blob: c79b9256de5a8c9c856238970d0aa84f71efe8d4 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <list>
#include <numeric>
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "webrtc/base/criticalsection.h"
#include "webrtc/base/scoped_ptr.h"
#include "webrtc/modules/audio_device/android/ensure_initialized.h"
#include "webrtc/modules/audio_device/audio_device_impl.h"
#include "webrtc/modules/audio_device/include/audio_device.h"
#include "webrtc/system_wrappers/interface/clock.h"
#include "webrtc/system_wrappers/interface/event_wrapper.h"
#include "webrtc/system_wrappers/interface/scoped_refptr.h"
#include "webrtc/system_wrappers/interface/sleep.h"
#include "webrtc/test/testsupport/fileutils.h"
using std::cout;
using std::endl;
using ::testing::_;
using ::testing::AtLeast;
using ::testing::Gt;
using ::testing::Invoke;
using ::testing::NiceMock;
using ::testing::NotNull;
using ::testing::Return;
using ::testing::TestWithParam;
// #define ENABLE_DEBUG_PRINTF
#ifdef ENABLE_DEBUG_PRINTF
#define PRINTD(...) fprintf(stderr, __VA_ARGS__);
#else
#define PRINTD(...) ((void)0)
#endif
#define PRINT(...) fprintf(stderr, __VA_ARGS__);
namespace webrtc {
// Perform all tests for the different audio layers listed in this array.
// See the INSTANTIATE_TEST_CASE_P statement for details.
// TODO(henrika): the test framework supports both Java and OpenSL ES based
// audio backends but there are currently some issues (crashes) in the
// OpenSL ES implementation, hence it is not added to kAudioLayers yet.
static const AudioDeviceModule::AudioLayer kAudioLayers[] = {
AudioDeviceModule::kAndroidJavaAudio
/*, AudioDeviceModule::kAndroidOpenSLESAudio */};
// Number of callbacks (input or output) the tests waits for before we set
// an event indicating that the test was OK.
static const int kNumCallbacks = 10;
// Max amount of time we wait for an event to be set while counting callbacks.
static const int kTestTimeOutInMilliseconds = 10 * 1000;
// Average number of audio callbacks per second assuming 10ms packet size.
static const int kNumCallbacksPerSecond = 100;
// Play out a test file during this time (unit is in seconds).
static const int kFilePlayTimeInSec = 5;
// Fixed value for the recording delay using Java based audio backend.
// TODO(henrika): harmonize with OpenSL ES and look for possible improvements.
static const uint32_t kFixedRecordingDelay = 100;
static const int kBitsPerSample = 16;
static const int kBytesPerSample = kBitsPerSample / 8;
// Run the full-duplex test during this time (unit is in seconds).
// Note that first |kNumIgnoreFirstCallbacks| are ignored.
static const int kFullDuplexTimeInSec = 5;
// Wait for the callback sequence to stabilize by ignoring this amount of the
// initial callbacks (avoids initial FIFO access).
// Only used in the RunPlayoutAndRecordingInFullDuplex test.
static const int kNumIgnoreFirstCallbacks = 50;
// Sets the number of impulses per second in the latency test.
static const int kImpulseFrequencyInHz = 1;
// Length of round-trip latency measurements. Number of transmitted impulses
// is kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1.
static const int kMeasureLatencyTimeInSec = 11;
// Utilized in round-trip latency measurements to avoid capturing noise samples.
static const int kImpulseThreshold = 500;
static const char kTag[] = "[..........] ";
enum TransportType {
kPlayout = 0x1,
kRecording = 0x2,
};
// Simple helper struct for device specific audio parameters.
struct AudioParameters {
int playout_frames_per_buffer() const {
return playout_sample_rate / 100; // WebRTC uses 10 ms as buffer size.
}
int recording_frames_per_buffer() const {
return recording_sample_rate / 100;
}
int playout_sample_rate;
int recording_sample_rate;
int playout_channels;
int recording_channels;
};
// Interface for processing the audio stream. Real implementations can e.g.
