blob: d991d61e315b1a740a5af5942f111652123db0d3 [file] [log] [blame]
/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <list>
#include <memory>
#include <string>
#include "modules/pacing/paced_sender.h"
#include "modules/pacing/packet_router.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
#include "test/field_trial.h"
#include "test/gmock.h"
#include "test/gtest.h"
using ::testing::_;
using ::testing::Field;
using ::testing::Return;
namespace {
constexpr unsigned kFirstClusterBps = 900000;
constexpr unsigned kSecondClusterBps = 1800000;
// The error stems from truncating the time interval of probe packets to integer
// values. This results in probing slightly higher than the target bitrate.
// For 1.8 Mbps, this comes to be about 120 kbps with 1200 probe packets.
constexpr int kBitrateProbingError = 150000;
const float kPaceMultiplier = 2.5f;
} // namespace
namespace webrtc {
namespace test {
static const int kTargetBitrateBps = 800000;
class MockPacedSenderCallback : public PacketRouter {
public:
MOCK_METHOD5(TimeToSendPacket,
RtpPacketSendResult(uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
bool retransmission,
const PacedPacketInfo& pacing_info));
MOCK_METHOD2(TimeToSendPadding,
size_t(size_t bytes, const PacedPacketInfo& pacing_info));
};
class PacedSenderPadding : public PacketRouter {
public:
PacedSenderPadding() : padding_sent_(0) {}
RtpPacketSendResult TimeToSendPacket(
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
bool retransmission,
const PacedPacketInfo& pacing_info) override {
return RtpPacketSendResult::kSuccess;
}
size_t TimeToSendPadding(size_t bytes,
const PacedPacketInfo& pacing_info) override {
const size_t kPaddingPacketSize = 224;
size_t num_packets = (bytes + kPaddingPacketSize - 1) / kPaddingPacketSize;
padding_sent_ += kPaddingPacketSize * num_packets;
return kPaddingPacketSize * num_packets;
}
size_t padding_sent() { return padding_sent_; }
private:
size_t padding_sent_;
};
class PacedSenderProbing : public PacketRouter {
public:
PacedSenderProbing() : packets_sent_(0), padding_sent_(0) {}
RtpPacketSendResult TimeToSendPacket(
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
bool retransmission,
const PacedPacketInfo& pacing_info) override {
packets_sent_++;
return RtpPacketSendResult::kSuccess;
}
size_t TimeToSendPadding(size_t bytes,
const PacedPacketInfo& pacing_info) override {
padding_sent_ += bytes;
return padding_sent_;
}
int packets_sent() const { return packets_sent_; }
int padding_sent() const { return padding_sent_; }
private:
int packets_sent_;
int padding_sent_;
};
class PacedSenderTest : public ::testing::TestWithParam<std::string> {
protected:
PacedSenderTest() : clock_(123456) {
srand(0);
// Need to initialize PacedSender after we initialize clock.
send_bucket_.reset(new PacedSender(&clock_, &callback_, nullptr));
send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0);
send_bucket_->CreateProbeCluster(kSecondClusterBps, /*cluster_id=*/1);
// Default to bitrate probing disabled for testing purposes. Probing tests
// have to enable probing, either by creating a new PacedSender instance or
// by calling SetProbingEnabled(true).
send_bucket_->SetProbingEnabled(false);
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier, 0);
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
}
void SendAndExpectPacket(PacedSender::Priority priority,
uint32_t ssrc,
uint16_t sequence_number,
int64_t capture_time_ms,
size_t size,
bool retransmission) {
send_bucket_->InsertPacket(priority, ssrc, sequence_number, capture_time_ms,
size, retransmission);
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
capture_time_ms, retransmission, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
}
SimulatedClock clock_;
MockPacedSenderCallback callback_;
std::unique_ptr<PacedSender> send_bucket_;
};
class PacedSenderFieldTrialTest : public ::testing::Test {
protected:
struct MediaStream {
const RtpPacketSender::Priority priority;
const uint32_t ssrc;
const size_t packet_size;
uint16_t seq_num;
};
const int kProcessIntervalsPerSecond = 1000 / 5;
PacedSenderFieldTrialTest() : clock_(123456) {}
void InsertPacket(PacedSender* pacer, MediaStream* stream) {
pacer->InsertPacket(stream->priority, stream->ssrc, stream->seq_num++,
clock_.TimeInMilliseconds(), stream->packet_size,
false);
}
void ProcessNext(PacedSender* pacer) {
clock_.AdvanceTimeMilliseconds(5);
pacer->Process();
}
MediaStream audio{/*priority*/ PacedSender::kHighPriority,
/*ssrc*/ 3333, /*packet_size*/ 100, /*seq_num*/ 1000};
MediaStream video{/*priority*/ PacedSender::kNormalPriority,
/*ssrc*/ 4444, /*packet_size*/ 1000, /*seq_num*/ 1000};
SimulatedClock clock_;
MockPacedSenderCallback callback_;
};
TEST_F(PacedSenderFieldTrialTest, DefaultNoPaddingInSilence) {
PacedSender pacer(&clock_, &callback_, nullptr);
pacer.SetPacingRates(kTargetBitrateBps, 0);
// Video packet to reset last send time and provide padding data.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
clock_.AdvanceTimeMilliseconds(5);
pacer.Process();
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
// Waiting 500 ms should not trigger sending of padding.
