
| pacer->EnqueuePacket(video_.BuildNextPacket(1000)); |
| |
| // Process packets, only first should be sent. |
| EXPECT_CALL(callback_, SendPacket).Times(1); |
| pacer->ProcessPackets(); |
| |
| Timestamp next_send_time = pacer->NextSendTime(); |
| // Determine time between packets (ca 62ms) |
| const TimeDelta time_between_packets = next_send_time - clock_.CurrentTime(); |
| |
| // Simulate a late process call, executed just before we allow sending the |
| // fourth packet. |
| const TimeDelta kOffset = TimeDelta::Millis(1); |
| clock_.AdvanceTime((time_between_packets * 3) - kOffset); |
| |
| EXPECT_CALL(callback_, SendPacket).Times(2); |
| pacer->ProcessPackets(); |
| |
| // Check that next scheduled send time is in ca 1ms. |
| next_send_time = pacer->NextSendTime(); |
| const TimeDelta time_left = next_send_time - clock_.CurrentTime(); |
| EXPECT_EQ(time_left.RoundTo(TimeDelta::Millis(1)), kOffset); |
| |
| clock_.AdvanceTime(time_left); |
| EXPECT_CALL(callback_, SendPacket); |
| pacer->ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, NoProbingWhilePaused) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| pacer->SetProbingEnabled(true); |
| pacer->SetPacingRates(kTargetRate * kPaceMultiplier, DataRate::Zero()); |
| pacer->CreateProbeClusters(std::vector<ProbeClusterConfig>( |
| {{.at_time = clock_.CurrentTime(), |
| .target_data_rate = kFirstClusterRate, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 0}, |
| {.at_time = clock_.CurrentTime(), |
| .target_data_rate = kSecondClusterRate, |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 1}})); |
| |
| // Send at least one packet so probing can initate. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, ssrc, |
| sequence_number, clock_.TimeInMilliseconds(), 250); |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| // Trigger probing. |
| std::vector<ProbeClusterConfig> probe_clusters = { |
| {.at_time = clock_.CurrentTime(), |
| .target_data_rate = DataRate::KilobitsPerSec(10000), // 10 Mbps. |
| .target_duration = TimeDelta::Millis(15), |
| .target_probe_count = 5, |
| .id = 3}}; |
| pacer->CreateProbeClusters(probe_clusters); |
| |
| // Time to next send time should be small. |
| EXPECT_LT(pacer->NextSendTime() - clock_.CurrentTime(), |
| PacingController::kPausedProcessInterval); |
| |
| // Pause pacer, time to next send time should now be the pause process |
| // interval. |
| pacer->Pause(); |
| |
| EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), |
| PacingController::kPausedProcessInterval); |
| } |
| |
| TEST_F(PacingControllerTest, AudioNotPacedEvenWhenAccountedFor) { |
| const uint32_t kSsrc = 12345; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 123; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| |
| // Account for audio - so that audio packets can cause pushback on other |
| // types such as video. Audio packet should still be immediated passed |
| // through though ("WebRTC-Pacer-BlockAudio" needs to be enabled in order |
| // to pace audio packets). |
| pacer->SetAccountForAudioPackets(true); |
| |
| // Set pacing rate to 1 packet/s, no padding. |
| pacer->SetPacingRates(DataSize::Bytes(kPacketSize) / TimeDelta::Seconds(1), |
| DataRate::Zero()); |
| |
| // Add and send an audio packet. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, kSsrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize); |
| pacer->ProcessPackets(); |
| |
| // Advance time, add another audio packet and process. It should be sent |
| // immediately. |
| clock_.AdvanceTimeMilliseconds(5); |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, kSsrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize); |
| pacer->ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, |
| PaddingResumesAfterSaturationEvenWithConcurrentAudio) { |
| const uint32_t kSsrc = 12345; |