// run audio in loopback, read audio from a file or perform latency
// measurements.
class AudioStreamInterface {
public:
virtual void Write(const void* source, int num_frames) = 0;
virtual void Read(void* destination, int num_frames) = 0;
protected:
virtual ~AudioStreamInterface() {}
};
// Reads audio samples from a PCM file where the file is stored in memory at
// construction.
class FileAudioStream : public AudioStreamInterface {
public:
FileAudioStream(
int num_callbacks, const std::string& file_name, int sample_rate)
: file_size_in_bytes_(0),
sample_rate_(sample_rate),
file_pos_(0) {
file_size_in_bytes_ = test::GetFileSize(file_name);
sample_rate_ = sample_rate;
EXPECT_GE(file_size_in_callbacks(), num_callbacks)
<< "Size of test file is not large enough to last during the test.";
const int num_16bit_samples =
test::GetFileSize(file_name) / kBytesPerSample;
file_.reset(new int16_t[num_16bit_samples]);
FILE* audio_file = fopen(file_name.c_str(), "rb");
EXPECT_NE(audio_file, nullptr);
int num_samples_read = fread(
file_.get(), sizeof(int16_t), num_16bit_samples, audio_file);
EXPECT_EQ(num_samples_read, num_16bit_samples);
fclose(audio_file);
}
// AudioStreamInterface::Write() is not implemented.
virtual void Write(const void* source, int num_frames) override {}
// Read samples from file stored in memory (at construction) and copy
// |num_frames| (<=> 10ms) to the |destination| byte buffer.
virtual void Read(void* destination, int num_frames) override {
memcpy(destination,
static_cast<int16_t*> (&file_[file_pos_]),
num_frames * sizeof(int16_t));
file_pos_ += num_frames;
}
int file_size_in_seconds() const {
return (file_size_in_bytes_ / (kBytesPerSample * sample_rate_));
}
int file_size_in_callbacks() const {
return file_size_in_seconds() * kNumCallbacksPerSecond;
}
private:
int file_size_in_bytes_;
int sample_rate_;
rtc::scoped_ptr<int16_t[]> file_;
int file_pos_;
};
// Simple first in first out (FIFO) class that wraps a list of 16-bit audio
// buffers of fixed size and allows Write and Read operations. The idea is to
// store recorded audio buffers (using Write) and then read (using Read) these
// stored buffers with as short delay as possible when the audio layer needs
// data to play out. The number of buffers in the FIFO will stabilize under
// normal conditions since there will be a balance between Write and Read calls.
// The container is a std::list container and access is protected with a lock
// since both sides (playout and recording) are driven by its own thread.
class FifoAudioStream : public AudioStreamInterface {
public:
explicit FifoAudioStream(int frames_per_buffer)
: frames_per_buffer_(frames_per_buffer),
bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)),
fifo_(new AudioBufferList),
largest_size_(0),
total_written_elements_(0),
write_count_(0) {
EXPECT_NE(fifo_.get(), nullptr);
}
~FifoAudioStream() {
Flush();
PRINTD("[%4.3f]\n", average_size());
}
// Allocate new memory, copy |num_frames| samples from |source| into memory
// and add pointer to the memory location to end of the list.
// Increases the size of the FIFO by one element.
virtual void Write(const void* source, int num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
PRINTD("+");
if (write_count_++ < kNumIgnoreFirstCallbacks) {
return;
}
int16_t* memory = new int16_t[frames_per_buffer_];
memcpy(static_cast<int16_t*> (&memory[0]),
source,
bytes_per_buffer_);
rtc::CritScope lock(&lock_);
fifo_->push_back(memory);
const int size = fifo_->size();
if (size > largest_size_) {
largest_size_ = size;
PRINTD("(%d)", largest_size_);
}
total_written_elements_ += size;
}
// Read pointer to data buffer from front of list, copy |num_frames| of stored
// data into |destination| and delete the utilized memory allocation.
