| /* |
| * Copyright (c) 2017 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "modules/audio_coding/neteq/tools/neteq_delay_analyzer.h" |
| |
| #include <algorithm> |
| #include <fstream> |
| #include <ios> |
| #include <iterator> |
| #include <limits> |
| #include <utility> |
| |
| #include "rtc_base/checks.h" |
| |
| namespace webrtc { |
| namespace test { |
| namespace { |
| // Helper function for NetEqDelayAnalyzer::CreateGraphs. Returns the |
| // interpolated value of a function at the point x. Vector x_vec contains the |
| // sample points, and y_vec contains the function values at these points. The |
| // return value is a linear interpolation between y_vec values. |
| double LinearInterpolate(double x, |
| const std::vector<int64_t>& x_vec, |
| const std::vector<int64_t>& y_vec) { |
| // Find first element which is larger than x. |
| auto it = std::upper_bound(x_vec.begin(), x_vec.end(), x); |
| if (it == x_vec.end()) { |
| --it; |
| } |
| const size_t upper_ix = it - x_vec.begin(); |
| |
| size_t lower_ix; |
| if (upper_ix == 0 || x_vec[upper_ix] <= x) { |
| lower_ix = upper_ix; |
| } else { |
| lower_ix = upper_ix - 1; |
| } |
| double y; |
| if (lower_ix == upper_ix) { |
| y = y_vec[lower_ix]; |
| } else { |
| RTC_DCHECK_NE(x_vec[lower_ix], x_vec[upper_ix]); |
| y = (x - x_vec[lower_ix]) * (y_vec[upper_ix] - y_vec[lower_ix]) / |
| (x_vec[upper_ix] - x_vec[lower_ix]) + |
| y_vec[lower_ix]; |
| } |
| return y; |
| } |
| } // namespace |
| |
| void NetEqDelayAnalyzer::AfterInsertPacket( |
| const test::NetEqInput::PacketData& packet, |
| NetEq* neteq) { |
| data_.insert( |
| std::make_pair(packet.header.timestamp, TimingData(packet.time_ms))); |
| ssrcs_.insert(packet.header.ssrc); |
| payload_types_.insert(packet.header.payloadType); |
| } |
| |
| void NetEqDelayAnalyzer::BeforeGetAudio(NetEq* neteq) { |
| last_sync_buffer_ms_ = neteq->SyncBufferSizeMs(); |
| } |
| |
| void NetEqDelayAnalyzer::AfterGetAudio(int64_t time_now_ms, |
| const AudioFrame& audio_frame, |
| bool /*muted*/, |
| NetEq* neteq) { |
| get_audio_time_ms_.push_back(time_now_ms); |
| // Check what timestamps were decoded in the last GetAudio call. |
| std::vector<uint32_t> dec_ts = neteq->LastDecodedTimestamps(); |
| // Find those timestamps in data_, insert their decoding time and sync |
| // delay. |
| for (uint32_t ts : dec_ts) { |
| auto it = data_.find(ts); |
| if (it == data_.end()) { |
| // This is a packet that was split out from another packet. Skip it. |
| continue; |
| } |
| auto& it_timing = it->second; |
| RTC_CHECK(!it_timing.decode_get_audio_count) |
| << "Decode time already written"; |
| it_timing.decode_get_audio_count = get_audio_count_; |
| RTC_CHECK(!it_timing.sync_delay_ms) << "Decode time already written"; |
| it_timing.sync_delay_ms = last_sync_buffer_ms_; |
| it_timing.target_delay_ms = neteq->TargetDelayMs(); |
| it_timing.current_delay_ms = neteq->FilteredCurrentDelayMs(); |
| } |
| last_sample_rate_hz_ = audio_frame.sample_rate_hz_; |
| ++get_audio_count_; |
| } |
| |
| void NetEqDelayAnalyzer::CreateGraphs( |
| std::vector<float>* send_time_s, |
