blob: 3aecc00fec0899bf280d64e305c7b47f2d124b5a [file] [log] [blame]
/*
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "rtc_base/network.h"
#include "absl/strings/string_view.h"
#include "rtc_base/experiments/field_trial_parser.h"
#if defined(WEBRTC_POSIX)
#include <net/if.h>
#endif // WEBRTC_POSIX
#if defined(WEBRTC_WIN)
#include <iphlpapi.h>
#include "rtc_base/win32.h"
#elif !defined(__native_client__)
#include "rtc_base/ifaddrs_converter.h"
#endif
#include <memory>
#include "absl/algorithm/container.h"
#include "absl/memory/memory.h"
#include "absl/strings/match.h"
#include "absl/strings/string_view.h"
#include "api/task_queue/pending_task_safety_flag.h"
#include "api/transport/field_trial_based_config.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/memory/always_valid_pointer.h"
#include "rtc_base/network_monitor.h"
#include "rtc_base/socket.h" // includes something that makes windows happy
#include "rtc_base/string_encode.h"
#include "rtc_base/string_utils.h"
#include "rtc_base/strings/string_builder.h"
#include "rtc_base/thread.h"
namespace rtc {
namespace {
using ::webrtc::SafeTask;
using ::webrtc::TimeDelta;
// List of MAC addresses of known VPN (for windows).
constexpr uint8_t kVpns[3][6] = {
// Cisco AnyConnect SSL VPN Client.
{0x0, 0x5, 0x9A, 0x3C, 0x7A, 0x0},
// Cisco AnyConnect IPSEC VPN Client.
{0x0, 0x5, 0x9A, 0x3C, 0x78, 0x0},
// GlobalProtect Virtual Ethernet.
{0x2, 0x50, 0x41, 0x0, 0x0, 0x1},
};
// Fetch list of networks every two seconds.
const int kNetworksUpdateIntervalMs = 2000;
const int kHighestNetworkPreference = 127;
struct AddressList {
std::unique_ptr<Network> net;
std::vector<InterfaceAddress> ips;
};
bool SortNetworks(const Network* a, const Network* b) {
// Network types will be preferred above everything else while sorting
// Networks.
// Networks are sorted first by type.
if (a->type() != b->type()) {
return a->type() < b->type();
}
IPAddress ip_a = a->GetBestIP();
IPAddress ip_b = b->GetBestIP();
// After type, networks are sorted by IP address precedence values
// from RFC 3484-bis
if (IPAddressPrecedence(ip_a) != IPAddressPrecedence(ip_b)) {
return IPAddressPrecedence(ip_a) > IPAddressPrecedence(ip_b);
}
// TODO(mallinath) - Add VPN and Link speed conditions while sorting.
// Networks are sorted last by key.
return a->key() < b->key();
}
uint16_t ComputeNetworkCostByType(int type,
bool is_vpn,
bool use_differentiated_cellular_costs,
bool add_network_cost_to_vpn) {
// TODO(jonaso) : Rollout support for cellular network cost using A/B
// experiment to make sure it does not introduce regressions.
int vpnCost = (is_vpn && add_network_cost_to_vpn) ? kNetworkCostVpn : 0;
switch (type) {
case rtc::ADAPTER_TYPE_ETHERNET:
case rtc::ADAPTER_TYPE_LOOPBACK:
return kNetworkCostMin + vpnCost;
case rtc::ADAPTER_TYPE_WIFI:
return kNetworkCostLow + vpnCost;
case rtc::ADAPTER_TYPE_CELLULAR:
return kNetworkCostCellular + vpnCost;
case rtc::ADAPTER_TYPE_CELLULAR_2G:
return (use_differentiated_cellular_costs ? kNetworkCostCellular2G
: kNetworkCostCellular) +
vpnCost;
case rtc::ADAPTER_TYPE_CELLULAR_3G:
return (use_differentiated_cellular_costs ? kNetworkCostCellular3G
: kNetworkCostCellular) +
vpnCost;
case rtc::ADAPTER_TYPE_CELLULAR_4G:
return (use_differentiated_cellular_costs ? kNetworkCostCellular4G
: kNetworkCostCellular) +
vpnCost;
case rtc::ADAPTER_TYPE_CELLULAR_5G:
return (use_differentiated_cellular_costs ? kNetworkCostCellular5G
: kNetworkCostCellular) +
vpnCost;
case rtc::ADAPTER_TYPE_ANY:
// Candidates gathered from the any-address/wildcard ports, as backups,
// are given the maximum cost so that if there are other candidates with
// known interface types, we would not select candidate pairs using these
// backup candidates if other selection criteria with higher precedence
// (network conditions over the route) are the same. Note that setting the
// cost to kNetworkCostUnknown would be problematic since
// ADAPTER_TYPE_CELLULAR would then have a higher cost. See
// P2PTransportChannel::SortConnectionsAndUpdateState for how we rank and
// select candidate pairs, where the network cost is among the criteria.
return kNetworkCostMax + vpnCost;
case rtc::ADAPTER_TYPE_VPN:
// The cost of a VPN should be computed using its underlying network type.