clock_.AdvanceTimeMilliseconds(500);
pacer.Process();
}
TEST_F(PacedSenderFieldTrialTest, PaddingInSilenceWithTrial) {
ScopedFieldTrials trial("WebRTC-Pacer-PadInSilence/Enabled/");
PacedSender pacer(&clock_, &callback_, nullptr);
pacer.SetPacingRates(kTargetBitrateBps, 0);
// Video packet to reset last send time and provide padding data.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
clock_.AdvanceTimeMilliseconds(5);
pacer.Process();
EXPECT_CALL(callback_, TimeToSendPadding).WillOnce(Return(1000));
// Waiting 500 ms should trigger sending of padding.
clock_.AdvanceTimeMilliseconds(500);
pacer.Process();
}
TEST_F(PacedSenderFieldTrialTest, DefaultCongestionWindowAffectsAudio) {
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
PacedSender pacer(&clock_, &callback_, nullptr);
pacer.SetPacingRates(10000000, 0);
pacer.SetCongestionWindow(800);
pacer.UpdateOutstandingData(0);
// Video packet fills congestion window.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
ProcessNext(&pacer);
// Audio packet blocked due to congestion.
InsertPacket(&pacer, &audio);
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
ProcessNext(&pacer);
ProcessNext(&pacer);
// Audio packet unblocked when congestion window clear.
::testing::Mock::VerifyAndClearExpectations(&callback_);
pacer.UpdateOutstandingData(0);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
ProcessNext(&pacer);
}
TEST_F(PacedSenderFieldTrialTest, CongestionWindowDoesNotAffectAudioInTrial) {
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/");
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
PacedSender pacer(&clock_, &callback_, nullptr);
pacer.SetPacingRates(10000000, 0);
pacer.SetCongestionWindow(800);
pacer.UpdateOutstandingData(0);
// Video packet fills congestion window.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
ProcessNext(&pacer);
// Audio not blocked due to congestion.
InsertPacket(&pacer, &audio);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
ProcessNext(&pacer);
}
TEST_F(PacedSenderFieldTrialTest, DefaultBudgetAffectsAudio) {
PacedSender pacer(&clock_, &callback_, nullptr);
pacer.SetPacingRates(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond,
0);
// Video fills budget for following process periods.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
ProcessNext(&pacer);
// Audio packet blocked due to budget limit.
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
InsertPacket(&pacer, &audio);
ProcessNext(&pacer);
ProcessNext(&pacer);
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Audio packet unblocked when the budget has recovered.
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
ProcessNext(&pacer);
ProcessNext(&pacer);
}
TEST_F(PacedSenderFieldTrialTest, BudgetDoesNotAffectAudioInTrial) {
ScopedFieldTrials trial("WebRTC-Pacer-BlockAudio/Disabled/");
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
PacedSender pacer(&clock_, &callback_, nullptr);
pacer.SetPacingRates(video.packet_size / 3 * 8 * kProcessIntervalsPerSecond,
0);
// Video fills budget for following process periods.
InsertPacket(&pacer, &video);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
ProcessNext(&pacer);
// Audio packet not blocked due to budget limit.
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
InsertPacket(&pacer, &audio);
ProcessNext(&pacer);
}
TEST_F(PacedSenderTest, FirstSentPacketTimeIsSet) {
uint16_t sequence_number = 1234;
const uint32_t kSsrc = 12345;
const size_t kSizeBytes = 250;
const size_t kPacketToSend = 3;
const int64_t kStartMs = clock_.TimeInMilliseconds();
// No packet sent.
