| /* |
| * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include <list> |
| #include <memory> |
| #include <string> |
| |
| #include "modules/pacing/paced_sender.h" |
| #include "modules/pacing/packet_router.h" |
| #include "system_wrappers/include/clock.h" |
| #include "system_wrappers/include/field_trial.h" |
| #include "test/field_trial.h" |
| #include "test/gmock.h" |
| #include "test/gtest.h" |
| |
| using ::testing::_; |
| using ::testing::Field; |
| using ::testing::Return; |
| |
| namespace { |
| constexpr unsigned kFirstClusterBps = 900000; |
| constexpr unsigned kSecondClusterBps = 1800000; |
| |
| // The error stems from truncating the time interval of probe packets to integer |
| // values. This results in probing slightly higher than the target bitrate. |
| // For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets. |
| constexpr int kBitrateProbingError = 150000; |
| |
| const float kPaceMultiplier = 2.5f; |
| } // namespace |
| |
| namespace webrtc { |
| namespace test { |
| |
| static const int kTargetBitrateBps = 800000; |
| |
| class MockPacedSenderCallback : public PacketRouter { |
| public: |
| MOCK_METHOD5(TimeToSendPacket, |
| RtpPacketSendResult(uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| bool retransmission, |
| const PacedPacketInfo& pacing_info)); |
| MOCK_METHOD2(TimeToSendPadding, |
| size_t(size_t bytes, const PacedPacketInfo& pacing_info)); |
| }; |
| |
| class PacedSenderPadding : public PacketRouter { |
| public: |
| PacedSenderPadding() : padding_sent_(0) {} |
| |
| RtpPacketSendResult TimeToSendPacket( |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| bool retransmission, |
| const PacedPacketInfo& pacing_info) override { |
| return RtpPacketSendResult::kSuccess; |
| } |
| |
| size_t TimeToSendPadding(size_t bytes, |
| const PacedPacketInfo& pacing_info) override { |
| const size_t kPaddingPacketSize = 224; |
| size_t num_packets = (bytes + kPaddingPacketSize - 1) / kPaddingPacketSize; |
| padding_sent_ += kPaddingPacketSize * num_packets; |
| return kPaddingPacketSize * num_packets; |
| } |
| |
| size_t padding_sent() { return padding_sent_; } |
| |
| private: |
| size_t padding_sent_; |
| }; |
| |
| class PacedSenderProbing : public PacketRouter { |
| public: |
| PacedSenderProbing() : packets_sent_(0), padding_sent_(0) {} |
| |
| RtpPacketSendResult TimeToSendPacket( |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| bool retransmission, |
| const PacedPacketInfo& pacing_info) override { |
| packets_sent_++; |
| return RtpPacketSendResult::kSuccess; |
| } |
| |
| size_t TimeToSendPadding(size_t bytes, |
| const PacedPacketInfo& pacing_info) override { |
| padding_sent_ += bytes; |
| return padding_sent_; |
| } |
| |
| int packets_sent() const { return packets_sent_; } |
| |
| int padding_sent() const { return padding_sent_; } |
| |
| private: |
| int packets_sent_; |
| int padding_sent_; |
| }; |
| |
| class PacedSenderTest : public ::testing::TestWithParam<std::string> { |
| protected: |
| PacedSenderTest() : clock_(123456) { |
| srand(0); |
| // Need to initialize PacedSender after we initialize clock. |
| send_bucket_.reset(new PacedSender(&clock_, &callback_, nullptr)); |
| send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0); |
| send_bucket_->CreateProbeCluster(kSecondClusterBps, /*cluster_id=*/1); |
| // Default to bitrate probing disabled for testing purposes. Probing tests |
| // have to enable probing, either by creating a new PacedSender instance or |
| // by calling SetProbingEnabled(true). |
| send_bucket_->SetProbingEnabled(false); |
| send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, 0); |
| |
| clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess()); |
| } |
| |
| void SendAndExpectPacket(PacedSender::Priority priority, |
| uint32_t ssrc, |
| uint16_t sequence_number, |
| int64_t capture_time_ms, |
| size_t size, |
| bool retransmission) { |
| send_bucket_->InsertPacket(priority, ssrc, sequence_number, capture_time_ms, |
| size, retransmission); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number, |
| capture_time_ms, retransmission, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| } |
| SimulatedClock clock_; |
| MockPacedSenderCallback callback_; |
| std::unique_ptr<PacedSender> send_bucket_; |
| }; |
| |
| class PacedSenderFieldTrialTest : public ::testing::Test { |
| protected: |
| struct MediaStream { |
| const RtpPacketSender::Priority priority; |
| const uint32_t ssrc; |
| const size_t packet_size; |
| uint16_t seq_num; |
| }; |
| |
| const int kProcessIntervalsPerSecond = 1000 / 5; |
| |
| PacedSenderFieldTrialTest() : clock_(123456) {} |
| void InsertPacket(PacedSender* pacer, MediaStream* stream) { |
| pacer->InsertPacket(stream->priority, stream->ssrc, stream->seq_num++, |
| clock_.TimeInMilliseconds(), stream->packet_size, |
| false); |
| } |
| void ProcessNext(PacedSender* pacer) { |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer->Process(); |
| } |
| MediaStream audio{/*priority*/ PacedSender::kHighPriority, |
| /*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000}; |
| MediaStream video{/*priority*/ PacedSender::kNormalPriority, |
| /*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000}; |
| SimulatedClock clock_; |
| MockPacedSenderCallback callback_; |