RTC_DCHECK_NOTREACHED();
return kNetworkCostUnknown;
default:
return kNetworkCostUnknown + vpnCost;
}
}
#if !defined(__native_client__)
bool IsIgnoredIPv6(bool allow_mac_based_ipv6, const InterfaceAddress& ip) {
if (ip.family() != AF_INET6) {
return false;
}
// Link-local addresses require scope id to be bound successfully.
// However, our IPAddress structure doesn't carry that so the
// information is lost and causes binding failure.
if (IPIsLinkLocal(ip)) {
RTC_LOG(LS_INFO) << "Ignore link local IP:" << ip.ToSensitiveString();
return true;
}
// Any MAC based IPv6 should be avoided to prevent the MAC tracking.
if (IPIsMacBased(ip) && !allow_mac_based_ipv6) {
RTC_LOG(LS_INFO) << "Ignore Mac based IP:" << ip.ToSensitiveString();
return true;
}
// Ignore deprecated IPv6.
if (ip.ipv6_flags() & IPV6_ADDRESS_FLAG_DEPRECATED) {
RTC_LOG(LS_INFO) << "Ignore deprecated IP:" << ip.ToSensitiveString();
return true;
}
return false;
}
#endif // !defined(__native_client__)
// Note: consider changing to const Network* as arguments
// if/when considering other changes that should not trigger
// OnNetworksChanged.
bool ShouldAdapterChangeTriggerNetworkChange(rtc::AdapterType old_type,
rtc::AdapterType new_type) {
// skip triggering OnNetworksChanged if
// changing from one cellular to another.
if (Network::IsCellular(old_type) && Network::IsCellular(new_type))
return false;
return true;
}
bool PreferGlobalIPv6Address(const webrtc::FieldTrialsView* field_trials) {
// Bug fix to prefer global IPv6 address over link local.
// Field trial key reserved in bugs.webrtc.org/14334
if (field_trials &&
field_trials->IsEnabled("WebRTC-IPv6NetworkResolutionFixes")) {
webrtc::FieldTrialParameter<bool> prefer_global_ipv6_address_enabled(
"PreferGlobalIPv6Address", false);
webrtc::ParseFieldTrial(
{&prefer_global_ipv6_address_enabled},
field_trials->Lookup("WebRTC-IPv6NetworkResolutionFixes"));
return prefer_global_ipv6_address_enabled;
}
return false;
}
#if defined(WEBRTC_WIN)
bool IpAddressAttributesEnabled(const webrtc::FieldTrialsView* field_trials) {
// Field trial key reserved in bugs.webrtc.org/14334
if (field_trials &&
field_trials->IsEnabled("WebRTC-IPv6NetworkResolutionFixes")) {
webrtc::FieldTrialParameter<bool> ip_address_attributes_enabled(
"IpAddressAttributesEnabled", false);
webrtc::ParseFieldTrial(
{&ip_address_attributes_enabled},
field_trials->Lookup("WebRTC-IPv6NetworkResolutionFixes"));
return ip_address_attributes_enabled;
}
return false;
}
#endif // WEBRTC_WIN
} // namespace
// These addresses are used as the targets to find out the default local address
// on a multi-homed endpoint. They are actually DNS servers.
const char kPublicIPv4Host[] = "8.8.8.8";
const char kPublicIPv6Host[] = "2001:4860:4860::8888";
const int kPublicPort = 53; // DNS port.
namespace webrtc_network_internal {
bool CompareNetworks(const std::unique_ptr<Network>& a,
const std::unique_ptr<Network>& b) {
if (a->prefix_length() != b->prefix_length()) {
return a->prefix_length() < b->prefix_length();
}
if (a->name() != b->name()) {
return a->name() < b->name();
}
return a->prefix() < b->prefix();
}
} // namespace webrtc_network_internal
std::string MakeNetworkKey(absl::string_view name,
const IPAddress& prefix,
int prefix_length) {
rtc::StringBuilder ost;
ost << name << "%" << prefix.ToString() << "/" << prefix_length;
return ost.Release();
}
// Test if the network name matches the type<number> pattern, e.g. eth0. The
// matching is case-sensitive.
bool MatchTypeNameWithIndexPattern(absl::string_view network_name,
absl::string_view type_name) {
if (!absl::StartsWith(network_name, type_name)) {
return false;
}
return absl::c_none_of(network_name.substr(type_name.size()),
[](char c) { return !isdigit(c); });
}
// A cautious note that this method may not provide an accurate adapter type
// based on the string matching. Incorrect type of adapters can affect the
// result of the downstream network filtering, see e.g.