EXPECT_EQ(-1, send_bucket_->FirstSentPacketTimeMs());
for (size_t i = 0; i < kPacketToSend; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, kSsrc, sequence_number++,
clock_.TimeInMilliseconds(), kSizeBytes, false);
send_bucket_->Process();
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
}
EXPECT_EQ(kStartMs, send_bucket_->FirstSentPacketTimeMs());
}
TEST_F(PacedSenderTest, QueuePacket) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false);
}
int64_t queued_packet_timestamp = clock_.TimeInMilliseconds();
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, queued_packet_timestamp, 250,
false);
EXPECT_EQ(packets_to_send + 1, send_bucket_->QueueSizePackets());
send_bucket_->Process();
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
clock_.AdvanceTimeMilliseconds(4);
EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(1);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number++,
queued_packet_timestamp, false, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
send_bucket_->Process();
sequence_number++;
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
// We can send packets_to_send -1 packets of size 250 during the current
// interval since one packet has already been sent.
for (size_t i = 0; i < packets_to_send - 1; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false);
}
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
250, false);
EXPECT_EQ(packets_to_send, send_bucket_->QueueSizePackets());
send_bucket_->Process();
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
}
TEST_F(PacedSenderTest, PaceQueuedPackets) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false);
}
for (size_t j = 0; j < packets_to_send_per_interval * 10; ++j) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
250, false);
}
EXPECT_EQ(packets_to_send_per_interval + packets_to_send_per_interval * 10,
send_bucket_->QueueSizePackets());
send_bucket_->Process();
EXPECT_EQ(packets_to_send_per_interval * 10,
send_bucket_->QueueSizePackets());
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
for (int k = 0; k < 10; ++k) {
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _))
.Times(packets_to_send_per_interval)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
}
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
send_bucket_->Process();
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false);
}
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, clock_.TimeInMilliseconds(), 250,
false);
send_bucket_->Process();
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
}
TEST_F(PacedSenderTest, RepeatedRetransmissionsAllowed) {
// Send one packet, then two retransmissions of that packet.
for (size_t i = 0; i < 3; i++) {
constexpr uint32_t ssrc = 333;
constexpr uint16_t sequence_number = 444;
constexpr size_t bytes = 250;
bool is_retransmission = (i != 0); // Original followed by retransmissions.
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number,
clock_.TimeInMilliseconds(), bytes, is_retransmission);
clock_.AdvanceTimeMilliseconds(5);
}
send_bucket_->Process();
}
TEST_F(PacedSenderTest, CanQueuePacketsWithSameSequenceNumberOnDifferentSsrcs) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number,
clock_.TimeInMilliseconds(), 250, false);
// Expect packet on second ssrc to be queued and sent as well.
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc + 1, sequence_number,
clock_.TimeInMilliseconds(), 250, false);
clock_.AdvanceTimeMilliseconds(1000);
send_bucket_->Process();
}
TEST_F(PacedSenderTest, Padding) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
kTargetBitrateBps);
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false);
}
// No padding is expected since we have sent too much already.
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
// 5 milliseconds later should not send padding since we filled the buffers
// initially.
EXPECT_CALL(callback_, TimeToSendPadding(250, _)).Times(0);
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
// 5 milliseconds later we have enough budget to send some padding.
EXPECT_CALL(callback_, TimeToSendPadding(250, _))
.Times(1)
.WillOnce(Return(250));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
}
TEST_F(PacedSenderTest, NoPaddingBeforeNormalPacket) {
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
kTargetBitrateBps);
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
send_bucket_->Process();
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
capture_time_ms, 250, false);
EXPECT_CALL(callback_, TimeToSendPadding(250, _))
.Times(1)
.WillOnce(Return(250));
send_bucket_->Process();
}
TEST_F(PacedSenderTest, VerifyPaddingUpToBitrate) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
const int kTimeStep = 5;
const int64_t kBitrateWindow = 100;
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
kTargetBitrateBps);
int64_t start_time = clock_.TimeInMilliseconds();
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
capture_time_ms, 250, false);
EXPECT_CALL(callback_, TimeToSendPadding(250, _))
.Times(1)
.WillOnce(Return(250));
send_bucket_->Process();
clock_.AdvanceTimeMilliseconds(kTimeStep);
}
}
TEST_F(PacedSenderTest, VerifyAverageBitrateVaryingMediaPayload) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
const int kTimeStep = 5;
const int64_t kBitrateWindow = 10000;
PacedSenderPadding callback;
send_bucket_.reset(new PacedSender(&clock_, &callback, nullptr));
send_bucket_->SetProbingEnabled(false);
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
kTargetBitrateBps);
int64_t start_time = clock_.TimeInMilliseconds();
size_t media_bytes = 0;
while (clock_.TimeInMilliseconds() - start_time < kBitrateWindow) {
int rand_value = rand(); // NOLINT (rand_r instead of rand)
size_t media_payload = rand_value % 100 + 200; // [200, 300] bytes.