| }; |
| |
| TEST_F(PacedSenderFieldTrialTest, DefaultNoPaddingInSilence) { |
| PacedSender pacer(&clock_, &callback_, nullptr); |
| pacer.SetPacingRates(kTargetBitrateBps, 0); |
| // Video packet to reset last send time and provide padding data. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer.Process(); |
| EXPECT_CALL(callback_, TimeToSendPadding).Times(0); |
| // Waiting 500 ms should not trigger sending of padding. |
| clock_.AdvanceTimeMilliseconds(500); |
| pacer.Process(); |
| } |
| |
| TEST_F(PacedSenderFieldTrialTest, PaddingInSilenceWithTrial) { |
| ScopedFieldTrials trial("WebRTC-Pacer-PadInSilence/Enabled/"); |
| PacedSender pacer(&clock_, &callback_, nullptr); |
| pacer.SetPacingRates(kTargetBitrateBps, 0); |
| // Video packet to reset last send time and provide padding data. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| clock_.AdvanceTimeMilliseconds(5); |
| pacer.Process(); |
| EXPECT_CALL(callback_, TimeToSendPadding).WillOnce(Return(1000)); |
| // Waiting 500 ms should trigger sending of padding. |
| clock_.AdvanceTimeMilliseconds(500); |
| pacer.Process(); |
| } |
| |
| TEST_F(PacedSenderFieldTrialTest, DefaultCongestionWindowAffectsAudio) { |
| EXPECT_CALL(callback_, TimeToSendPadding).Times(0); |
| PacedSender pacer(&clock_, &callback_, nullptr); |
| pacer.SetPacingRates(10000000, 0); |
| pacer.SetCongestionWindow(800); |
| pacer.UpdateOutstandingData(0); |
| // Video packet fills congestion window. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| ProcessNext(&pacer); |
| // Audio packet blocked due to congestion. |
| InsertPacket(&pacer, &audio); |
| EXPECT_CALL(callback_, TimeToSendPacket).Times(0); |
| ProcessNext(&pacer); |
| ProcessNext(&pacer); |
| // Audio packet unblocked when congestion window clear. |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| pacer.UpdateOutstandingData(0); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| ProcessNext(&pacer); |
| } |
| |
| TEST_F(PacedSenderFieldTrialTest, CongestionWindowDoesNotAffectAudioInTrial) { |
| ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/"); |
| EXPECT_CALL(callback_, TimeToSendPadding).Times(0); |
| PacedSender pacer(&clock_, &callback_, nullptr); |
| pacer.SetPacingRates(10000000, 0); |
| pacer.SetCongestionWindow(800); |
| pacer.UpdateOutstandingData(0); |
| // Video packet fills congestion window. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| ProcessNext(&pacer); |
| // Audio not blocked due to congestion. |
| InsertPacket(&pacer, &audio); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| ProcessNext(&pacer); |
| } |
| |
| TEST_F(PacedSenderFieldTrialTest, DefaultBudgetAffectsAudio) { |
| PacedSender pacer(&clock_, &callback_, nullptr); |
| pacer.SetPacingRates(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond, |
| 0); |
| // Video fills budget for following process periods. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| ProcessNext(&pacer); |
| // Audio packet blocked due to budget limit. |
| EXPECT_CALL(callback_, TimeToSendPacket).Times(0); |
| InsertPacket(&pacer, &audio); |
| ProcessNext(&pacer); |
| ProcessNext(&pacer); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| // Audio packet unblocked when the budget has recovered. |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| ProcessNext(&pacer); |
| ProcessNext(&pacer); |
| } |
| |
| TEST_F(PacedSenderFieldTrialTest, BudgetDoesNotAffectAudioInTrial) { |
| ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/"); |
| EXPECT_CALL(callback_, TimeToSendPadding).Times(0); |
| PacedSender pacer(&clock_, &callback_, nullptr); |
| pacer.SetPacingRates(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond, |
| 0); |
| // Video fills budget for following process periods. |
| InsertPacket(&pacer, &video); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| ProcessNext(&pacer); |
| // Audio packet not blocked due to budget limit. |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| InsertPacket(&pacer, &audio); |
| ProcessNext(&pacer); |
| } |
| |
| TEST_F(PacedSenderTest, FirstSentPacketTimeIsSet) { |
| uint16_t sequence_number = 1234; |
| const uint32_t kSsrc = 12345; |
| const size_t kSizeBytes = 250; |
| const size_t kPacketToSend = 3; |
| const int64_t kStartMs = clock_.TimeInMilliseconds(); |
| |
| // No packet sent. |
| EXPECT_EQ(-1, send_bucket_->FirstSentPacketTimeMs()); |
| |
| for (size_t i = 0; i < kPacketToSend; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, kSsrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kSizeBytes, false); |
| send_bucket_->Process(); |
| clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess()); |
| } |
| EXPECT_EQ(kStartMs, send_bucket_->FirstSentPacketTimeMs()); |
| } |
| |
| TEST_F(PacedSenderTest, QueuePacket) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send = |
| kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250, false); |
| } |
| |
| int64_t queued_packet_timestamp = clock_.TimeInMilliseconds(); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number, queued_packet_timestamp, 250, |
| false); |
| EXPECT_EQ(packets_to_send + 1, send_bucket_->QueueSizePackets()); |
| send_bucket_->Process(); |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| clock_.AdvanceTimeMilliseconds(4); |
| EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(1); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| EXPECT_EQ(1u, send_bucket_->QueueSizePackets()); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number++, |
| queued_packet_timestamp, false, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| send_bucket_->Process(); |
| sequence_number++; |
| EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); |
| |
| // We can send packets_to_send -1 packets of size 250 during the current |
| // interval since one packet has already been sent. |
| for (size_t i = 0; i < packets_to_send - 1; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250, false); |
| } |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| 250, false); |
| EXPECT_EQ(packets_to_send, send_bucket_->QueueSizePackets()); |
| send_bucket_->Process(); |
| EXPECT_EQ(1u, send_bucket_->QueueSizePackets()); |
| } |
| |
| TEST_F(PacedSenderTest, PaceQueuedPackets) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250, false); |
| } |
| |
| for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) { |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| 250, false); |
| } |
| EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10, |
| send_bucket_->QueueSizePackets()); |
| send_bucket_->Process(); |
| EXPECT_EQ(packets_to_send_per_interval * 10, |
| send_bucket_->QueueSizePackets()); |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| for (int k = 0; k < 10; ++k) { |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _)) |
| .Times(packets_to_send_per_interval) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| } |
| EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); |
| send_bucket_->Process(); |
| |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250, false); |
| } |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number, clock_.TimeInMilliseconds(), 250, |
| false); |
| send_bucket_->Process(); |
| EXPECT_EQ(1u, send_bucket_->QueueSizePackets()); |
| } |
| |
| TEST_F(PacedSenderTest, RepeatedRetransmissionsAllowed) { |
| // Send one packet, then two retransmissions of that packet. |
| for (size_t i = 0; i < 3; i++) { |
| constexpr uint32_t ssrc = 333; |
| constexpr uint16_t sequence_number = 444; |
| constexpr size_t bytes = 250; |
| bool is_retransmission = (i != 0); // Original followed by retransmissions. |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number, |
| clock_.TimeInMilliseconds(), bytes, is_retransmission); |
| clock_.AdvanceTimeMilliseconds(5); |
| } |
| send_bucket_->Process(); |
| } |
| |
| TEST_F(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number, |
| clock_.TimeInMilliseconds(), 250, false); |
| |
| // Expect packet on second ssrc to be queued and sent as well. |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc + 1, sequence_number, |
| clock_.TimeInMilliseconds(), 250, false); |
| |
| clock_.AdvanceTimeMilliseconds(1000); |
| send_bucket_->Process(); |
| } |
| |
| TEST_F(PacedSenderTest, Padding) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| |
| send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, |
| kTargetBitrateBps); |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250, false); |
| } |
| // No padding is expected since we have sent too much already. |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); |
| |
| // 5 milliseconds later should not send padding since we filled the buffers |
| // initially. |
| EXPECT_CALL(callback_, TimeToSendPadding(250, _)).Times(0); |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| |
| // 5 milliseconds later we have enough budget to send some padding. |
| EXPECT_CALL(callback_, TimeToSendPadding(250, _)) |
| .Times(1) |
| .WillOnce(Return(250)); |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| } |
| |
| TEST_F(PacedSenderTest, NoPaddingBeforeNormalPacket) { |
| send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, |
| kTargetBitrateBps); |
| |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| send_bucket_->Process(); |
| clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess()); |
| |
| send_bucket_->Process(); |
| clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess()); |
| |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| capture_time_ms, 250, false); |
| EXPECT_CALL(callback_, TimeToSendPadding(250, _)) |
| .Times(1) |
| .WillOnce(Return(250)); |
| send_bucket_->Process(); |
| } |
| |
| TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| const int kTimeStep = 5; |
| const int64_t kBitrateWindow = 100; |
| send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, |
| kTargetBitrateBps); |
| |
| int64_t start_time = clock_.TimeInMilliseconds(); |
| while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| capture_time_ms, 250, false); |
| EXPECT_CALL(callback_, TimeToSendPadding(250, _)) |
| .Times(1) |
| .WillOnce(Return(250)); |
| send_bucket_->Process(); |
| clock_.AdvanceTimeMilliseconds(kTimeStep); |
| } |
| } |
| |
| TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| const int kTimeStep = 5; |
| const int64_t kBitrateWindow = 10000; |
| PacedSenderPadding callback; |
| send_bucket_.reset(new PacedSender(&clock_, &callback, nullptr)); |
| send_bucket_->SetProbingEnabled(false); |
| send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, |