// BasicPortAllocatorSession::GetNetworks when
// PORTALLOCATOR_DISABLE_COSTLY_NETWORKS is turned on.
AdapterType GetAdapterTypeFromName(absl::string_view network_name) {
if (MatchTypeNameWithIndexPattern(network_name, "lo")) {
// Note that we have a more robust way to determine if a network interface
// is a loopback interface by checking the flag IFF_LOOPBACK in ifa_flags of
// an ifaddr struct. See ConvertIfAddrs in this file.
return ADAPTER_TYPE_LOOPBACK;
}
if (MatchTypeNameWithIndexPattern(network_name, "eth")) {
return ADAPTER_TYPE_ETHERNET;
}
if (MatchTypeNameWithIndexPattern(network_name, "wlan") ||
MatchTypeNameWithIndexPattern(network_name, "v4-wlan")) {
return ADAPTER_TYPE_WIFI;
}
if (MatchTypeNameWithIndexPattern(network_name, "ipsec") ||
MatchTypeNameWithIndexPattern(network_name, "tun") ||
MatchTypeNameWithIndexPattern(network_name, "utun") ||
MatchTypeNameWithIndexPattern(network_name, "tap")) {
return ADAPTER_TYPE_VPN;
}
#if defined(WEBRTC_IOS)
// Cell networks are pdp_ipN on iOS.
if (MatchTypeNameWithIndexPattern(network_name, "pdp_ip")) {
return ADAPTER_TYPE_CELLULAR;
}
if (MatchTypeNameWithIndexPattern(network_name, "en")) {
// This may not be most accurate because sometimes Ethernet interface
// name also starts with "en" but it is better than showing it as
// "unknown" type.
// TODO(honghaiz): Write a proper IOS network manager.
return ADAPTER_TYPE_WIFI;
}
#elif defined(WEBRTC_ANDROID)
if (MatchTypeNameWithIndexPattern(network_name, "rmnet") ||
MatchTypeNameWithIndexPattern(network_name, "rmnet_data") ||
MatchTypeNameWithIndexPattern(network_name, "v4-rmnet") ||
MatchTypeNameWithIndexPattern(network_name, "v4-rmnet_data") ||
MatchTypeNameWithIndexPattern(network_name, "clat") ||
MatchTypeNameWithIndexPattern(network_name, "ccmni")) {
return ADAPTER_TYPE_CELLULAR;
}
#endif
return ADAPTER_TYPE_UNKNOWN;
}
NetworkManager::EnumerationPermission NetworkManager::enumeration_permission()
const {
return ENUMERATION_ALLOWED;
}
bool NetworkManager::GetDefaultLocalAddress(int family, IPAddress* addr) const {
return false;
}
webrtc::MdnsResponderInterface* NetworkManager::GetMdnsResponder() const {
return nullptr;
}
NetworkManagerBase::NetworkManagerBase(
const webrtc::FieldTrialsView* field_trials)
: field_trials_(field_trials),
enumeration_permission_(NetworkManager::ENUMERATION_ALLOWED),
signal_network_preference_change_(
field_trials
? field_trials->IsEnabled("WebRTC-SignalNetworkPreferenceChange")
: false) {}
NetworkManager::EnumerationPermission
NetworkManagerBase::enumeration_permission() const {
return enumeration_permission_;
}
std::unique_ptr<Network> NetworkManagerBase::CreateNetwork(
absl::string_view name,
absl::string_view description,
const IPAddress& prefix,
int prefix_length,
AdapterType type) const {
return std::make_unique<Network>(name, description, prefix, prefix_length,
type, field_trials_.get());
}
std::vector<const Network*> NetworkManagerBase::GetAnyAddressNetworks() {
std::vector<const Network*> networks;
if (!ipv4_any_address_network_) {
const rtc::IPAddress ipv4_any_address(INADDR_ANY);
ipv4_any_address_network_ =
CreateNetwork("any", "any", ipv4_any_address, 0, ADAPTER_TYPE_ANY);
ipv4_any_address_network_->set_default_local_address_provider(this);
ipv4_any_address_network_->set_mdns_responder_provider(this);
ipv4_any_address_network_->AddIP(ipv4_any_address);
}
networks.push_back(ipv4_any_address_network_.get());
if (!ipv6_any_address_network_) {
const rtc::IPAddress ipv6_any_address(in6addr_any);
ipv6_any_address_network_ =
CreateNetwork("any", "any", ipv6_any_address, 0, ADAPTER_TYPE_ANY);
ipv6_any_address_network_->set_default_local_address_provider(this);
ipv6_any_address_network_->set_mdns_responder_provider(this);
ipv6_any_address_network_->AddIP(ipv6_any_address);
}
networks.push_back(ipv6_any_address_network_.get());
return networks;
}
std::vector<const Network*> NetworkManagerBase::GetNetworks() const {
std::vector<const Network*> result;
result.insert(result.begin(), networks_.begin(), networks_.end());
return result;
}
void NetworkManagerBase::MergeNetworkList(
std::vector<std::unique_ptr<Network>> new_networks,
bool* changed) {
NetworkManager::Stats stats;
MergeNetworkList(std::move(new_networks), changed, &stats);
}
void NetworkManagerBase::MergeNetworkList(
std::vector<std::unique_ptr<Network>> new_networks,
bool* changed,
NetworkManager::Stats* stats) {
*changed = false;
// AddressList in this map will track IP addresses for all Networks
// with the same key.
