blob: fb93c864177fdb67d95fcf52ce86541cd171f920 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/agc2/vad_with_level.h"
#include <memory>
#include <vector>
#include "modules/audio_processing/agc2/agc2_common.h"
#include "modules/audio_processing/include/audio_frame_view.h"
#include "rtc_base/gunit.h"
#include "rtc_base/numerics/safe_compare.h"
#include "test/gmock.h"
namespace webrtc {
namespace {
using ::testing::AnyNumber;
using ::testing::ReturnRoundRobin;
constexpr float kInstantAttack = 1.f;
constexpr float kSlowAttack = 0.1f;
constexpr int kSampleRateHz = 8000;
class MockVad : public VadLevelAnalyzer::VoiceActivityDetector {
public:
MOCK_METHOD(float,
ComputeProbability,
(AudioFrameView<const float> frame),
(override));
};
// Creates a `VadLevelAnalyzer` injecting a mock VAD which repeatedly returns
// the next value from `speech_probabilities` until it reaches the end and will
// restart from the beginning.
std::unique_ptr<VadLevelAnalyzer> CreateVadLevelAnalyzerWithMockVad(
float vad_probability_attack,
const std::vector<float>& speech_probabilities) {
auto vad = std::make_unique<MockVad>();
EXPECT_CALL(*vad, ComputeProbability)
.Times(AnyNumber())
.WillRepeatedly(ReturnRoundRobin(speech_probabilities));
return std::make_unique<VadLevelAnalyzer>(vad_probability_attack,
std::move(vad));
}
// 10 ms mono frame.
struct FrameWithView {
// Ctor. Initializes the frame samples with `value`.
FrameWithView(float value = 0.f)
: channel0(samples.data()),
view(&channel0, /*num_channels=*/1, samples.size()) {
samples.fill(value);
}
std::array<float, kSampleRateHz / 100> samples;
const float* const channel0;
const AudioFrameView<const float> view;
};
TEST(AutomaticGainController2VadLevelAnalyzer, PeakLevelGreaterThanRmsLevel) {
// Handcrafted frame so that the average is lower than the peak value.
FrameWithView frame(1000.f); // Constant frame.
frame.samples[10] = 2000.f; // Except for one peak value.
// Compute audio frame levels (the VAD result is ignored).
VadLevelAnalyzer analyzer;
auto levels_and_vad_prob = analyzer.AnalyzeFrame(frame.view);
// Compare peak and RMS levels.
EXPECT_LT(levels_and_vad_prob.rms_dbfs, levels_and_vad_prob.peak_dbfs);
}
// Checks that the unprocessed and the smoothed speech probabilities match when
// instant attack is used.
TEST(AutomaticGainController2VadLevelAnalyzer, NoSpeechProbabilitySmoothing) {
const std::vector<float> speech_probabilities{0.709f, 0.484f, 0.882f, 0.167f,
0.44f, 0.525f, 0.858f, 0.314f,
0.653f, 0.965f, 0.413f, 0.f};
auto analyzer =
CreateVadLevelAnalyzerWithMockVad(kInstantAttack, speech_probabilities);
FrameWithView frame;
for (int i = 0; rtc::SafeLt(i, speech_probabilities.size()); ++i) {
SCOPED_TRACE(i);
EXPECT_EQ(speech_probabilities[i],
analyzer->AnalyzeFrame(frame.view).speech_probability);
}
}
// Checks that the smoothed speech probability does not instantly converge to
// the unprocessed one when slow attack is used.
TEST(AutomaticGainController2VadLevelAnalyzer,
SlowAttackSpeechProbabilitySmoothing) {
const std::vector<float> speech_probabilities{0.f, 0.f, 1.f, 1.f, 1.f, 1.f};
auto analyzer =
CreateVadLevelAnalyzerWithMockVad(kSlowAttack, speech_probabilities);
FrameWithView frame;
float prev_probability = 0.f;
for (int i = 0; rtc::SafeLt(i, speech_probabilities.size()); ++i) {
SCOPED_TRACE(i);
const float smoothed_probability =
analyzer->AnalyzeFrame(frame.view).speech_probability;
EXPECT_LT(smoothed_probability, 1.f); // Not enough time to reach 1.
EXPECT_LE(prev_probability, smoothed_probability); // Converge towards 1.
prev_probability = smoothed_probability;
}
}
// Checks that the smoothed speech probability instantly decays to the
// unprocessed one when slow attack is used.
TEST(AutomaticGainController2VadLevelAnalyzer, SpeechProbabilityInstantDecay) {
const std::vector<float> speech_probabilities{1.f, 1.f, 1.f, 1.f, 1.f, 0.f};
auto analyzer =
CreateVadLevelAnalyzerWithMockVad(kSlowAttack, speech_probabilities);
FrameWithView frame;
for (int i = 0; rtc::SafeLt(i, speech_probabilities.size() - 1); ++i) {
analyzer->AnalyzeFrame(frame.view);
}
EXPECT_EQ(0.f, analyzer->AnalyzeFrame(frame.view).speech_probability);
}
} // namespace
} // namespace webrtc