// Decreases the size of the FIFO by one element.
virtual void Read(void* destination, int num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
PRINTD("-");
rtc::CritScope lock(&lock_);
if (fifo_->empty()) {
memset(destination, 0, bytes_per_buffer_);
} else {
int16_t* memory = fifo_->front();
fifo_->pop_front();
memcpy(destination,
static_cast<int16_t*> (&memory[0]),
bytes_per_buffer_);
delete memory;
}
}
int size() const {
return fifo_->size();
}
int largest_size() const {
return largest_size_;
}
int average_size() const {
return (total_written_elements_ == 0) ? 0.0 : 0.5 + static_cast<float> (
total_written_elements_) / (write_count_ - kNumIgnoreFirstCallbacks);
}
private:
void Flush() {
for (auto it = fifo_->begin(); it != fifo_->end(); ++it) {
delete *it;
}
fifo_->clear();
}
using AudioBufferList = std::list<int16_t*>;
rtc::CriticalSection lock_;
const int frames_per_buffer_;
const int bytes_per_buffer_;
rtc::scoped_ptr<AudioBufferList> fifo_;
int largest_size_;
int total_written_elements_;
int write_count_;
};
// Inserts periodic impulses and measures the latency between the time of
// transmission and time of receiving the same impulse.
// Usage requires a special hardware called Audio Loopback Dongle.
// See http://source.android.com/devices/audio/loopback.html for details.
class LatencyMeasuringAudioStream : public AudioStreamInterface {
public:
explicit LatencyMeasuringAudioStream(int frames_per_buffer)
: clock_(Clock::GetRealTimeClock()),
frames_per_buffer_(frames_per_buffer),
bytes_per_buffer_(frames_per_buffer_ * sizeof(int16_t)),
play_count_(0),
rec_count_(0),
pulse_time_(0) {
}
// Insert periodic impulses in first two samples of |destination|.
virtual void Read(void* destination, int num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
if (play_count_ == 0) {
PRINT("[");
}
play_count_++;
memset(destination, 0, bytes_per_buffer_);
if (play_count_ % (kNumCallbacksPerSecond / kImpulseFrequencyInHz) == 0) {
if (pulse_time_ == 0) {
pulse_time_ = clock_->TimeInMilliseconds();
}
PRINT(".");
const int16_t impulse = std::numeric_limits<int16_t>::max();
int16_t* ptr16 = static_cast<int16_t*> (destination);
for (int i = 0; i < 2; ++i) {
*ptr16++ = impulse;
}
}
}
// Detect received impulses in |source|, derive time between transmission and
// detection and add the calculated delay to list of latencies.
virtual void Write(const void* source, int num_frames) override {
ASSERT_EQ(num_frames, frames_per_buffer_);
rec_count_++;
if (pulse_time_ == 0) {
// Avoid detection of new impulse response until a new impulse has
// been transmitted (sets |pulse_time_| to value larger than zero).
return;
}
const int16_t* ptr16 = static_cast<const int16_t*> (source);
std::vector<int16_t> vec(ptr16, ptr16 + num_frames);
// Find max value in the audio buffer.
int max = *std::max_element(vec.begin(), vec.end());
// Find index (element position in vector) of the max element.
int index_of_max = std::distance(vec.begin(),
std::find(vec.begin(), vec.end(),
max));
if (max > kImpulseThreshold) {
PRINTD("(%d,%d)", max, index_of_max);
int64_t now_time = clock_->TimeInMilliseconds();
int extra_delay = IndexToMilliseconds(static_cast<double> (index_of_max));
PRINTD("[%d]", static_cast<int> (now_time - pulse_time_));
PRINTD("[%d]", extra_delay);
// Total latency is the difference between transmit time and detection
// tome plus the extra delay within the buffer in which we detected the
// received impulse. It is transmitted at sample 0 but can be received
// at sample N where N > 0. The term |extra_delay| accounts for N and it
// is a value between 0 and 10ms.