std::map<std::string, AddressList> consolidated_address_list;
absl::c_sort(new_networks, rtc::webrtc_network_internal::CompareNetworks);
// First, build a set of network-keys to the ipaddresses.
for (auto& network : new_networks) {
bool might_add_to_merged_list = false;
std::string key = MakeNetworkKey(network->name(), network->prefix(),
network->prefix_length());
const std::vector<InterfaceAddress>& addresses = network->GetIPs();
if (consolidated_address_list.find(key) ==
consolidated_address_list.end()) {
AddressList addrlist;
addrlist.net = std::move(network);
consolidated_address_list[key] = std::move(addrlist);
might_add_to_merged_list = true;
}
AddressList& current_list = consolidated_address_list[key];
for (const InterfaceAddress& address : addresses) {
current_list.ips.push_back(address);
}
if (might_add_to_merged_list) {
if (current_list.ips[0].family() == AF_INET) {
stats->ipv4_network_count++;
} else {
RTC_DCHECK(current_list.ips[0].family() == AF_INET6);
stats->ipv6_network_count++;
}
}
}
// Next, look for existing network objects to re-use.
// Result of Network merge. Element in this list should have unique key.
std::vector<Network*> merged_list;
for (auto& kv : consolidated_address_list) {
const std::string& key = kv.first;
std::unique_ptr<Network> net = std::move(kv.second.net);
auto existing = networks_map_.find(key);
if (existing == networks_map_.end()) {
// This network is new.
net->set_id(next_available_network_id_++);
// We might have accumulated IPAddresses from the first
// step, set it here.
net->SetIPs(kv.second.ips, true);
// Place it in the network map.
merged_list.push_back(net.get());
networks_map_[key] = std::move(net);
*changed = true;
} else {
// This network exists in the map already. Reset its IP addresses.
Network* existing_net = existing->second.get();
*changed = existing_net->SetIPs(kv.second.ips, *changed);
merged_list.push_back(existing_net);
if (net->type() != ADAPTER_TYPE_UNKNOWN &&
net->type() != existing_net->type()) {
if (ShouldAdapterChangeTriggerNetworkChange(existing_net->type(),
net->type())) {
*changed = true;
}
existing_net->set_type(net->type());
}
// If the existing network was not active, networks have changed.
if (!existing_net->active()) {
*changed = true;
}
if (net->network_preference() != existing_net->network_preference()) {
existing_net->set_network_preference(net->network_preference());
if (signal_network_preference_change_) {
*changed = true;
}
}
RTC_DCHECK(net->active());
}
networks_map_[key]->set_mdns_responder_provider(this);
}
// It may still happen that the merged list is a subset of `networks_`.
// To detect this change, we compare their sizes.
if (merged_list.size() != networks_.size()) {
*changed = true;
}
// If the network list changes, we re-assign `networks_` to the merged list
// and re-sort it.
if (*changed) {
networks_ = merged_list;
// Reset the active states of all networks.
for (const auto& kv : networks_map_) {
const std::unique_ptr<Network>& network = kv.second;
// If `network` is in the newly generated `networks_`, it is active.
bool found = absl::c_linear_search(networks_, network.get());
network->set_active(found);
}
absl::c_sort(networks_, SortNetworks);
// Now network interfaces are sorted, we should set the preference value
// for each of the interfaces we are planning to use.