| const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125); |
| const DataRate kPaddingDataRate = DataRate::KilobitsPerSec(100); |
| const TimeDelta kMaxBufferInTime = TimeDelta::Millis(500); |
| const DataSize kPacketSize = DataSize::Bytes(130); |
| const TimeDelta kAudioPacketInterval = TimeDelta::Millis(20); |
| |
| // In this test, we fist send a burst of video in order to saturate the |
| // padding debt level. |
| // We then proceed to send audio at a bitrate that is slightly lower than |
| // the padding rate, meaning there will be a period with audio but no |
| // padding sent while the debt is draining, then audio and padding will |
| // be interlieved. |
| |
| // Verify both with and without accounting for audio. |
| for (bool account_for_audio : {false, true}) { |
| uint16_t sequence_number = 1234; |
| MockPacketSender callback; |
| EXPECT_CALL(callback, SendPacket).Times(::testing::AnyNumber()); |
| auto pacer = |
| std::make_unique<PacingController>(&clock_, &callback, trials_); |
| pacer->SetAccountForAudioPackets(account_for_audio); |
| |
| // First, saturate the padding budget. |
| pacer->SetPacingRates(kPacingDataRate, kPaddingDataRate); |
| |
| const TimeDelta kPaddingSaturationTime = |
| kMaxBufferInTime * kPaddingDataRate / |
| (kPacingDataRate - kPaddingDataRate); |
| const DataSize kVideoToSend = kPaddingSaturationTime * kPacingDataRate; |
| const DataSize kVideoPacketSize = DataSize::Bytes(1200); |
| DataSize video_sent = DataSize::Zero(); |
| while (video_sent < kVideoToSend) { |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kVideoPacketSize.bytes())); |
| video_sent += kVideoPacketSize; |
| } |
| while (pacer->QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| // Add a stream of audio packets at a rate slightly lower than the padding |
| // rate, once the padding debt is paid off we expect padding to be |
| // generated. |
| pacer->SetPacingRates(kPacingDataRate, kPaddingDataRate); |
| bool padding_seen = false; |
| EXPECT_CALL(callback, GeneratePadding).WillOnce([&](DataSize padding_size) { |
| padding_seen = true; |
| std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets; |
| padding_packets.emplace_back( |
| BuildPacket(RtpPacketMediaType::kPadding, kSsrc, sequence_number++, |
| clock_.TimeInMilliseconds(), padding_size.bytes())); |
| return padding_packets; |
| }); |
| |
| Timestamp start_time = clock_.CurrentTime(); |
| Timestamp last_audio_time = start_time; |
| while (!padding_seen) { |
| Timestamp now = clock_.CurrentTime(); |
| Timestamp next_send_time = pacer->NextSendTime(); |
| TimeDelta sleep_time = |
| std::min(next_send_time, last_audio_time + kAudioPacketInterval) - |
| now; |
| clock_.AdvanceTime(sleep_time); |
| while (clock_.CurrentTime() >= last_audio_time + kAudioPacketInterval) { |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kAudio, kSsrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize.bytes())); |
| last_audio_time += kAudioPacketInterval; |
| } |
| pacer->ProcessPackets(); |
| } |
| |
| // Verify how long it took to drain the padding debt. Allow 2% error margin. |
| const DataRate kAudioDataRate = kPacketSize / kAudioPacketInterval; |
| const TimeDelta expected_drain_time = |
| account_for_audio ? (kMaxBufferInTime * kPaddingDataRate / |
| (kPaddingDataRate - kAudioDataRate)) |
| : kMaxBufferInTime; |
| const TimeDelta actual_drain_time = clock_.CurrentTime() - start_time; |
| EXPECT_NEAR(actual_drain_time.ms(), expected_drain_time.ms(), |
| expected_drain_time.ms() * 0.02) |
| << " where account_for_audio = " |
| << (account_for_audio ? "true" : "false"); |
| } |
| } |
| |
| TEST_F(PacingControllerTest, AccountsForAudioEnqueueTime) { |
| const uint32_t kSsrc = 12345; |
| const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125); |
| const DataRate kPaddingDataRate = DataRate::Zero(); |