| std::vector<float>* arrival_delay_ms, |
| std::vector<float>* corrected_arrival_delay_ms, |
| std::vector<rtc::Optional<float>>* playout_delay_ms, |
| std::vector<rtc::Optional<float>>* target_delay_ms) const { |
| if (get_audio_time_ms_.empty()) { |
| return; |
| } |
| // Create nominal_get_audio_time_ms, a vector starting at |
| // get_audio_time_ms_[0] and increasing by 10 for each element. |
| std::vector<int64_t> nominal_get_audio_time_ms(get_audio_time_ms_.size()); |
| nominal_get_audio_time_ms[0] = get_audio_time_ms_[0]; |
| std::transform( |
| nominal_get_audio_time_ms.begin(), nominal_get_audio_time_ms.end() - 1, |
| nominal_get_audio_time_ms.begin() + 1, [](int64_t& x) { return x + 10; }); |
| RTC_DCHECK( |
| std::is_sorted(get_audio_time_ms_.begin(), get_audio_time_ms_.end())); |
| |
| std::vector<double> rtp_timestamps_ms; |
| double offset = std::numeric_limits<double>::max(); |
| TimestampUnwrapper unwrapper; |
| // This loop traverses data_ and populates rtp_timestamps_ms as well as |
| // calculates the base offset. |
| for (auto& d : data_) { |
| rtp_timestamps_ms.push_back( |
| unwrapper.Unwrap(d.first) / |
| rtc::CheckedDivExact(last_sample_rate_hz_, 1000)); |
| offset = |
| std::min(offset, d.second.arrival_time_ms - rtp_timestamps_ms.back()); |
| } |
| |
| // Calculate send times in seconds for each packet. This is the (unwrapped) |
| // RTP timestamp in ms divided by 1000. |
| send_time_s->resize(rtp_timestamps_ms.size()); |
| std::transform(rtp_timestamps_ms.begin(), rtp_timestamps_ms.end(), |
| send_time_s->begin(), [rtp_timestamps_ms](double x) { |
| return (x - rtp_timestamps_ms[0]) / 1000.f; |
| }); |
| RTC_DCHECK_EQ(send_time_s->size(), rtp_timestamps_ms.size()); |
| |
| // This loop traverses the data again and populates the graph vectors. The |
| // reason to have two loops and traverse twice is that the offset cannot be |
| // known until the first traversal is done. Meanwhile, the final offset must |
| // be known already at the start of this second loop. |
| auto data_it = data_.cbegin(); |
| for (size_t i = 0; i < send_time_s->size(); ++i, ++data_it) { |
| RTC_DCHECK(data_it != data_.end()); |
| const double offset_send_time_ms = rtp_timestamps_ms[i] + offset; |
| const auto& timing = data_it->second; |
| corrected_arrival_delay_ms->push_back( |
| LinearInterpolate(timing.arrival_time_ms, get_audio_time_ms_, |
| nominal_get_audio_time_ms) - |
| offset_send_time_ms); |
| arrival_delay_ms->push_back(timing.arrival_time_ms - offset_send_time_ms); |
| |
| if (timing.decode_get_audio_count) { |
| // This packet was decoded. |
| RTC_DCHECK(timing.sync_delay_ms); |
| const float playout_ms = *timing.decode_get_audio_count * 10 + |
| get_audio_time_ms_[0] + *timing.sync_delay_ms - |
| offset_send_time_ms; |
| playout_delay_ms->push_back(playout_ms); |
| RTC_DCHECK(timing.target_delay_ms); |
| RTC_DCHECK(timing.current_delay_ms); |
| const float target = |
| playout_ms - *timing.current_delay_ms + *timing.target_delay_ms; |
| target_delay_ms->push_back(target); |
| } else { |
| // This packet was never decoded. Mark target and playout delays as empty. |