// Preference order of network interfaces might have changed from previous
// sorting due to addition of higher preference network interface.
// Since we have already sorted the network interfaces based on our
// requirements, we will just assign a preference value starting with 127,
// in decreasing order.
int pref = kHighestNetworkPreference;
for (Network* network : networks_) {
network->set_preference(pref);
if (pref > 0) {
--pref;
} else {
RTC_LOG(LS_ERROR) << "Too many network interfaces to handle!";
break;
}
}
}
}
void NetworkManagerBase::set_default_local_addresses(const IPAddress& ipv4,
const IPAddress& ipv6) {
if (ipv4.family() == AF_INET) {
default_local_ipv4_address_ = ipv4;
}
if (ipv6.family() == AF_INET6) {
default_local_ipv6_address_ = ipv6;
}
}
bool NetworkManagerBase::GetDefaultLocalAddress(int family,
IPAddress* ipaddr) const {
if (family == AF_INET && !default_local_ipv4_address_.IsNil()) {
*ipaddr = default_local_ipv4_address_;
return true;
} else if (family == AF_INET6 && !default_local_ipv6_address_.IsNil()) {
Network* ipv6_network = GetNetworkFromAddress(default_local_ipv6_address_);
if (ipv6_network) {
// If the default ipv6 network's BestIP is different than
// default_local_ipv6_address_, use it instead.
// This is to prevent potential IP address leakage. See WebRTC bug 5376.
*ipaddr = ipv6_network->GetBestIP();
} else {
*ipaddr = default_local_ipv6_address_;
}
return true;
}
return false;
}
Network* NetworkManagerBase::GetNetworkFromAddress(
const rtc::IPAddress& ip) const {
for (Network* network : networks_) {
const auto& ips = network->GetIPs();
if (absl::c_any_of(ips, [&](const InterfaceAddress& existing_ip) {
return ip == static_cast<rtc::IPAddress>(existing_ip);
})) {
return network;
}
}
return nullptr;
}
bool NetworkManagerBase::IsVpnMacAddress(
rtc::ArrayView<const uint8_t> address) {
if (address.data() == nullptr && address.size() == 0) {
return false;
}
for (const auto& vpn : kVpns) {
if (sizeof(vpn) == address.size() &&
memcmp(vpn, address.data(), address.size()) == 0) {
return true;
}
}
return false;
}
BasicNetworkManager::BasicNetworkManager(
NetworkMonitorFactory* network_monitor_factory,
SocketFactory* socket_factory,
const webrtc::FieldTrialsView* field_trials_view)
: NetworkManagerBase(field_trials_view),
field_trials_(field_trials_view),
network_monitor_factory_(network_monitor_factory),
socket_factory_(socket_factory),
allow_mac_based_ipv6_(
field_trials()->IsEnabled("WebRTC-AllowMACBasedIPv6")),
bind_using_ifname_(
!field_trials()->IsDisabled("WebRTC-BindUsingInterfaceName")) {
RTC_DCHECK(socket_factory_);
}
BasicNetworkManager::~BasicNetworkManager() {
if (task_safety_flag_) {
task_safety_flag_->SetNotAlive();
}
}
void BasicNetworkManager::OnNetworksChanged() {
RTC_DCHECK_RUN_ON(thread_);
RTC_LOG(LS_INFO) << "Network change was observed";
UpdateNetworksOnce();
}
#if defined(__native_client__)
bool BasicNetworkManager::CreateNetworks(
bool include_ignored,
std::vector<std::unique_ptr<Network>>* networks) const {
RTC_DCHECK_NOTREACHED();
RTC_LOG(LS_WARNING) << "BasicNetworkManager doesn't work on NaCl yet";
return false;
}
#elif defined(WEBRTC_POSIX)
NetworkMonitorInterface::InterfaceInfo BasicNetworkManager::GetInterfaceInfo(
struct ifaddrs* cursor) const {
if (cursor->ifa_flags & IFF_LOOPBACK) {
return {
.adapter_type = ADAPTER_TYPE_LOOPBACK,
.underlying_type_for_vpn = ADAPTER_TYPE_UNKNOWN,
.network_preference = NetworkPreference::NEUTRAL,
.available = true,
};
} else if (network_monitor_) {
return network_monitor_->GetInterfaceInfo(cursor->ifa_name);
} else {
return {.adapter_type = GetAdapterTypeFromName(cursor->ifa_name),
.underlying_type_for_vpn = ADAPTER_TYPE_UNKNOWN,
.network_preference = NetworkPreference::NEUTRAL,
.available = true};
}
}
void BasicNetworkManager::ConvertIfAddrs(
struct ifaddrs* interfaces,
IfAddrsConverter* ifaddrs_converter,
bool include_ignored,
std::vector<std::unique_ptr<Network>>* networks) const {
std::map<std::string, Network*> current_networks;
for (struct ifaddrs* cursor = interfaces; cursor != nullptr;
cursor = cursor->ifa_next) {
IPAddress prefix;
IPAddress mask;
InterfaceAddress ip;
int scope_id = 0;
// Some interfaces may not have address assigned.