| const DataSize kPacketSize = DataSize::Bytes(130); |
| const TimeDelta kPacketPacingTime = kPacketSize / kPacingDataRate; |
| uint32_t sequnce_number = 1; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| // Audio not paced, but still accounted for in budget. |
| pacer->SetAccountForAudioPackets(true); |
| pacer->SetPacingRates(kPacingDataRate, kPaddingDataRate); |
| |
| // Enqueue two audio packets, advance clock to where one packet |
| // should have drained the buffer already, has they been sent |
| // immediately. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, kSsrc, |
| sequnce_number++, clock_.TimeInMilliseconds(), |
| kPacketSize.bytes()); |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kAudio, kSsrc, |
| sequnce_number++, clock_.TimeInMilliseconds(), |
| kPacketSize.bytes()); |
| clock_.AdvanceTime(kPacketPacingTime); |
| // Now process and make sure both packets were sent. |
| pacer->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Add a video packet. I can't be sent until debt from audio |
| // packets have been drained. |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, kSsrc + 1, sequnce_number++, |
| clock_.TimeInMilliseconds(), kPacketSize.bytes())); |
| EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime); |
| } |
| |
| TEST_F(PacingControllerTest, NextSendTimeAccountsForPadding) { |
| const uint32_t kSsrc = 12345; |
| const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125); |
| const DataSize kPacketSize = DataSize::Bytes(130); |
| const TimeDelta kPacketPacingTime = kPacketSize / kPacingDataRate; |
| uint32_t sequnce_number = 1; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| |
| // Start with no padding. |
| pacer->SetPacingRates(kPacingDataRate, DataRate::Zero()); |
| |
| // Send a single packet. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc, |
| sequnce_number++, clock_.TimeInMilliseconds(), |
| kPacketSize.bytes()); |
| pacer->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // With current conditions, no need to wake until next keep-alive. |
| EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), |
| PacingController::kPausedProcessInterval); |
| |
| // Enqueue a new packet, that can't be sent until previous buffer has |
| // drained. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc, |
| sequnce_number++, clock_.TimeInMilliseconds(), |
| kPacketSize.bytes()); |
| EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime); |
| clock_.AdvanceTime(kPacketPacingTime); |
| pacer->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // With current conditions, again no need to wake until next keep-alive. |
| EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), |
| PacingController::kPausedProcessInterval); |
| |
| // Set a non-zero padding rate. Padding also can't be sent until |
| // previous debt has cleared. Since padding was disabled before, there |
| // currently is no padding debt. |
| pacer->SetPacingRates(kPacingDataRate, kPacingDataRate / 2); |
| EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime); |
| |
| // Advance time, expect padding. |
| EXPECT_CALL(callback_, SendPadding).WillOnce(Return(kPacketSize.bytes())); |
| clock_.AdvanceTime(kPacketPacingTime); |
| pacer->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Since padding rate is half of pacing rate, next time we can send |
| // padding is double the packet pacing time. |
| EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), |
| kPacketPacingTime * 2); |
| |
| // Insert a packet to be sent, this take precedence again. |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequnce_number++, |
| clock_.TimeInMilliseconds(), kPacketSize.bytes())); |
| EXPECT_EQ(pacer->NextSendTime() - clock_.CurrentTime(), kPacketPacingTime); |
| } |
| |
| TEST_F(PacingControllerTest, PaddingTargetAccountsForPaddingRate) { |
| // Target size for a padding packet is 5ms * padding rate. |