| kTargetBitrateBps); |
| |
| int64_t start_time = clock_.TimeInMilliseconds(); |
| size_t media_bytes = 0; |
| while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) { |
| int rand_value = rand(); // NOLINT (rand_r instead of rand) |
| size_t media_payload = rand_value % 100 + 200; // [200, 300] bytes. |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, capture_time_ms, |
| media_payload, false); |
| media_bytes += media_payload; |
| clock_.AdvanceTimeMilliseconds(kTimeStep); |
| send_bucket_->Process(); |
| } |
| EXPECT_NEAR(kTargetBitrateBps / 1000, |
| static_cast<int>(8 * (media_bytes + callback.padding_sent()) / |
| kBitrateWindow), |
| 1); |
| } |
| |
| TEST_F(PacedSenderTest, Priority) { |
| uint32_t ssrc_low_priority = 12345; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| int64_t capture_time_ms_low_priority = 1234567; |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250, false); |
| } |
| send_bucket_->Process(); |
| EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); |
| |
| // Expect normal and low priority to be queued and high to pass through. |
| send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority, |
| sequence_number++, capture_time_ms_low_priority, |
| 250, false); |
| |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, capture_time_ms, 250, false); |
| } |
| send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc, |
| sequence_number++, capture_time_ms, 250, false); |
| |
| // Expect all high and normal priority to be sent out first. |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false, _)) |
| .Times(packets_to_send_per_interval + 1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| EXPECT_EQ(1u, send_bucket_->QueueSizePackets()); |
| |
| EXPECT_CALL(callback_, |
| TimeToSendPacket(ssrc_low_priority, _, |
| capture_time_ms_low_priority, false, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| } |
| |
| TEST_F(PacedSenderTest, RetransmissionPriority) { |
| uint32_t ssrc = 12345; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 45678; |
| int64_t capture_time_ms_retransmission = 56789; |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); |
| send_bucket_->Process(); |
| EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); |
| |
| // Alternate retransmissions and normal packets. |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, |
| capture_time_ms_retransmission, 250, true); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, capture_time_ms, 250, false); |
| } |
| EXPECT_EQ(2 * packets_to_send_per_interval, send_bucket_->QueueSizePackets()); |
| |
| // Expect all retransmissions to be sent out first despite having a later |
| // capture time. |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, false, _)).Times(0); |
| EXPECT_CALL(callback_, TimeToSendPacket( |
| ssrc, _, capture_time_ms_retransmission, true, _)) |
| .Times(packets_to_send_per_interval) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| EXPECT_EQ(packets_to_send_per_interval, send_bucket_->QueueSizePackets()); |
| |
| // Expect the remaining (non-retransmission) packets to be sent. |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, true, _)).Times(0); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false, _)) |
| .Times(packets_to_send_per_interval) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| |
| EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); |
| } |
| |
| TEST_F(PacedSenderTest, HighPrioDoesntAffectBudget) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = 56789; |
| |
| // As high prio packets doesn't affect the budget, we should be able to send |
| // a high number of them at once. |
| for (int i = 0; i < 25; ++i) { |
| SendAndExpectPacket(PacedSender::kHighPriority, ssrc, sequence_number++, |
| capture_time_ms, 250, false); |
| } |
| send_bucket_->Process(); |
| // Low prio packets does affect the budget. |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250, false); |
| } |
| send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc, sequence_number, |
| capture_time_ms, 250, false); |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| EXPECT_EQ(1u, send_bucket_->QueueSizePackets()); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number++, |
| capture_time_ms, false, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| EXPECT_EQ(0u, send_bucket_->QueueSizePackets()); |
| } |
| |
| TEST_F(PacedSenderTest, SendsOnlyPaddingWhenCongested) { |
| uint32_t ssrc = 202020; |
| uint16_t sequence_number = 1000; |
| int kPacketSize = 250; |
| int kCongestionWindow = kPacketSize * 10; |
| |
| send_bucket_->UpdateOutstandingData(0); |
| send_bucket_->SetCongestionWindow(kCongestionWindow); |
| int sent_data = 0; |
| while (sent_data < kCongestionWindow) { |
| sent_data += kPacketSize; |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize, false); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _)).Times(0); |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| |
| size_t blocked_packets = 0; |
| int64_t expected_time_until_padding = 500; |
| while (expected_time_until_padding > 5) { |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| blocked_packets++; |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| expected_time_until_padding -= 5; |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| EXPECT_EQ(blocked_packets, send_bucket_->QueueSizePackets()); |