if (!cursor->ifa_addr || !cursor->ifa_netmask) {
continue;
}
// Skip ones which are down.
if (!(cursor->ifa_flags & IFF_RUNNING)) {
continue;
}
// Skip unknown family.
if (cursor->ifa_addr->sa_family != AF_INET &&
cursor->ifa_addr->sa_family != AF_INET6) {
continue;
}
// Convert to InterfaceAddress.
// TODO(webrtc:13114): Convert ConvertIfAddrs to use rtc::Netmask.
if (!ifaddrs_converter->ConvertIfAddrsToIPAddress(cursor, &ip, &mask)) {
continue;
}
// Special case for IPv6 address.
if (cursor->ifa_addr->sa_family == AF_INET6) {
if (IsIgnoredIPv6(allow_mac_based_ipv6_, ip)) {
continue;
}
scope_id =
reinterpret_cast<sockaddr_in6*>(cursor->ifa_addr)->sin6_scope_id;
}
int prefix_length = CountIPMaskBits(mask);
prefix = TruncateIP(ip, prefix_length);
std::string key =
MakeNetworkKey(std::string(cursor->ifa_name), prefix, prefix_length);
auto iter = current_networks.find(key);
if (iter != current_networks.end()) {
// We have already added this network, simply add extra IP.
iter->second->AddIP(ip);
#if RTC_DCHECK_IS_ON
// Validate that different IP of same network has same properties
auto existing_network = iter->second;
NetworkMonitorInterface::InterfaceInfo if_info = GetInterfaceInfo(cursor);
if (if_info.adapter_type != ADAPTER_TYPE_VPN &&
IsConfiguredVpn(prefix, prefix_length)) {
if_info.underlying_type_for_vpn = if_info.adapter_type;
if_info.adapter_type = ADAPTER_TYPE_VPN;
}
RTC_DCHECK(existing_network->type() == if_info.adapter_type);
RTC_DCHECK(existing_network->underlying_type_for_vpn() ==
if_info.underlying_type_for_vpn);
RTC_DCHECK(existing_network->network_preference() ==
if_info.network_preference);
if (!if_info.available) {
RTC_DCHECK(existing_network->ignored());
}
#endif // RTC_DCHECK_IS_ON
continue;
}
// Create a new network.
NetworkMonitorInterface::InterfaceInfo if_info = GetInterfaceInfo(cursor);
// Check manually configured VPN override.
if (if_info.adapter_type != ADAPTER_TYPE_VPN &&
IsConfiguredVpn(prefix, prefix_length)) {
if_info.underlying_type_for_vpn = if_info.adapter_type;
if_info.adapter_type = ADAPTER_TYPE_VPN;
}
auto network = CreateNetwork(cursor->ifa_name, cursor->ifa_name, prefix,
prefix_length, if_info.adapter_type);
network->set_default_local_address_provider(this);
network->set_scope_id(scope_id);
network->AddIP(ip);
if (!if_info.available) {
network->set_ignored(true);
} else {
network->set_ignored(IsIgnoredNetwork(*network));
}
network->set_underlying_type_for_vpn(if_info.underlying_type_for_vpn);
network->set_network_preference(if_info.network_preference);
if (include_ignored || !network->ignored()) {
current_networks[key] = network.get();
networks->push_back(std::move(network));
}
}
}
bool BasicNetworkManager::CreateNetworks(
bool include_ignored,
std::vector<std::unique_ptr<Network>>* networks) const {
struct ifaddrs* interfaces;
int error = getifaddrs(&interfaces);
if (error != 0) {
RTC_LOG_ERR(LS_ERROR) << "getifaddrs failed to gather interface data: "
<< error;
return false;
}
std::unique_ptr<IfAddrsConverter> ifaddrs_converter(CreateIfAddrsConverter());
ConvertIfAddrs(interfaces, ifaddrs_converter.get(), include_ignored,
networks);
freeifaddrs(interfaces);
return true;
}
#elif defined(WEBRTC_WIN)
unsigned int GetPrefix(PIP_ADAPTER_PREFIX prefixlist,
const IPAddress& ip,
IPAddress* prefix) {
IPAddress current_prefix;
IPAddress best_prefix;
unsigned int best_length = 0;
while (prefixlist) {
// Look for the longest matching prefix in the prefixlist.