latencies_.push_back(now_time - pulse_time_ + extra_delay);
pulse_time_ = 0;
} else {
PRINTD("-");
}
}
int num_latency_values() const {
return latencies_.size();
}
int min_latency() const {
if (latencies_.empty())
return 0;
return *std::min_element(latencies_.begin(), latencies_.end());
}
int max_latency() const {
if (latencies_.empty())
return 0;
return *std::max_element(latencies_.begin(), latencies_.end());
}
int average_latency() const {
if (latencies_.empty())
return 0;
return 0.5 + static_cast<double> (
std::accumulate(latencies_.begin(), latencies_.end(), 0)) /
latencies_.size();
}
void PrintResults() const {
PRINT("] ");
for (auto it = latencies_.begin(); it != latencies_.end(); ++it) {
PRINT("%d ", *it);
}
PRINT("\n");
PRINT("%s[min, max, avg]=[%d, %d, %d] ms\n", kTag,
min_latency(), max_latency(), average_latency());
}
int IndexToMilliseconds(double index) const {
return 10.0 * (index / frames_per_buffer_) + 0.5;
}
private:
Clock* clock_;
const int frames_per_buffer_;
const int bytes_per_buffer_;
int play_count_;
int rec_count_;
int64_t pulse_time_;
std::vector<int> latencies_;
};
// Mocks the AudioTransport object and proxies actions for the two callbacks
// (RecordedDataIsAvailable and NeedMorePlayData) to different implementations
// of AudioStreamInterface.
class MockAudioTransport : public AudioTransport {
public:
explicit MockAudioTransport(int type)
: num_callbacks_(0),
type_(type),
play_count_(0),
rec_count_(0),
audio_stream_(nullptr) {}
virtual ~MockAudioTransport() {}
MOCK_METHOD10(RecordedDataIsAvailable,
int32_t(const void* audioSamples,
const uint32_t nSamples,
const uint8_t nBytesPerSample,
const uint8_t nChannels,
const uint32_t samplesPerSec,
const uint32_t totalDelayMS,
const int32_t clockDrift,
const uint32_t currentMicLevel,
const bool keyPressed,
uint32_t& newMicLevel));
MOCK_METHOD8(NeedMorePlayData,
int32_t(const uint32_t nSamples,
const uint8_t nBytesPerSample,
const uint8_t nChannels,
const uint32_t samplesPerSec,
void* audioSamples,
uint32_t& nSamplesOut,
int64_t* elapsed_time_ms,
int64_t* ntp_time_ms));
// Set default actions of the mock object. We are delegating to fake
// implementations (of AudioStreamInterface) here.
void HandleCallbacks(EventWrapper* test_is_done,
AudioStreamInterface* audio_stream,
int num_callbacks) {
test_is_done_ = test_is_done;
audio_stream_ = audio_stream;
num_callbacks_ = num_callbacks;
if (play_mode()) {
ON_CALL(*this, NeedMorePlayData(_, _, _, _, _, _, _, _))
.WillByDefault(
Invoke(this, &MockAudioTransport::RealNeedMorePlayData));
}
if (rec_mode()) {
ON_CALL(*this, RecordedDataIsAvailable(_, _, _, _, _, _, _, _, _, _))
.WillByDefault(
Invoke(this, &MockAudioTransport::RealRecordedDataIsAvailable));
}
}
int32_t RealRecordedDataIsAvailable(const void* audioSamples,
const uint32_t nSamples,
const uint8_t nBytesPerSample,
const uint8_t nChannels,
const uint32_t samplesPerSec,
const uint32_t totalDelayMS,
const int32_t clockDrift,
const uint32_t currentMicLevel,
const bool keyPressed,
uint32_t& newMicLevel) {
EXPECT_TRUE(rec_mode()) << "No test is expecting these callbacks.";
rec_count_++;
// Process the recorded audio stream if an AudioStreamInterface
// implementation exists.