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, capture_time_ms,
media_payload, false);
media_bytes += media_payload;
clock_.AdvanceTimeMilliseconds(kTimeStep);
send_bucket_->Process();
}
EXPECT_NEAR(kTargetBitrateBps / 1000,
static_cast<int>(8 * (media_bytes + callback.padding_sent()) /
kBitrateWindow),
1);
}
TEST_F(PacedSenderTest, Priority) {
uint32_t ssrc_low_priority = 12345;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
int64_t capture_time_ms_low_priority = 1234567;
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false);
}
send_bucket_->Process();
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
// Expect normal and low priority to be queued and high to pass through.
send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
sequence_number++, capture_time_ms_low_priority,
250, false);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, capture_time_ms, 250, false);
}
send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc,
sequence_number++, capture_time_ms, 250, false);
// Expect all high and normal priority to be sent out first.
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false, _))
.Times(packets_to_send_per_interval + 1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
EXPECT_CALL(callback_,
TimeToSendPacket(ssrc_low_priority, _,
capture_time_ms_low_priority, false, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
}
TEST_F(PacedSenderTest, RetransmissionPriority) {
uint32_t ssrc = 12345;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 45678;
int64_t capture_time_ms_retransmission = 56789;
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
send_bucket_->Process();
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
// Alternate retransmissions and normal packets.
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++,
capture_time_ms_retransmission, 250, true);
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, capture_time_ms, 250, false);
}
EXPECT_EQ(2 * packets_to_send_per_interval, send_bucket_->QueueSizePackets());
// Expect all retransmissions to be sent out first despite having a later
// capture time.
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, false, _)).Times(0);
EXPECT_CALL(callback_, TimeToSendPacket(
ssrc, _, capture_time_ms_retransmission, true, _))
.Times(packets_to_send_per_interval)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
EXPECT_EQ(packets_to_send_per_interval, send_bucket_->QueueSizePackets());
// Expect the remaining (non-retransmission) packets to be sent.
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, true, _)).Times(0);
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, false, _))
.Times(packets_to_send_per_interval)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
}
TEST_F(PacedSenderTest, HighPrioDoesntAffectBudget) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = 56789;
// As high prio packets doesn't affect the budget, we should be able to send
// a high number of them at once.
for (int i = 0; i < 25; ++i) {
SendAndExpectPacket(PacedSender::kHighPriority, ssrc, sequence_number++,
capture_time_ms, 250, false);
}
send_bucket_->Process();
// Low prio packets does affect the budget.
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kLowPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false);
}
send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc, sequence_number,
capture_time_ms, 250, false);
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
EXPECT_EQ(1u, send_bucket_->QueueSizePackets());
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number++,
capture_time_ms, false, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
EXPECT_EQ(0u, send_bucket_->QueueSizePackets());
}
TEST_F(PacedSenderTest, SendsOnlyPaddingWhenCongested) {
uint32_t ssrc = 202020;
uint16_t sequence_number = 1000;
int kPacketSize = 250;
int kCongestionWindow = kPacketSize * 10;
send_bucket_->UpdateOutstandingData(0);
send_bucket_->SetCongestionWindow(kCongestionWindow);
int sent_data = 0;
while (sent_data < kCongestionWindow) {
sent_data += kPacketSize;
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false);
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _)).Times(0);
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
size_t blocked_packets = 0;
int64_t expected_time_until_padding = 500;
while (expected_time_until_padding > 5) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize, false);
blocked_packets++;
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
expected_time_until_padding -= 5;
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1);
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
EXPECT_EQ(blocked_packets, send_bucket_->QueueSizePackets());
}
TEST_F(PacedSenderTest, DoesNotAllowOveruseAfterCongestion) {
uint32_t ssrc = 202020;
uint16_t seq_num = 1000;
RtpPacketSender::Priority prio = PacedSender::kNormalPriority;
int size = 1000;
auto now_ms = [this] { return clock_.TimeInMilliseconds(); };
EXPECT_CALL(callback_, TimeToSendPadding).Times(0);
// The pacing rate is low enough that the budget should not allow two packets
// to be sent in a row.
send_bucket_->SetPacingRates(400 * 8 * 1000 / 5, 0);
// The congestion window is small enough to only let one packet through.
send_bucket_->SetCongestionWindow(800);
send_bucket_->UpdateOutstandingData(0);
// Not yet budget limited or congested, packet is sent.
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
// Packet blocked due to congestion.
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
// Packet blocked due to congestion.
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
send_bucket_->UpdateOutstandingData(0);
// Congestion removed and budget has recovered, packet is sent.