| } |
| |
| TEST_F(PacedSenderTest, DoesNotAllowOveruseAfterCongestion) { |
| uint32_t ssrc = 202020; |
| uint16_t seq_num = 1000; |
| RtpPacketSender::Priority prio = PacedSender::kNormalPriority; |
| int size = 1000; |
| auto now_ms = [this] { return clock_.TimeInMilliseconds(); }; |
| EXPECT_CALL(callback_, TimeToSendPadding).Times(0); |
| // The pacing rate is low enough that the budget should not allow two packets |
| // to be sent in a row. |
| send_bucket_->SetPacingRates(400 * 8 * 1000 / 5, 0); |
| // The congestion window is small enough to only let one packet through. |
| send_bucket_->SetCongestionWindow(800); |
| send_bucket_->UpdateOutstandingData(0); |
| // Not yet budget limited or congested, packet is sent. |
| send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| // Packet blocked due to congestion. |
| send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false); |
| EXPECT_CALL(callback_, TimeToSendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| // Packet blocked due to congestion. |
| send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false); |
| EXPECT_CALL(callback_, TimeToSendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| send_bucket_->UpdateOutstandingData(0); |
| // Congestion removed and budget has recovered, packet is sent. |
| send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false); |
| EXPECT_CALL(callback_, TimeToSendPacket) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| send_bucket_->UpdateOutstandingData(0); |
| // Should be blocked due to budget limitation as congestion has be removed. |
| send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false); |
| EXPECT_CALL(callback_, TimeToSendPacket).Times(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| } |
| |
| TEST_F(PacedSenderTest, ResumesSendingWhenCongestionEnds) { |
| uint32_t ssrc = 202020; |
| uint16_t sequence_number = 1000; |
| int64_t kPacketSize = 250; |
| int64_t kCongestionCount = 10; |
| int64_t kCongestionWindow = kPacketSize * kCongestionCount; |
| int64_t kCongestionTimeMs = 1000; |
| |
| send_bucket_->UpdateOutstandingData(0); |
| send_bucket_->SetCongestionWindow(kCongestionWindow); |
| int sent_data = 0; |
| while (sent_data < kCongestionWindow) { |
| sent_data += kPacketSize; |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize, false); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _)).Times(0); |
| int unacked_packets = 0; |
| for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| unacked_packets++; |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // First mark half of the congested packets as cleared and make sure that just |
| // as many are sent |
| int ack_count = kCongestionCount / 2; |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _)) |
| .Times(ack_count) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| send_bucket_->UpdateOutstandingData(kCongestionWindow - |
| kPacketSize * ack_count); |
| |
| for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| } |
| unacked_packets -= ack_count; |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Second make sure all packets are sent if sent packets are continuously |
| // marked as acked. |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _)) |
| .Times(unacked_packets) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| for (int duration = 0; duration < kCongestionTimeMs; duration += 5) { |
| send_bucket_->UpdateOutstandingData(0); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| } |
| } |
| |
| TEST_F(PacedSenderTest, Pause) { |
| uint32_t ssrc_low_priority = 12345; |
| uint32_t ssrc = 12346; |
| uint32_t ssrc_high_priority = 12347; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = clock_.TimeInMilliseconds(); |
| |
| EXPECT_EQ(0, send_bucket_->QueueInMs()); |
| |
| // Due to the multiplicative factor we can send 5 packets during a send |
| // interval. (network capacity * multiplier / (8 bits per byte * |
| // (packet size * #send intervals per second) |
| const size_t packets_to_send_per_interval = |
| kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), 250, false); |
| } |
| |
| send_bucket_->Process(); |
| |
| send_bucket_->Pause(); |
| |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority, |
| sequence_number++, capture_time_ms, 250, false); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, capture_time_ms, 250, false); |
| send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc_high_priority, |
| sequence_number++, capture_time_ms, 250, false); |
| } |
| clock_.AdvanceTimeMilliseconds(10000); |
| int64_t second_capture_time_ms = clock_.TimeInMilliseconds(); |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority, |
| sequence_number++, second_capture_time_ms, 250, |
| false); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, second_capture_time_ms, 250, |
| false); |
| send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc_high_priority, |
| sequence_number++, second_capture_time_ms, 250, |
| false); |
| } |
| |
| // Expect everything to be queued. |
| EXPECT_EQ(second_capture_time_ms - capture_time_ms, |
| send_bucket_->QueueInMs()); |
| |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1); |
| send_bucket_->Process(); |