| playout_delay_ms->push_back(rtc::nullopt); |
| target_delay_ms->push_back(rtc::nullopt); |
| } |
| } |
| RTC_DCHECK(data_it == data_.end()); |
| RTC_DCHECK_EQ(send_time_s->size(), corrected_arrival_delay_ms->size()); |
| RTC_DCHECK_EQ(send_time_s->size(), playout_delay_ms->size()); |
| RTC_DCHECK_EQ(send_time_s->size(), target_delay_ms->size()); |
| } |
| |
| void NetEqDelayAnalyzer::CreateMatlabScript( |
| const std::string& script_name) const { |
| std::vector<float> send_time_s; |
| std::vector<float> arrival_delay_ms; |
| std::vector<float> corrected_arrival_delay_ms; |
| std::vector<rtc::Optional<float>> playout_delay_ms; |
| std::vector<rtc::Optional<float>> target_delay_ms; |
| CreateGraphs(&send_time_s, &arrival_delay_ms, &corrected_arrival_delay_ms, |
| &playout_delay_ms, &target_delay_ms); |
| |
| // Create an output file stream to Matlab script file. |
| std::ofstream output(script_name); |
| // The iterator is used to batch-output comma-separated values from vectors. |
| std::ostream_iterator<float> output_iterator(output, ","); |
| |
| output << "send_time_s = [ "; |
| std::copy(send_time_s.begin(), send_time_s.end(), output_iterator); |
| output << "];" << std::endl; |
| |
| output << "arrival_delay_ms = [ "; |
| std::copy(arrival_delay_ms.begin(), arrival_delay_ms.end(), output_iterator); |
| output << "];" << std::endl; |
| |
| output << "corrected_arrival_delay_ms = [ "; |
| std::copy(corrected_arrival_delay_ms.begin(), |
| corrected_arrival_delay_ms.end(), output_iterator); |
| output << "];" << std::endl; |
| |
| output << "playout_delay_ms = [ "; |
| for (const auto& v : playout_delay_ms) { |
| if (!v) { |
| output << "nan, "; |
| } else { |
| output << *v << ", "; |
| } |
| } |
| output << "];" << std::endl; |
| |
| output << "target_delay_ms = [ "; |
| for (const auto& v : target_delay_ms) { |
| if (!v) { |
| output << "nan, "; |
| } else { |
| output << *v << ", "; |
| } |
| } |
| output << "];" << std::endl; |
| |
| output << "h=plot(send_time_s, arrival_delay_ms, " |
| << "send_time_s, target_delay_ms, 'g.', " |
| << "send_time_s, playout_delay_ms);" << std::endl; |
| output << "set(h(1),'color',0.75*[1 1 1]);" << std::endl; |
| output << "set(h(2),'markersize',6);" << std::endl; |
| output << "set(h(3),'linew',1.5);" << std::endl; |
| output << "ax1=axis;" << std::endl; |
| output << "axis tight" << std::endl; |
| output << "ax2=axis;" << std::endl; |
| output << "axis([ax2(1:3) ax1(4)])" << std::endl; |
| output << "xlabel('send time [s]');" << std::endl; |
| output << "ylabel('relative delay [ms]');" << std::endl; |
| if (!ssrcs_.empty()) { |
| auto ssrc_it = ssrcs_.cbegin(); |
| output << "title('SSRC: 0x" << std::hex << static_cast<int64_t>(*ssrc_it++); |
| while (ssrc_it != ssrcs_.end()) { |
| output << ", 0x" << std::hex << static_cast<int64_t>(*ssrc_it++); |
| } |
| output << std::dec; |
| auto pt_it = payload_types_.cbegin(); |
| output << "; Payload Types: " << *pt_it++; |
| while (pt_it != payload_types_.end()) { |
| output << ", " << *pt_it++; |
| } |
| output << "');" << std::endl; |
| } |
| } |
| |
| } // namespace test |
| } // namespace webrtc |