| const TimeDelta kPaddingTarget = TimeDelta::Millis(5); |
| srand(0); |
| // Need to initialize PacingController after we initialize clock. |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| |
| const uint32_t kSsrc = 12345; |
| const DataRate kPacingDataRate = DataRate::KilobitsPerSec(125); |
| const DataSize kPacketSize = DataSize::Bytes(130); |
| |
| uint32_t sequnce_number = 1; |
| |
| // Start with pacing and padding rate equal. |
| pacer->SetPacingRates(kPacingDataRate, kPacingDataRate); |
| |
| // Send a single packet. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc, |
| sequnce_number++, clock_.TimeInMilliseconds(), |
| kPacketSize.bytes()); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| size_t expected_padding_target_bytes = |
| (kPaddingTarget * kPacingDataRate).bytes(); |
| EXPECT_CALL(callback_, SendPadding(expected_padding_target_bytes)) |
| .WillOnce(Return(expected_padding_target_bytes)); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| |
| // Half the padding rate - expect half the padding target. |
| pacer->SetPacingRates(kPacingDataRate, kPacingDataRate / 2); |
| EXPECT_CALL(callback_, SendPadding(expected_padding_target_bytes / 2)) |
| .WillOnce(Return(expected_padding_target_bytes / 2)); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, SendsFecPackets) { |
| const uint32_t kSsrc = 12345; |
| const uint32_t kFlexSsrc = 54321; |
| uint16_t sequence_number = 1234; |
| uint16_t flexfec_sequence_number = 4321; |
| const size_t kPacketSize = 123; |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| |
| // Set pacing rate to 1000 packet/s, no padding. |
| pacer->SetPacingRates( |
| DataSize::Bytes(1000 * kPacketSize) / TimeDelta::Seconds(1), |
| DataRate::Zero()); |
| |
| int64_t now = clock_.TimeInMilliseconds(); |
| pacer->EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kSsrc, |
| sequence_number, now, kPacketSize)); |
| EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number, now, false, false)); |
| EXPECT_CALL(callback_, FetchFec).WillOnce([&]() { |
| EXPECT_CALL(callback_, SendPacket(kFlexSsrc, flexfec_sequence_number, now, |
| false, false)); |
| EXPECT_CALL(callback_, FetchFec); |
| std::vector<std::unique_ptr<RtpPacketToSend>> fec_packets; |
| fec_packets.push_back( |
| BuildPacket(RtpPacketMediaType::kForwardErrorCorrection, kFlexSsrc, |
| flexfec_sequence_number, now, kPacketSize)); |
| return fec_packets; |
| }); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| AdvanceTimeUntil(pacer->NextSendTime()); |
| pacer->ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, GapInPacingDoesntAccumulateBudget) { |
| const uint32_t kSsrc = 12345; |
| uint16_t sequence_number = 1234; |
| const DataSize kPackeSize = DataSize::Bytes(250); |
| const TimeDelta kPacketSendTime = TimeDelta::Millis(15); |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| |
| pacer->SetPacingRates(kPackeSize / kPacketSendTime, |
| /*padding_rate=*/DataRate::Zero()); |
| |
| // Send an initial packet. |
| SendAndExpectPacket(pacer.get(), RtpPacketMediaType::kVideo, kSsrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPackeSize.bytes()); |
| pacer->ProcessPackets(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Advance time kPacketSendTime past where the media debt should be 0. |
| clock_.AdvanceTime(2 * kPacketSendTime); |
| |
| // Enqueue two new packets. Expect only one to be sent one ProcessPackets(). |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number + 1, |
| clock_.TimeInMilliseconds(), kPackeSize.bytes())); |
| pacer->EnqueuePacket( |
| BuildPacket(RtpPacketMediaType::kVideo, kSsrc, sequence_number + 2, |
| clock_.TimeInMilliseconds(), kPackeSize.bytes())); |
| EXPECT_CALL(callback_, SendPacket(kSsrc, sequence_number + 1, |
| clock_.TimeInMilliseconds(), false, false)); |
| pacer->ProcessPackets(); |