if (prefixlist->Address.lpSockaddr == nullptr ||
prefixlist->Address.lpSockaddr->sa_family != ip.family()) {
prefixlist = prefixlist->Next;
continue;
}
switch (prefixlist->Address.lpSockaddr->sa_family) {
case AF_INET: {
sockaddr_in* v4_addr =
reinterpret_cast<sockaddr_in*>(prefixlist->Address.lpSockaddr);
current_prefix = IPAddress(v4_addr->sin_addr);
break;
}
case AF_INET6: {
sockaddr_in6* v6_addr =
reinterpret_cast<sockaddr_in6*>(prefixlist->Address.lpSockaddr);
current_prefix = IPAddress(v6_addr->sin6_addr);
break;
}
default: {
prefixlist = prefixlist->Next;
continue;
}
}
if (TruncateIP(ip, prefixlist->PrefixLength) == current_prefix &&
prefixlist->PrefixLength > best_length) {
best_prefix = current_prefix;
best_length = prefixlist->PrefixLength;
}
prefixlist = prefixlist->Next;
}
*prefix = best_prefix;
return best_length;
}
bool BasicNetworkManager::CreateNetworks(
bool include_ignored,
std::vector<std::unique_ptr<Network>>* networks) const {
std::map<std::string, Network*> current_networks;
// MSDN recommends a 15KB buffer for the first try at GetAdaptersAddresses.
size_t buffer_size = 16384;
std::unique_ptr<char[]> adapter_info(new char[buffer_size]);
PIP_ADAPTER_ADDRESSES adapter_addrs =
reinterpret_cast<PIP_ADAPTER_ADDRESSES>(adapter_info.get());
int adapter_flags = (GAA_FLAG_SKIP_DNS_SERVER | GAA_FLAG_SKIP_ANYCAST |
GAA_FLAG_SKIP_MULTICAST | GAA_FLAG_INCLUDE_PREFIX);
int ret = 0;
do {
adapter_info.reset(new char[buffer_size]);
adapter_addrs = reinterpret_cast<PIP_ADAPTER_ADDRESSES>(adapter_info.get());
ret = GetAdaptersAddresses(AF_UNSPEC, adapter_flags, 0, adapter_addrs,
reinterpret_cast<PULONG>(&buffer_size));
} while (ret == ERROR_BUFFER_OVERFLOW);
if (ret != ERROR_SUCCESS) {
return false;
}
int count = 0;
while (adapter_addrs) {
if (adapter_addrs->OperStatus == IfOperStatusUp) {
PIP_ADAPTER_UNICAST_ADDRESS address = adapter_addrs->FirstUnicastAddress;
PIP_ADAPTER_PREFIX prefixlist = adapter_addrs->FirstPrefix;
std::string description = ToUtf8(adapter_addrs->Description,
wcslen(adapter_addrs->Description));
for (; address; address = address->Next) {
std::string name = rtc::ToString(count);
#if !defined(NDEBUG)
name = ToUtf8(adapter_addrs->FriendlyName,
wcslen(adapter_addrs->FriendlyName));
#endif
IPAddress ip;
int scope_id = 0;
std::unique_ptr<Network> network;
switch (address->Address.lpSockaddr->sa_family) {
case AF_INET: {
sockaddr_in* v4_addr =
reinterpret_cast<sockaddr_in*>(address->Address.lpSockaddr);
ip = IPAddress(v4_addr->sin_addr);
break;
}
case AF_INET6: {
sockaddr_in6* v6_addr =
reinterpret_cast<sockaddr_in6*>(address->Address.lpSockaddr);
scope_id = v6_addr->sin6_scope_id;
// From http://technet.microsoft.com/en-us/ff568768(v=vs.60).aspx,
// the way to identify a temporary IPv6 Address is to check if
// PrefixOrigin is equal to IpPrefixOriginRouterAdvertisement and
// SuffixOrigin equal to IpSuffixOriginRandom.