| |
| int64_t expected_time_until_send = 500; |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| while (expected_time_until_send >= 5) { |
| send_bucket_->Process(); |
| clock_.AdvanceTimeMilliseconds(5); |
| expected_time_until_send -= 5; |
| } |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1); |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->Process(); |
| ::testing::Mock::VerifyAndClearExpectations(&callback_); |
| |
| // Expect high prio packets to come out first followed by normal |
| // prio packets and low prio packets (all in capture order). |
| { |
| ::testing::InSequence sequence; |
| EXPECT_CALL(callback_, |
| TimeToSendPacket(ssrc_high_priority, _, capture_time_ms, _, _)) |
| .Times(packets_to_send_per_interval) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc_high_priority, _, |
| second_capture_time_ms, _, _)) |
| .Times(packets_to_send_per_interval) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, _, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, |
| TimeToSendPacket(ssrc, _, second_capture_time_ms, _, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, |
| TimeToSendPacket(ssrc_low_priority, _, capture_time_ms, _, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| } |
| for (size_t i = 0; i < packets_to_send_per_interval; ++i) { |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc_low_priority, _, |
| second_capture_time_ms, _, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| } |
| } |
| send_bucket_->Resume(); |
| |
| // The pacer was resumed directly after the previous process call finished. It |
| // will therefore wait 5 ms until next process. |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| |
| for (size_t i = 0; i < 4; i++) { |
| EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess()); |
| send_bucket_->Process(); |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(5); |
| } |
| |
| EXPECT_EQ(0, send_bucket_->QueueInMs()); |
| } |
| |
| TEST_F(PacedSenderTest, ResendPacket) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| int64_t capture_time_ms = clock_.TimeInMilliseconds(); |
| EXPECT_EQ(0, send_bucket_->QueueInMs()); |
| |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number, capture_time_ms, 250, false); |
| clock_.AdvanceTimeMilliseconds(1); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number + 1, capture_time_ms + 1, 250, |
| false); |
| clock_.AdvanceTimeMilliseconds(9999); |
| EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms, |
| send_bucket_->QueueInMs()); |
| // Fails to send first packet so only one call. |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number, |
| capture_time_ms, false, _)) |
| .Times(1) |
| .WillOnce(Return(RtpPacketSendResult::kTransportUnavailable)); |
| clock_.AdvanceTimeMilliseconds(10000); |
| send_bucket_->Process(); |
| |
| // Queue remains unchanged. |
| EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms, |
| send_bucket_->QueueInMs()); |
| |
| // Fails to send second packet. |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number, |
| capture_time_ms, false, _)) |
| .Times(1) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1, |
| capture_time_ms + 1, false, _)) |
| .Times(1) |
| .WillOnce(Return(RtpPacketSendResult::kTransportUnavailable)); |
| clock_.AdvanceTimeMilliseconds(10000); |
| send_bucket_->Process(); |
| |
| // Queue is reduced by 1 packet. |
| EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms - 1, |
| send_bucket_->QueueInMs()); |
| |
| // Send second packet and queue becomes empty. |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1, |
| capture_time_ms + 1, false, _)) |
| .Times(1) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| clock_.AdvanceTimeMilliseconds(10000); |
| send_bucket_->Process(); |
| EXPECT_EQ(0, send_bucket_->QueueInMs()); |
| } |
| |
| TEST_F(PacedSenderTest, ExpectedQueueTimeMs) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kNumPackets = 60; |
| const size_t kPacketSize = 1200; |
| const int32_t kMaxBitrate = kPaceMultiplier * 30000; |
| EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs()); |
| |
| send_bucket_->SetPacingRates(30000 * kPaceMultiplier, 0); |
| for (size_t i = 0; i < kNumPackets; ++i) { |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize, false); |
| } |
| |
| // Queue in ms = 1000 * (bytes in queue) *8 / (bits per second) |
| int64_t queue_in_ms = |
| static_cast<int64_t>(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate); |
| EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs()); |
| |
| int64_t time_start = clock_.TimeInMilliseconds(); |
| while (send_bucket_->QueueSizePackets() > 0) { |
| int time_until_process = send_bucket_->TimeUntilNextProcess(); |
| if (time_until_process <= 0) { |
| send_bucket_->Process(); |
| } else { |
| clock_.AdvanceTimeMilliseconds(time_until_process); |
| } |
| } |
| int64_t duration = clock_.TimeInMilliseconds() - time_start; |
| |
| EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs()); |
| |
| // Allow for aliasing, duration should be within one pack of max time limit. |
| EXPECT_NEAR(duration, PacedSender::kMaxQueueLengthMs, |
| static_cast<int64_t>(1000 * kPacketSize * 8 / kMaxBitrate)); |
| } |
| |
| TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| EXPECT_EQ(0, send_bucket_->QueueInMs()); |