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
EXPECT_CALL(callback_, TimeToSendPacket)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
send_bucket_->UpdateOutstandingData(0);
// Should be blocked due to budget limitation as congestion has be removed.
send_bucket_->InsertPacket(prio, ssrc, seq_num++, now_ms(), size, false);
EXPECT_CALL(callback_, TimeToSendPacket).Times(0);
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
}
TEST_F(PacedSenderTest, ResumesSendingWhenCongestionEnds) {
uint32_t ssrc = 202020;
uint16_t sequence_number = 1000;
int64_t kPacketSize = 250;
int64_t kCongestionCount = 10;
int64_t kCongestionWindow = kPacketSize * kCongestionCount;
int64_t kCongestionTimeMs = 1000;
send_bucket_->UpdateOutstandingData(0);
send_bucket_->SetCongestionWindow(kCongestionWindow);
int sent_data = 0;
while (sent_data < kCongestionWindow) {
sent_data += kPacketSize;
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false);
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _)).Times(0);
int unacked_packets = 0;
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize, false);
unacked_packets++;
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
// First mark half of the congested packets as cleared and make sure that just
// as many are sent
int ack_count = kCongestionCount / 2;
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _))
.Times(ack_count)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
send_bucket_->UpdateOutstandingData(kCongestionWindow -
kPacketSize * ack_count);
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
}
unacked_packets -= ack_count;
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Second make sure all packets are sent if sent packets are continuously
// marked as acked.
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, _, false, _))
.Times(unacked_packets)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
for (int duration = 0; duration < kCongestionTimeMs; duration += 5) {
send_bucket_->UpdateOutstandingData(0);
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
}
}
TEST_F(PacedSenderTest, Pause) {
uint32_t ssrc_low_priority = 12345;
uint32_t ssrc = 12346;
uint32_t ssrc_high_priority = 12347;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = clock_.TimeInMilliseconds();
EXPECT_EQ(0, send_bucket_->QueueInMs());
// Due to the multiplicative factor we can send 5 packets during a send
// interval. (network capacity * multiplier / (8 bits per byte *
// (packet size * #send intervals per second)
const size_t packets_to_send_per_interval =
kTargetBitrateBps * kPaceMultiplier / (8 * 250 * 200);
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), 250, false);
}
send_bucket_->Process();
send_bucket_->Pause();
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
sequence_number++, capture_time_ms, 250, false);
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, capture_time_ms, 250, false);
send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc_high_priority,
sequence_number++, capture_time_ms, 250, false);
}
clock_.AdvanceTimeMilliseconds(10000);
int64_t second_capture_time_ms = clock_.TimeInMilliseconds();
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
send_bucket_->InsertPacket(PacedSender::kLowPriority, ssrc_low_priority,
sequence_number++, second_capture_time_ms, 250,
false);
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, second_capture_time_ms, 250,
false);
send_bucket_->InsertPacket(PacedSender::kHighPriority, ssrc_high_priority,
sequence_number++, second_capture_time_ms, 250,
false);
}
// Expect everything to be queued.
EXPECT_EQ(second_capture_time_ms - capture_time_ms,
send_bucket_->QueueInMs());
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1);
send_bucket_->Process();
int64_t expected_time_until_send = 500;
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
while (expected_time_until_send >= 5) {
send_bucket_->Process();
clock_.AdvanceTimeMilliseconds(5);
expected_time_until_send -= 5;
}
::testing::Mock::VerifyAndClearExpectations(&callback_);
EXPECT_CALL(callback_, TimeToSendPadding(1, _)).Times(1);
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->Process();
::testing::Mock::VerifyAndClearExpectations(&callback_);
// Expect high prio packets to come out first followed by normal
// prio packets and low prio packets (all in capture order).
{
::testing::InSequence sequence;
EXPECT_CALL(callback_,
TimeToSendPacket(ssrc_high_priority, _, capture_time_ms, _, _))
.Times(packets_to_send_per_interval)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
EXPECT_CALL(callback_, TimeToSendPacket(ssrc_high_priority, _,
second_capture_time_ms, _, _))
.Times(packets_to_send_per_interval)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, _, capture_time_ms, _, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_,
TimeToSendPacket(ssrc, _, second_capture_time_ms, _, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_,
TimeToSendPacket(ssrc_low_priority, _, capture_time_ms, _, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
}
for (size_t i = 0; i < packets_to_send_per_interval; ++i) {
EXPECT_CALL(callback_, TimeToSendPacket(ssrc_low_priority, _,
second_capture_time_ms, _, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
}
}
send_bucket_->Resume();
// The pacer was resumed directly after the previous process call finished. It
// will therefore wait 5 ms until next process.