if (audio_stream_) {
audio_stream_->Write(audioSamples, nSamples);
}
if (ReceivedEnoughCallbacks()) {
test_is_done_->Set();
}
return 0;
}
int32_t RealNeedMorePlayData(const uint32_t nSamples,
const uint8_t nBytesPerSample,
const uint8_t nChannels,
const uint32_t samplesPerSec,
void* audioSamples,
uint32_t& nSamplesOut,
int64_t* elapsed_time_ms,
int64_t* ntp_time_ms) {
EXPECT_TRUE(play_mode()) << "No test is expecting these callbacks.";
play_count_++;
nSamplesOut = nSamples;
// Read (possibly processed) audio stream samples to be played out if an
// AudioStreamInterface implementation exists.
if (audio_stream_) {
audio_stream_->Read(audioSamples, nSamples);
}
if (ReceivedEnoughCallbacks()) {
test_is_done_->Set();
}
return 0;
}
bool ReceivedEnoughCallbacks() {
bool recording_done = false;
if (rec_mode())
recording_done = rec_count_ >= num_callbacks_;
else
recording_done = true;
bool playout_done = false;
if (play_mode())
playout_done = play_count_ >= num_callbacks_;
else
playout_done = true;
return recording_done && playout_done;
}
bool play_mode() const { return type_ & kPlayout; }
bool rec_mode() const { return type_ & kRecording; }
private:
EventWrapper* test_is_done_;
int num_callbacks_;
int type_;
int play_count_;
int rec_count_;
AudioStreamInterface* audio_stream_;
rtc::scoped_ptr<LatencyMeasuringAudioStream> latency_audio_stream_;
};
// AudioDeviceTest is a value-parameterized test.
class AudioDeviceTest
: public testing::TestWithParam<AudioDeviceModule::AudioLayer> {
protected:
AudioDeviceTest()
: test_is_done_(EventWrapper::Create()) {
// One-time initialization of JVM and application context. Ensures that we
// can do calls between C++ and Java. Initializes both Java and OpenSL ES
// implementations.
webrtc::audiodevicemodule::EnsureInitialized();
// Creates an audio device based on the test parameter. See
// INSTANTIATE_TEST_CASE_P() for details.
audio_device_ = CreateAudioDevice();
EXPECT_NE(audio_device_.get(), nullptr);
EXPECT_EQ(0, audio_device_->Init());
CacheAudioParameters();
}
virtual ~AudioDeviceTest() {
EXPECT_EQ(0, audio_device_->Terminate());
}
int playout_sample_rate() const {
return parameters_.playout_sample_rate;
}
int recording_sample_rate() const {
return parameters_.recording_sample_rate;
}
int playout_channels() const {
return parameters_.playout_channels;
}
int recording_channels() const {
return parameters_.playout_channels;
}
int playout_frames_per_buffer() const {
return parameters_.playout_frames_per_buffer();
}
int recording_frames_per_buffer() const {
return parameters_.recording_frames_per_buffer();
}
scoped_refptr<AudioDeviceModule> audio_device() const {
return audio_device_;
}
scoped_refptr<AudioDeviceModule> CreateAudioDevice() {
scoped_refptr<AudioDeviceModule> module(
AudioDeviceModuleImpl::Create(0, GetParam()));
return module;
}
void CacheAudioParameters() {
AudioDeviceBuffer* audio_buffer =
static_cast<AudioDeviceModuleImpl*> (
audio_device_.get())->GetAudioDeviceBuffer();
parameters_.playout_sample_rate = audio_buffer->PlayoutSampleRate();
parameters_.recording_sample_rate = audio_buffer->RecordingSampleRate();
parameters_.playout_channels = audio_buffer->PlayoutChannels();
parameters_.recording_channels = audio_buffer->RecordingChannels();
}
// Returns file name relative to the resource root given a sample rate.