| } |
| |
| TEST_F(PacingControllerTest, HandlesSubMicrosecondSendIntervals) { |
| static constexpr DataSize kPacketSize = DataSize::Bytes(1); |
| static constexpr TimeDelta kPacketSendTime = TimeDelta::Micros(1); |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| |
| // Set pacing rate such that a packet is sent in 0.5us. |
| pacer->SetPacingRates(/*pacing_rate=*/2 * kPacketSize / kPacketSendTime, |
| /*padding_rate=*/DataRate::Zero()); |
| |
| // Enqueue three packets, the first two should be sent immediately - the third |
| // should cause a non-zero delta to the next process time. |
| EXPECT_CALL(callback_, SendPacket).Times(2); |
| for (int i = 0; i < 3; ++i) { |
| pacer->EnqueuePacket(BuildPacket( |
| RtpPacketMediaType::kVideo, /*ssrc=*/12345, /*sequence_number=*/i, |
| clock_.TimeInMilliseconds(), kPacketSize.bytes())); |
| } |
| pacer->ProcessPackets(); |
| |
| EXPECT_GT(pacer->NextSendTime(), clock_.CurrentTime()); |
| } |
| |
| TEST_F(PacingControllerTest, HandlesSubMicrosecondPaddingInterval) { |
| static constexpr DataSize kPacketSize = DataSize::Bytes(1); |
| static constexpr TimeDelta kPacketSendTime = TimeDelta::Micros(1); |
| auto pacer = std::make_unique<PacingController>(&clock_, &callback_, trials_); |
| |
| // Set both pacing and padding rates to 1 byte per 0.5us. |
| pacer->SetPacingRates(/*pacing_rate=*/2 * kPacketSize / kPacketSendTime, |
| /*padding_rate=*/2 * kPacketSize / kPacketSendTime); |
| |
| // Enqueue and send one packet. |
| EXPECT_CALL(callback_, SendPacket); |
| pacer->EnqueuePacket(BuildPacket( |
| RtpPacketMediaType::kVideo, /*ssrc=*/12345, /*sequence_number=*/1234, |
| clock_.TimeInMilliseconds(), kPacketSize.bytes())); |
| pacer->ProcessPackets(); |
| |
| // The padding debt is now 1 byte, and the pacing time for that is lower than |
| // the precision of a TimeStamp tick. Make sure the pacer still indicates a |
| // non-zero sleep time is needed until the next process. |
| EXPECT_GT(pacer->NextSendTime(), clock_.CurrentTime()); |
| } |
| |
| TEST_F(PacingControllerTest, SendsPacketsInBurstImmediately) { |
| constexpr TimeDelta kMaxDelay = TimeDelta::Millis(20); |
| PacingController pacer(&clock_, &callback_, trials_); |
| pacer.SetSendBurstInterval(kMaxDelay); |
| pacer.SetPacingRates(DataRate::BytesPerSec(10000), DataRate::Zero()); |
| |
| // Max allowed send burst size is 100000*20/1000) = 200byte |
| pacer.EnqueuePacket(video_.BuildNextPacket(100)); |
| pacer.EnqueuePacket(video_.BuildNextPacket(100)); |
| pacer.EnqueuePacket(video_.BuildNextPacket(100)); |
| pacer.ProcessPackets(); |
| EXPECT_EQ(pacer.QueueSizePackets(), 1u); |
| EXPECT_EQ(pacer.NextSendTime(), clock_.CurrentTime() + kMaxDelay); |
| |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| EXPECT_EQ(pacer.QueueSizePackets(), 0u); |
| } |
| |
| TEST_F(PacingControllerTest, SendsPacketsInBurstEvenIfNotEnqueedAtSameTime) { |
| constexpr TimeDelta kMaxDelay = TimeDelta::Millis(20); |
| PacingController pacer(&clock_, &callback_, trials_); |
| pacer.SetSendBurstInterval(kMaxDelay); |
| pacer.SetPacingRates(DataRate::BytesPerSec(10000), DataRate::Zero()); |
| pacer.EnqueuePacket(video_.BuildNextPacket(200)); |
| EXPECT_EQ(pacer.NextSendTime(), clock_.CurrentTime()); |
| pacer.ProcessPackets(); |
| clock_.AdvanceTime(TimeDelta::Millis(1)); |
| pacer.EnqueuePacket(video_.BuildNextPacket(200)); |
| EXPECT_EQ(pacer.NextSendTime(), clock_.CurrentTime()); |
| pacer.ProcessPackets(); |
| EXPECT_EQ(pacer.QueueSizePackets(), 0u); |
| } |
| |
| TEST_F(PacingControllerTest, RespectsTargetRateWhenSendingPacketsInBursts) { |
| PacingController pacer(&clock_, &callback_, trials_); |
| pacer.SetSendBurstInterval(TimeDelta::Millis(20)); |
| pacer.SetAccountForAudioPackets(true); |
| pacer.SetPacingRates(DataRate::KilobitsPerSec(1000), DataRate::Zero()); |