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
for (size_t i = 0; i < 4; i++) {
EXPECT_EQ(0, send_bucket_->TimeUntilNextProcess());
send_bucket_->Process();
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(5);
}
EXPECT_EQ(0, send_bucket_->QueueInMs());
}
TEST_F(PacedSenderTest, ResendPacket) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
int64_t capture_time_ms = clock_.TimeInMilliseconds();
EXPECT_EQ(0, send_bucket_->QueueInMs());
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, capture_time_ms, 250, false);
clock_.AdvanceTimeMilliseconds(1);
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number + 1, capture_time_ms + 1, 250,
false);
clock_.AdvanceTimeMilliseconds(9999);
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
send_bucket_->QueueInMs());
// Fails to send first packet so only one call.
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
capture_time_ms, false, _))
.Times(1)
.WillOnce(Return(RtpPacketSendResult::kTransportUnavailable));
clock_.AdvanceTimeMilliseconds(10000);
send_bucket_->Process();
// Queue remains unchanged.
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms,
send_bucket_->QueueInMs());
// Fails to send second packet.
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
capture_time_ms, false, _))
.Times(1)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
capture_time_ms + 1, false, _))
.Times(1)
.WillOnce(Return(RtpPacketSendResult::kTransportUnavailable));
clock_.AdvanceTimeMilliseconds(10000);
send_bucket_->Process();
// Queue is reduced by 1 packet.
EXPECT_EQ(clock_.TimeInMilliseconds() - capture_time_ms - 1,
send_bucket_->QueueInMs());
// Send second packet and queue becomes empty.
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
capture_time_ms + 1, false, _))
.Times(1)
.WillOnce(Return(RtpPacketSendResult::kSuccess));
clock_.AdvanceTimeMilliseconds(10000);
send_bucket_->Process();
EXPECT_EQ(0, send_bucket_->QueueInMs());
}
TEST_F(PacedSenderTest, ExpectedQueueTimeMs) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kNumPackets = 60;
const size_t kPacketSize = 1200;
const int32_t kMaxBitrate = kPaceMultiplier * 30000;
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
send_bucket_->SetPacingRates(30000 * kPaceMultiplier, 0);
for (size_t i = 0; i < kNumPackets; ++i) {
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false);
}
// Queue in ms = 1000 * (bytes in queue) *8 / (bits per second)
int64_t queue_in_ms =
static_cast<int64_t>(1000 * kNumPackets * kPacketSize * 8 / kMaxBitrate);
EXPECT_EQ(queue_in_ms, send_bucket_->ExpectedQueueTimeMs());
int64_t time_start = clock_.TimeInMilliseconds();
while (send_bucket_->QueueSizePackets() > 0) {
int time_until_process = send_bucket_->TimeUntilNextProcess();
if (time_until_process <= 0) {
send_bucket_->Process();
} else {
clock_.AdvanceTimeMilliseconds(time_until_process);
}
}
int64_t duration = clock_.TimeInMilliseconds() - time_start;
EXPECT_EQ(0, send_bucket_->ExpectedQueueTimeMs());
// Allow for aliasing, duration should be within one pack of max time limit.
EXPECT_NEAR(duration, PacedSender::kMaxQueueLengthMs,
static_cast<int64_t>(1000 * kPacketSize * 8 / kMaxBitrate));
}
TEST_F(PacedSenderTest, QueueTimeGrowsOverTime) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
EXPECT_EQ(0, send_bucket_->QueueInMs());
send_bucket_->SetPacingRates(30000 * kPaceMultiplier, 0);
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number,
clock_.TimeInMilliseconds(), 1200, false);
clock_.AdvanceTimeMilliseconds(500);
EXPECT_EQ(500, send_bucket_->QueueInMs());
send_bucket_->Process();
EXPECT_EQ(0, send_bucket_->QueueInMs());
}
TEST_F(PacedSenderTest, ProbingWithInsertedPackets) {
const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
PacedSenderProbing packet_sender;
send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr));
send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0);
send_bucket_->CreateProbeCluster(kSecondClusterBps, /*cluster_id=*/1);
send_bucket_->SetPacingRates(kInitialBitrateBps * kPaceMultiplier, 0);
for (int i = 0; i < 10; ++i) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize, false);
}
int64_t start = clock_.TimeInMilliseconds();
while (packet_sender.packets_sent() < 5) {
int time_until_process = send_bucket_->TimeUntilNextProcess();
clock_.AdvanceTimeMilliseconds(time_until_process);
send_bucket_->Process();
}
int packets_sent = packet_sender.packets_sent();
// Validate first cluster bitrate. Note that we have to account for number
// of intervals and hence (packets_sent - 1) on the first cluster.