std::string GetFileName(int sample_rate) {
EXPECT_TRUE(sample_rate == 48000 || sample_rate == 44100);
char fname[64];
snprintf(fname,
sizeof(fname),
"audio_device/audio_short%d",
sample_rate / 1000);
std::string file_name(webrtc::test::ResourcePath(fname, "pcm"));
EXPECT_TRUE(test::FileExists(file_name));
#ifdef ENABLE_PRINTF
PRINT("file name: %s\n", file_name.c_str());
const int bytes = test::GetFileSize(file_name);
PRINT("file size: %d [bytes]\n", bytes);
PRINT("file size: %d [samples]\n", bytes / kBytesPerSample);
const int seconds = bytes / (sample_rate * kBytesPerSample);
PRINT("file size: %d [secs]\n", seconds);
PRINT("file size: %d [callbacks]\n", seconds * kNumCallbacksPerSecond);
#endif
return file_name;
}
void SetMaxPlayoutVolume() {
uint32_t max_volume;
EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume));
EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume));
}
void StartPlayout() {
EXPECT_FALSE(audio_device()->PlayoutIsInitialized());
EXPECT_FALSE(audio_device()->Playing());
EXPECT_EQ(0, audio_device()->InitPlayout());
EXPECT_TRUE(audio_device()->PlayoutIsInitialized());
EXPECT_EQ(0, audio_device()->StartPlayout());
EXPECT_TRUE(audio_device()->Playing());
}
void StopPlayout() {
EXPECT_EQ(0, audio_device()->StopPlayout());
EXPECT_FALSE(audio_device()->Playing());
}
void StartRecording() {
EXPECT_FALSE(audio_device()->RecordingIsInitialized());
EXPECT_FALSE(audio_device()->Recording());
EXPECT_EQ(0, audio_device()->InitRecording());
EXPECT_TRUE(audio_device()->RecordingIsInitialized());
EXPECT_EQ(0, audio_device()->StartRecording());
EXPECT_TRUE(audio_device()->Recording());
}
void StopRecording() {
EXPECT_EQ(0, audio_device()->StopRecording());
EXPECT_FALSE(audio_device()->Recording());
}
int GetMaxSpeakerVolume() const {
uint32_t max_volume(0);
EXPECT_EQ(0, audio_device()->MaxSpeakerVolume(&max_volume));
return max_volume;
}
int GetMinSpeakerVolume() const {
uint32_t min_volume(0);
EXPECT_EQ(0, audio_device()->MinSpeakerVolume(&min_volume));
return min_volume;
}
int GetSpeakerVolume() const {
uint32_t volume(0);
EXPECT_EQ(0, audio_device()->SpeakerVolume(&volume));
return volume;
}
rtc::scoped_ptr<EventWrapper> test_is_done_;
scoped_refptr<AudioDeviceModule> audio_device_;
AudioParameters parameters_;
};
TEST_P(AudioDeviceTest, ConstructDestruct) {
// Using the test fixture to create and destruct the audio device module.
}
// Create an audio device instance and print out the native audio parameters.
TEST_P(AudioDeviceTest, AudioParameters) {
EXPECT_NE(0, playout_sample_rate());
PRINT("%splayout_sample_rate: %d\n", kTag, playout_sample_rate());
EXPECT_NE(0, recording_sample_rate());
PRINT("%srecording_sample_rate: %d\n", kTag, recording_sample_rate());
EXPECT_NE(0, playout_channels());
PRINT("%splayout_channels: %d\n", kTag, playout_channels());
EXPECT_NE(0, recording_channels());
PRINT("%srecording_channels: %d\n", kTag, recording_channels());
}
TEST_P(AudioDeviceTest, InitTerminate) {
// Initialization is part of the test fixture.
EXPECT_TRUE(audio_device()->Initialized());
EXPECT_EQ(0, audio_device()->Terminate());
EXPECT_FALSE(audio_device()->Initialized());
}
TEST_P(AudioDeviceTest, Devices) {
// Device enumeration is not supported. Verify fixed values only.