| |
| send_bucket_->SetPacingRates(30000 * kPaceMultiplier, 0); |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number, |
| clock_.TimeInMilliseconds(), 1200, false); |
| |
| clock_.AdvanceTimeMilliseconds(500); |
| EXPECT_EQ(500, send_bucket_->QueueInMs()); |
| send_bucket_->Process(); |
| EXPECT_EQ(0, send_bucket_->QueueInMs()); |
| } |
| |
| TEST_F(PacedSenderTest, ProbingWithInsertedPackets) { |
| const size_t kPacketSize = 1200; |
| const int kInitialBitrateBps = 300000; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| PacedSenderProbing packet_sender; |
| send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr)); |
| send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0); |
| send_bucket_->CreateProbeCluster(kSecondClusterBps, /*cluster_id=*/1); |
| send_bucket_->SetPacingRates(kInitialBitrateBps * kPaceMultiplier, 0); |
| |
| for (int i = 0; i < 10; ++i) { |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| } |
| |
| int64_t start = clock_.TimeInMilliseconds(); |
| while (packet_sender.packets_sent() < 5) { |
| int time_until_process = send_bucket_->TimeUntilNextProcess(); |
| clock_.AdvanceTimeMilliseconds(time_until_process); |
| send_bucket_->Process(); |
| } |
| int packets_sent = packet_sender.packets_sent(); |
| // Validate first cluster bitrate. Note that we have to account for number |
| // of intervals and hence (packets_sent - 1) on the first cluster. |
| EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 / |
| (clock_.TimeInMilliseconds() - start), |
| kFirstClusterBps, kBitrateProbingError); |
| EXPECT_EQ(0, packet_sender.padding_sent()); |
| |
| clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess()); |
| start = clock_.TimeInMilliseconds(); |
| while (packet_sender.packets_sent() < 10) { |
| int time_until_process = send_bucket_->TimeUntilNextProcess(); |
| clock_.AdvanceTimeMilliseconds(time_until_process); |
| send_bucket_->Process(); |
| } |
| packets_sent = packet_sender.packets_sent() - packets_sent; |
| // Validate second cluster bitrate. |
| EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 / |
| (clock_.TimeInMilliseconds() - start), |
| kSecondClusterBps, kBitrateProbingError); |
| } |
| |
| TEST_F(PacedSenderTest, ProbingWithPaddingSupport) { |
| const size_t kPacketSize = 1200; |
| const int kInitialBitrateBps = 300000; |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| PacedSenderProbing packet_sender; |
| send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr)); |
| send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0); |
| send_bucket_->SetPacingRates(kInitialBitrateBps * kPaceMultiplier, 0); |
| |
| for (int i = 0; i < 3; ++i) { |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| } |
| |
| int64_t start = clock_.TimeInMilliseconds(); |
| int process_count = 0; |
| while (process_count < 5) { |
| int time_until_process = send_bucket_->TimeUntilNextProcess(); |
| clock_.AdvanceTimeMilliseconds(time_until_process); |
| send_bucket_->Process(); |
| ++process_count; |
| } |
| int packets_sent = packet_sender.packets_sent(); |
| int padding_sent = packet_sender.padding_sent(); |
| EXPECT_GT(packets_sent, 0); |
| EXPECT_GT(padding_sent, 0); |
| // Note that the number of intervals here for kPacketSize is |
| // packets_sent due to padding in the same cluster. |
| EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) / |
| (clock_.TimeInMilliseconds() - start), |
| kFirstClusterBps, kBitrateProbingError); |
| } |
| |
| TEST_F(PacedSenderTest, PaddingOveruse) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 1200; |
| |
| send_bucket_->Process(); |
| send_bucket_->SetPacingRates(60000 * kPaceMultiplier, 0); |
| |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize, false); |
| send_bucket_->Process(); |
| |
| // Add 30kbit padding. When increasing budget, media budget will increase from |
| // negative (overuse) while padding budget will increase from 0. |
| clock_.AdvanceTimeMilliseconds(5); |
| send_bucket_->SetPacingRates(60000 * kPaceMultiplier, 30000); |
| |
| SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++, |
| clock_.TimeInMilliseconds(), kPacketSize, false); |
| EXPECT_LT(5u, send_bucket_->ExpectedQueueTimeMs()); |
| // Don't send padding if queue is non-empty, even if padding budget > 0. |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0); |
| send_bucket_->Process(); |
| } |
| |
| // TODO(philipel): Move to PacketQueue2 unittests. |
| #if 0 |
| TEST_F(PacedSenderTest, AverageQueueTime) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 1200; |
| const int kBitrateBps = 10 * kPacketSize * 8; // 10 packets per second. |
| |
| send_bucket_->SetPacingRates(kBitrateBps * kPaceMultiplier, 0); |
| |
| EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs()); |
| |
| int64_t first_capture_time = clock_.TimeInMilliseconds(); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number, first_capture_time, kPacketSize, |
| false); |
| clock_.AdvanceTimeMilliseconds(10); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number + 1, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| clock_.AdvanceTimeMilliseconds(10); |
| |
| EXPECT_EQ((20 + 10) / 2, send_bucket_->AverageQueueTimeMs()); |
| |
| // Only first packet (queued for 20ms) should be removed, leave the second |