| Timestamp start_time = clock_.CurrentTime(); |
| // Inject 100 packets, with size 1000bytes over 100ms. |
| // Expect only 1Mbps / (8*1000) / 10 = 12 packets to be sent. |
| // Packets are sent in burst. Each burst is then 3 packets * 1000bytes at |
| // 1Mbits = 24ms long. Thus, expect 4 bursts. |
| EXPECT_CALL(callback_, SendPacket).Times(12); |
| int number_of_bursts = 0; |
| while (clock_.CurrentTime() < start_time + TimeDelta::Millis(100)) { |
| pacer.EnqueuePacket(video_.BuildNextPacket(1000)); |
| pacer.EnqueuePacket(video_.BuildNextPacket(1000)); |
| pacer.EnqueuePacket(video_.BuildNextPacket(1000)); |
| pacer.EnqueuePacket(video_.BuildNextPacket(1000)); |
| pacer.EnqueuePacket(video_.BuildNextPacket(1000)); |
| if (pacer.NextSendTime() <= clock_.CurrentTime()) { |
| pacer.ProcessPackets(); |
| ++number_of_bursts; |
| } |
| clock_.AdvanceTime(TimeDelta::Millis(5)); |
| } |
| EXPECT_EQ(pacer.QueueSizePackets(), 88u); |
| EXPECT_EQ(number_of_bursts, 4); |
| } |
| |
| TEST_F(PacingControllerTest, RespectsQueueTimeLimit) { |
| static constexpr DataSize kPacketSize = DataSize::Bytes(100); |
| static constexpr DataRate kNominalPacingRate = DataRate::KilobitsPerSec(200); |
| static constexpr TimeDelta kPacketPacingTime = |
| kPacketSize / kNominalPacingRate; |
| static constexpr TimeDelta kQueueTimeLimit = TimeDelta::Millis(1000); |
| |
| PacingController pacer(&clock_, &callback_, trials_); |
| pacer.SetPacingRates(kNominalPacingRate, /*padding_rate=*/DataRate::Zero()); |
| pacer.SetQueueTimeLimit(kQueueTimeLimit); |
| |
| // Fill pacer up to queue time limit. |
| static constexpr int kNumPackets = kQueueTimeLimit / kPacketPacingTime; |
| for (int i = 0; i < kNumPackets; ++i) { |
| pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize.bytes())); |
| } |
| EXPECT_EQ(pacer.ExpectedQueueTime(), kQueueTimeLimit); |
| EXPECT_EQ(pacer.pacing_rate(), kNominalPacingRate); |
| |
| // Double the amount of packets in the queue, the queue time limit should |
| // effectively double the pacing rate in response. |
| for (int i = 0; i < kNumPackets; ++i) { |
| pacer.EnqueuePacket(video_.BuildNextPacket(kPacketSize.bytes())); |
| } |
| EXPECT_EQ(pacer.ExpectedQueueTime(), kQueueTimeLimit); |
| EXPECT_EQ(pacer.pacing_rate(), 2 * kNominalPacingRate); |
| |
| // Send all the packets, should take as long as the queue time limit. |
| Timestamp start_time = clock_.CurrentTime(); |
| while (pacer.QueueSizePackets() > 0) { |
| AdvanceTimeUntil(pacer.NextSendTime()); |
| pacer.ProcessPackets(); |
| } |
| EXPECT_EQ(clock_.CurrentTime() - start_time, kQueueTimeLimit); |
| |
| // We're back in a normal state - pacing rate should be back to previous |
| // levels. |
| EXPECT_EQ(pacer.pacing_rate(), kNominalPacingRate); |
| } |
| |
| TEST_F(PacingControllerTest, BudgetDoesNotAffectRetransmissionInsTrial) { |
| const DataSize kPacketSize = DataSize::Bytes(1000); |
| |
| EXPECT_CALL(callback_, SendPadding).Times(0); |
| const test::ExplicitKeyValueConfig trials( |
| "WebRTC-Pacer-FastRetransmissions/Enabled/"); |
| PacingController pacer(&clock_, &callback_, trials); |
| pacer.SetPacingRates(kTargetRate, /*padding_rate=*/DataRate::Zero()); |
| |
| // Send a video packet so that we have a bit debt. |
| pacer.EnqueuePacket(BuildPacket(RtpPacketMediaType::kVideo, kVideoSsrc, |
| /*sequence_number=*/1, |
| /*capture_time=*/1, kPacketSize.bytes())); |
| EXPECT_CALL(callback_, SendPacket); |
| pacer.ProcessPackets(); |
| EXPECT_GT(pacer.NextSendTime(), clock_.CurrentTime()); |
| |
| // A retransmission packet should still be immediately processed. |
| EXPECT_CALL(callback_, SendPacket); |
| pacer.EnqueuePacket(BuildPacket(RtpPacketMediaType::kRetransmission, |
| kVideoSsrc, |
| /*sequence_number=*/1, |
| /*capture_time=*/1, kPacketSize.bytes())); |
| pacer.ProcessPackets(); |
| } |
| |
| } // namespace |
| } // namespace webrtc |