EXPECT_EQ(1, audio_device()->PlayoutDevices());
EXPECT_EQ(1, audio_device()->RecordingDevices());
}
TEST_P(AudioDeviceTest, BuiltInAECIsAvailable) {
PRINT("%sBuiltInAECIsAvailable: %s\n",
kTag, audio_device()->BuiltInAECIsAvailable() ? "true" : "false");
}
TEST_P(AudioDeviceTest, SpeakerVolumeShouldBeAvailable) {
bool available;
EXPECT_EQ(0, audio_device()->SpeakerVolumeIsAvailable(&available));
EXPECT_TRUE(available);
}
TEST_P(AudioDeviceTest, MaxSpeakerVolumeIsPositive) {
EXPECT_GT(GetMaxSpeakerVolume(), 0);
}
TEST_P(AudioDeviceTest, MinSpeakerVolumeIsZero) {
EXPECT_EQ(GetMinSpeakerVolume(), 0);
}
TEST_P(AudioDeviceTest, DefaultSpeakerVolumeIsWithinMinMax) {
const int default_volume = GetSpeakerVolume();
EXPECT_GE(default_volume, GetMinSpeakerVolume());
EXPECT_LE(default_volume, GetMaxSpeakerVolume());
}
TEST_P(AudioDeviceTest, SetSpeakerVolumeActuallySetsVolume) {
const int default_volume = GetSpeakerVolume();
const int max_volume = GetMaxSpeakerVolume();
EXPECT_EQ(0, audio_device()->SetSpeakerVolume(max_volume));
int new_volume = GetSpeakerVolume();
EXPECT_EQ(new_volume, max_volume);
EXPECT_EQ(0, audio_device()->SetSpeakerVolume(default_volume));
}
// Tests that playout can be initiated, started and stopped.
TEST_P(AudioDeviceTest, StartStopPlayout) {
StartPlayout();
StopPlayout();
}
// Start playout and verify that the native audio layer starts asking for real
// audio samples to play out using the NeedMorePlayData callback.
TEST_P(AudioDeviceTest, StartPlayoutVerifyCallbacks) {
MockAudioTransport mock(kPlayout);
mock.HandleCallbacks(test_is_done_.get(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_buffer(),
kBytesPerSample,
playout_channels(),
playout_sample_rate(),
NotNull(),
_, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
test_is_done_->Wait(kTestTimeOutInMilliseconds);
StopPlayout();
}
// Start recording and verify that the native audio layer starts feeding real
// audio samples via the RecordedDataIsAvailable callback.
TEST_P(AudioDeviceTest, StartRecordingVerifyCallbacks) {
MockAudioTransport mock(kRecording);
mock.HandleCallbacks(test_is_done_.get(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(),
recording_frames_per_buffer(),
kBytesPerSample,
recording_channels(),
recording_sample_rate(),
kFixedRecordingDelay,
0,
0,
false,
_))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartRecording();
test_is_done_->Wait(kTestTimeOutInMilliseconds);
StopRecording();
}
// Start playout and recording (full-duplex audio) and verify that audio is
// active in both directions.
TEST_P(AudioDeviceTest, StartPlayoutAndRecordingVerifyCallbacks) {
MockAudioTransport mock(kPlayout | kRecording);
mock.HandleCallbacks(test_is_done_.get(), nullptr, kNumCallbacks);
EXPECT_CALL(mock, NeedMorePlayData(playout_frames_per_buffer(),
kBytesPerSample,
playout_channels(),
playout_sample_rate(),
NotNull(),
_, _, _))
.Times(AtLeast(kNumCallbacks));
EXPECT_CALL(mock, RecordedDataIsAvailable(NotNull(),
recording_frames_per_buffer(),
kBytesPerSample,
recording_channels(),
recording_sample_rate(),
Gt(kFixedRecordingDelay),
0,
0,
false,
_))
.Times(AtLeast(kNumCallbacks));
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
StartRecording();
test_is_done_->Wait(kTestTimeOutInMilliseconds);
StopRecording();
StopPlayout();
}
// Start playout and read audio from an external PCM file when the audio layer
// asks for data to play out. Real audio is played out in this test but it does
// not contain any explicit verification that the audio quality is perfect.
TEST_P(AudioDeviceTest, RunPlayoutWithFileAsSource) {
// TODO(henrika): extend test when mono output is supported.