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
(clock_.TimeInMilliseconds() - start),
kFirstClusterBps, kBitrateProbingError);
EXPECT_EQ(0, packet_sender.padding_sent());
clock_.AdvanceTimeMilliseconds(send_bucket_->TimeUntilNextProcess());
start = clock_.TimeInMilliseconds();
while (packet_sender.packets_sent() < 10) {
int time_until_process = send_bucket_->TimeUntilNextProcess();
clock_.AdvanceTimeMilliseconds(time_until_process);
send_bucket_->Process();
}
packets_sent = packet_sender.packets_sent() - packets_sent;
// Validate second cluster bitrate.
EXPECT_NEAR((packets_sent - 1) * kPacketSize * 8000 /
(clock_.TimeInMilliseconds() - start),
kSecondClusterBps, kBitrateProbingError);
}
TEST_F(PacedSenderTest, ProbingWithPaddingSupport) {
const size_t kPacketSize = 1200;
const int kInitialBitrateBps = 300000;
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
PacedSenderProbing packet_sender;
send_bucket_.reset(new PacedSender(&clock_, &packet_sender, nullptr));
send_bucket_->CreateProbeCluster(kFirstClusterBps, /*cluster_id=*/0);
send_bucket_->SetPacingRates(kInitialBitrateBps * kPaceMultiplier, 0);
for (int i = 0; i < 3; ++i) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize, false);
}
int64_t start = clock_.TimeInMilliseconds();
int process_count = 0;
while (process_count < 5) {
int time_until_process = send_bucket_->TimeUntilNextProcess();
clock_.AdvanceTimeMilliseconds(time_until_process);
send_bucket_->Process();
++process_count;
}
int packets_sent = packet_sender.packets_sent();
int padding_sent = packet_sender.padding_sent();
EXPECT_GT(packets_sent, 0);
EXPECT_GT(padding_sent, 0);
// Note that the number of intervals here for kPacketSize is
// packets_sent due to padding in the same cluster.
EXPECT_NEAR((packets_sent * kPacketSize * 8000 + padding_sent) /
(clock_.TimeInMilliseconds() - start),
kFirstClusterBps, kBitrateProbingError);
}
TEST_F(PacedSenderTest, PaddingOveruse) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
send_bucket_->Process();
send_bucket_->SetPacingRates(60000 * kPaceMultiplier, 0);
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false);
send_bucket_->Process();
// Add 30kbit padding. When increasing budget, media budget will increase from
// negative (overuse) while padding budget will increase from 0.
clock_.AdvanceTimeMilliseconds(5);
send_bucket_->SetPacingRates(60000 * kPaceMultiplier, 30000);
SendAndExpectPacket(PacedSender::kNormalPriority, ssrc, sequence_number++,
clock_.TimeInMilliseconds(), kPacketSize, false);
EXPECT_LT(5u, send_bucket_->ExpectedQueueTimeMs());
// Don't send padding if queue is non-empty, even if padding budget > 0.
EXPECT_CALL(callback_, TimeToSendPadding(_, _)).Times(0);
send_bucket_->Process();
}
// TODO(philipel): Move to PacketQueue2 unittests.
#if 0
TEST_F(PacedSenderTest, AverageQueueTime) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
const int kBitrateBps = 10 * kPacketSize * 8; // 10 packets per second.
send_bucket_->SetPacingRates(kBitrateBps * kPaceMultiplier, 0);
EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());
int64_t first_capture_time = clock_.TimeInMilliseconds();
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, first_capture_time, kPacketSize,
false);
clock_.AdvanceTimeMilliseconds(10);
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number + 1, clock_.TimeInMilliseconds(),
kPacketSize, false);
clock_.AdvanceTimeMilliseconds(10);
EXPECT_EQ((20 + 10) / 2, send_bucket_->AverageQueueTimeMs());
// Only first packet (queued for 20ms) should be removed, leave the second
// packet (queued for 10ms) alone in the queue.
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number,
first_capture_time, false, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
send_bucket_->Process();
EXPECT_EQ(10, send_bucket_->AverageQueueTimeMs());
clock_.AdvanceTimeMilliseconds(10);
EXPECT_CALL(callback_, TimeToSendPacket(ssrc, sequence_number + 1,
first_capture_time + 10, false, _))
.Times(1)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
for (int i = 0; i < 3; ++i) {
clock_.AdvanceTimeMilliseconds(30); // Max delta.
send_bucket_->Process();
}
EXPECT_EQ(0, send_bucket_->AverageQueueTimeMs());
}
#endif
TEST_F(PacedSenderTest, ProbeClusterId) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = 1200;
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
kTargetBitrateBps);
send_bucket_->SetProbingEnabled(true);
for (int i = 0; i < 10; ++i) {
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number + i, clock_.TimeInMilliseconds(),
kPacketSize, false);
}
// First probing cluster.