| // packet (queued for 10ms) alone in the queue. |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number, |
| first_capture_time, false, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| send_bucket_->Process(); |
| |
| EXPECT_EQ(10, send_bucket_->AverageQueueTimeMs()); |
| |
| clock_.AdvanceTimeMilliseconds(10); |
| EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1, |
| first_capture_time + 10, false, _)) |
| .Times(1) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| for (int i = 0; i < 3; ++i) { |
| clock_.AdvanceTimeMilliseconds(30); // Max delta. |
| send_bucket_->Process(); |
| } |
| |
| EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs()); |
| } |
| #endif |
| |
| TEST_F(PacedSenderTest, ProbeClusterId) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = 1200; |
| |
| send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, |
| kTargetBitrateBps); |
| send_bucket_->SetProbingEnabled(true); |
| for (int i = 0; i < 10; ++i) { |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number + i, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| } |
| |
| // First probing cluster. |
| EXPECT_CALL(callback_, |
| TimeToSendPacket(_, _, _, _, |
| Field(&PacedPacketInfo::probe_cluster_id, 0))) |
| .Times(5) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| for (int i = 0; i < 5; ++i) { |
| clock_.AdvanceTimeMilliseconds(20); |
| send_bucket_->Process(); |
| } |
| |
| // Second probing cluster. |
| EXPECT_CALL(callback_, |
| TimeToSendPacket(_, _, _, _, |
| Field(&PacedPacketInfo::probe_cluster_id, 1))) |
| .Times(5) |
| .WillRepeatedly(Return(RtpPacketSendResult::kSuccess)); |
| for (int i = 0; i < 5; ++i) { |
| clock_.AdvanceTimeMilliseconds(20); |
| send_bucket_->Process(); |
| } |
| |
| // Needed for the Field comparer below. |
| const int kNotAProbe = PacedPacketInfo::kNotAProbe; |
| // No more probing packets. |
| EXPECT_CALL(callback_, |
| TimeToSendPadding( |
| _, Field(&PacedPacketInfo::probe_cluster_id, kNotAProbe))) |
| .Times(1) |
| .WillRepeatedly(Return(500)); |
| send_bucket_->Process(); |
| } |
| |
| TEST_F(PacedSenderTest, AvoidBusyLoopOnSendFailure) { |
| uint32_t ssrc = 12346; |
| uint16_t sequence_number = 1234; |
| const size_t kPacketSize = kFirstClusterBps / (8000 / 10); |
| |
| send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, |
| kTargetBitrateBps); |
| send_bucket_->SetProbingEnabled(true); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc, |
| sequence_number, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| |
| EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _)) |
| .WillOnce(Return(RtpPacketSendResult::kSuccess)); |
| send_bucket_->Process(); |
| EXPECT_EQ(10, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(9); |
| |
| EXPECT_CALL(callback_, TimeToSendPadding(_, _)) |
| .Times(2) |
| .WillRepeatedly(Return(0)); |
| send_bucket_->Process(); |
| EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess()); |
| clock_.AdvanceTimeMilliseconds(1); |
| send_bucket_->Process(); |
| EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess()); |
| } |
| |
| // TODO(philipel): Move to PacketQueue2 unittests. |
| #if 0 |
| TEST_F(PacedSenderTest, QueueTimeWithPause) { |
| const size_t kPacketSize = 1200; |
| const uint32_t kSsrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| |
| clock_.AdvanceTimeMilliseconds(100); |
| EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs()); |
| |
| send_bucket_->Pause(); |
| EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs()); |
| |
| // In paused state, queue time should not increase. |
| clock_.AdvanceTimeMilliseconds(100); |
| EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs()); |
| |
| send_bucket_->Resume(); |
| EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs()); |
| |
| clock_.AdvanceTimeMilliseconds(100); |
| EXPECT_EQ(200, send_bucket_->AverageQueueTimeMs()); |
| } |
| |
| TEST_F(PacedSenderTest, QueueTimePausedDuringPush) { |
| const size_t kPacketSize = 1200; |
| const uint32_t kSsrc = 12346; |
| uint16_t sequence_number = 1234; |
| |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| clock_.AdvanceTimeMilliseconds(100); |
| send_bucket_->Pause(); |
| clock_.AdvanceTimeMilliseconds(100); |
| EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs()); |
| |
| // Add a new packet during paused phase. |
| send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc, |
| sequence_number++, clock_.TimeInMilliseconds(), |
| kPacketSize, false); |
| // From a queue time perspective, packet inserted during pause will have zero |
| // queue time. Average queue time will then be (0 + 100) / 2 = 50. |
| EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs()); |
| |
| clock_.AdvanceTimeMilliseconds(100); |
| EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs()); |
| |
| send_bucket_->Resume(); |
| EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs()); |
| |
| clock_.AdvanceTimeMilliseconds(100); |
| EXPECT_EQ(150, send_bucket_->AverageQueueTimeMs()); |
| } |
| #endif |
| |
| // TODO(sprang): Extract PacketQueue from PacedSender so that we can test |
| // removing elements while paused. (This is possible, but only because of semi- |
| // racy condition so can't easily be tested). |
| |
| } // namespace test |
| } // namespace webrtc |