EXPECT_EQ(1, playout_channels());
NiceMock<MockAudioTransport> mock(kPlayout);
const int num_callbacks = kFilePlayTimeInSec * kNumCallbacksPerSecond;
std::string file_name = GetFileName(playout_sample_rate());
rtc::scoped_ptr<FileAudioStream> file_audio_stream(
new FileAudioStream(num_callbacks, file_name, playout_sample_rate()));
mock.HandleCallbacks(test_is_done_.get(),
file_audio_stream.get(),
num_callbacks);
SetMaxPlayoutVolume();
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartPlayout();
test_is_done_->Wait(kTestTimeOutInMilliseconds);
StopPlayout();
}
// Start playout and recording and store recorded data in an intermediate FIFO
// buffer from which the playout side then reads its samples in the same order
// as they were stored. Under ideal circumstances, a callback sequence would
// look like: ...+-+-+-+-+-+-+-..., where '+' means 'packet recorded' and '-'
// means 'packet played'. Under such conditions, the FIFO would only contain
// one packet on average. However, under more realistic conditions, the size
// of the FIFO will vary more due to an unbalance between the two sides.
// This test tries to verify that the device maintains a balanced callback-
// sequence by running in loopback for ten seconds while measuring the size
// (max and average) of the FIFO. The size of the FIFO is increased by the
// recording side and decreased by the playout side.
// TODO(henrika): tune the final test parameters after running tests on several
// different devices.
TEST_P(AudioDeviceTest, RunPlayoutAndRecordingInFullDuplex) {
EXPECT_EQ(recording_channels(), playout_channels());
EXPECT_EQ(recording_sample_rate(), playout_sample_rate());
NiceMock<MockAudioTransport> mock(kPlayout | kRecording);
rtc::scoped_ptr<FifoAudioStream> fifo_audio_stream(
new FifoAudioStream(playout_frames_per_buffer()));
mock.HandleCallbacks(test_is_done_.get(),
fifo_audio_stream.get(),
kFullDuplexTimeInSec * kNumCallbacksPerSecond);
SetMaxPlayoutVolume();
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
StartRecording();
StartPlayout();
test_is_done_->Wait(std::max(kTestTimeOutInMilliseconds,
1000 * kFullDuplexTimeInSec));
StopPlayout();
StopRecording();
EXPECT_LE(fifo_audio_stream->average_size(), 10);
EXPECT_LE(fifo_audio_stream->largest_size(), 20);
}
// Measures loopback latency and reports the min, max and average values for
// a full duplex audio session.
// The latency is measured like so:
// - Insert impulses periodically on the output side.
// - Detect the impulses on the input side.
// - Measure the time difference between the transmit time and receive time.
// - Store time differences in a vector and calculate min, max and average.
// This test requires a special hardware called Audio Loopback Dongle.
// See http://source.android.com/devices/audio/loopback.html for details.
TEST_P(AudioDeviceTest, DISABLED_MeasureLoopbackLatency) {
EXPECT_EQ(recording_channels(), playout_channels());
EXPECT_EQ(recording_sample_rate(), playout_sample_rate());
NiceMock<MockAudioTransport> mock(kPlayout | kRecording);
rtc::scoped_ptr<LatencyMeasuringAudioStream> latency_audio_stream(
new LatencyMeasuringAudioStream(playout_frames_per_buffer()));
mock.HandleCallbacks(test_is_done_.get(),
latency_audio_stream.get(),
kMeasureLatencyTimeInSec * kNumCallbacksPerSecond);
EXPECT_EQ(0, audio_device()->RegisterAudioCallback(&mock));
SetMaxPlayoutVolume();
StartRecording();
StartPlayout();
test_is_done_->Wait(std::max(kTestTimeOutInMilliseconds,
1000 * kMeasureLatencyTimeInSec));
StopPlayout();
StopRecording();
// Verify that the correct number of transmitted impulses are detected.
EXPECT_EQ(latency_audio_stream->num_latency_values(),
kImpulseFrequencyInHz * kMeasureLatencyTimeInSec - 1);
latency_audio_stream->PrintResults();
}
INSTANTIATE_TEST_CASE_P(AudioDeviceTest, AudioDeviceTest,
::testing::ValuesIn(kAudioLayers));
} // namespace webrtc