EXPECT_CALL(callback_,
TimeToSendPacket(_, _, _, _,
Field(&PacedPacketInfo::probe_cluster_id, 0)))
.Times(5)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
for (int i = 0; i < 5; ++i) {
clock_.AdvanceTimeMilliseconds(20);
send_bucket_->Process();
}
// Second probing cluster.
EXPECT_CALL(callback_,
TimeToSendPacket(_, _, _, _,
Field(&PacedPacketInfo::probe_cluster_id, 1)))
.Times(5)
.WillRepeatedly(Return(RtpPacketSendResult::kSuccess));
for (int i = 0; i < 5; ++i) {
clock_.AdvanceTimeMilliseconds(20);
send_bucket_->Process();
}
// Needed for the Field comparer below.
const int kNotAProbe = PacedPacketInfo::kNotAProbe;
// No more probing packets.
EXPECT_CALL(callback_,
TimeToSendPadding(
_, Field(&PacedPacketInfo::probe_cluster_id, kNotAProbe)))
.Times(1)
.WillRepeatedly(Return(500));
send_bucket_->Process();
}
TEST_F(PacedSenderTest, AvoidBusyLoopOnSendFailure) {
uint32_t ssrc = 12346;
uint16_t sequence_number = 1234;
const size_t kPacketSize = kFirstClusterBps / (8000 / 10);
send_bucket_->SetPacingRates(kTargetBitrateBps * kPaceMultiplier,
kTargetBitrateBps);
send_bucket_->SetProbingEnabled(true);
send_bucket_->InsertPacket(PacedSender::kNormalPriority, ssrc,
sequence_number, clock_.TimeInMilliseconds(),
kPacketSize, false);
EXPECT_CALL(callback_, TimeToSendPacket(_, _, _, _, _))
.WillOnce(Return(RtpPacketSendResult::kSuccess));
send_bucket_->Process();
EXPECT_EQ(10, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(9);
EXPECT_CALL(callback_, TimeToSendPadding(_, _))
.Times(2)
.WillRepeatedly(Return(0));
send_bucket_->Process();
EXPECT_EQ(1, send_bucket_->TimeUntilNextProcess());
clock_.AdvanceTimeMilliseconds(1);
send_bucket_->Process();
EXPECT_EQ(5, send_bucket_->TimeUntilNextProcess());
}
// TODO(philipel): Move to PacketQueue2 unittests.
#if 0
TEST_F(PacedSenderTest, QueueTimeWithPause) {
const size_t kPacketSize = 1200;
const uint32_t kSsrc = 12346;
uint16_t sequence_number = 1234;
send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize, false);
send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize, false);
clock_.AdvanceTimeMilliseconds(100);
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
send_bucket_->Pause();
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
// In paused state, queue time should not increase.
clock_.AdvanceTimeMilliseconds(100);
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
send_bucket_->Resume();
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
clock_.AdvanceTimeMilliseconds(100);
EXPECT_EQ(200, send_bucket_->AverageQueueTimeMs());
}
TEST_F(PacedSenderTest, QueueTimePausedDuringPush) {
const size_t kPacketSize = 1200;
const uint32_t kSsrc = 12346;
uint16_t sequence_number = 1234;
send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize, false);
clock_.AdvanceTimeMilliseconds(100);
send_bucket_->Pause();
clock_.AdvanceTimeMilliseconds(100);
EXPECT_EQ(100, send_bucket_->AverageQueueTimeMs());
// Add a new packet during paused phase.
send_bucket_->InsertPacket(PacedSender::kNormalPriority, kSsrc,
sequence_number++, clock_.TimeInMilliseconds(),
kPacketSize, false);
// From a queue time perspective, packet inserted during pause will have zero
// queue time. Average queue time will then be (0 + 100) / 2 = 50.
EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());
clock_.AdvanceTimeMilliseconds(100);
EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());
send_bucket_->Resume();
EXPECT_EQ(50, send_bucket_->AverageQueueTimeMs());
clock_.AdvanceTimeMilliseconds(100);
EXPECT_EQ(150, send_bucket_->AverageQueueTimeMs());
}
#endif
// TODO(sprang): Extract PacketQueue from PacedSender so that we can test
// removing elements while paused. (This is possible, but only because of semi-
// racy condition so can't easily be tested).
} // namespace test
} // namespace webrtc