int ip_address_attributes = IPV6_ADDRESS_FLAG_NONE;
if (IpAddressAttributesEnabled(field_trials_.get())) {
if (address->PrefixOrigin == IpPrefixOriginRouterAdvertisement &&
address->SuffixOrigin == IpSuffixOriginRandom) {
ip_address_attributes |= IPV6_ADDRESS_FLAG_TEMPORARY;
}
if (address->PreferredLifetime == 0) {
ip_address_attributes |= IPV6_ADDRESS_FLAG_DEPRECATED;
}
}
if (IsIgnoredIPv6(allow_mac_based_ipv6_,
InterfaceAddress(v6_addr->sin6_addr,
ip_address_attributes))) {
continue;
}
ip = InterfaceAddress(v6_addr->sin6_addr, ip_address_attributes);
break;
}
default: {
continue;
}
}
IPAddress prefix;
int prefix_length = GetPrefix(prefixlist, ip, &prefix);
std::string key = MakeNetworkKey(name, prefix, prefix_length);
auto existing_network = current_networks.find(key);
if (existing_network == current_networks.end()) {
AdapterType adapter_type = ADAPTER_TYPE_UNKNOWN;
switch (adapter_addrs->IfType) {
case IF_TYPE_SOFTWARE_LOOPBACK:
adapter_type = ADAPTER_TYPE_LOOPBACK;
break;
case IF_TYPE_ETHERNET_CSMACD:
case IF_TYPE_ETHERNET_3MBIT:
case IF_TYPE_IEEE80212:
case IF_TYPE_FASTETHER:
case IF_TYPE_FASTETHER_FX:
case IF_TYPE_GIGABITETHERNET:
adapter_type = ADAPTER_TYPE_ETHERNET;
break;
case IF_TYPE_IEEE80211:
adapter_type = ADAPTER_TYPE_WIFI;
break;
case IF_TYPE_WWANPP:
case IF_TYPE_WWANPP2:
adapter_type = ADAPTER_TYPE_CELLULAR;
break;
default:
// TODO(phoglund): Need to recognize other types as well.
adapter_type = ADAPTER_TYPE_UNKNOWN;
break;
}
auto underlying_type_for_vpn = ADAPTER_TYPE_UNKNOWN;
if (adapter_type != ADAPTER_TYPE_VPN &&
IsConfiguredVpn(prefix, prefix_length)) {
underlying_type_for_vpn = adapter_type;
adapter_type = ADAPTER_TYPE_VPN;
}
if (adapter_type != ADAPTER_TYPE_VPN &&
IsVpnMacAddress(rtc::ArrayView<const uint8_t>(
reinterpret_cast<const uint8_t*>(
adapter_addrs->PhysicalAddress),
adapter_addrs->PhysicalAddressLength))) {
// With MAC-based detection we do not know the
// underlying adapter type.
underlying_type_for_vpn = ADAPTER_TYPE_UNKNOWN;
adapter_type = ADAPTER_TYPE_VPN;
}
auto network = CreateNetwork(name, description, prefix, prefix_length,
adapter_type);
network->set_underlying_type_for_vpn(underlying_type_for_vpn);
network->set_default_local_address_provider(this);
network->set_mdns_responder_provider(this);
network->set_scope_id(scope_id);
network->AddIP(ip);
bool ignored = IsIgnoredNetwork(*network);
network->set_ignored(ignored);
if (include_ignored || !network->ignored()) {
current_networks[key] = network.get();
networks->push_back(std::move(network));
}
} else {
(*existing_network).second->AddIP(ip);
}
}
// Count is per-adapter - all 'Networks' created from the same
// adapter need to have the same name.
++count;
}
adapter_addrs = adapter_addrs->Next;
}
return true;
}
#endif // WEBRTC_WIN
bool BasicNetworkManager::IsIgnoredNetwork(const Network& network) const {
// Ignore networks on the explicit ignore list.
for (const std::string& ignored_name : network_ignore_list_) {
if (network.name() == ignored_name) {
return true;
}
}
#if defined(WEBRTC_POSIX)
// Filter out VMware/VirtualBox interfaces, typically named vmnet1,
// vmnet8, or vboxnet0.
if (strncmp(network.name().c_str(), "vmnet", 5) == 0 ||
strncmp(network.name().c_str(), "vnic", 4) == 0 ||
strncmp(network.name().c_str(), "vboxnet", 7) == 0) {
return true;
}
#elif defined(WEBRTC_WIN)
// Ignore any HOST side vmware adapters with a description like:
// VMware Virtual Ethernet Adapter for VMnet1
// but don't ignore any GUEST side adapters with a description like:
// VMware Accelerated AMD PCNet Adapter #2
if (strstr(network.description().c_str(), "VMnet") != nullptr) {
return true;
}
#endif
// Ignore any networks with a 0.x.y.z IP
if (network.prefix().family() == AF_INET) {
return (network.prefix().v4AddressAsHostOrderInteger() < 0x01000000);
}
return false;
}
void BasicNetworkManager::StartUpdating() {
thread_ = Thread::Current();
// Redundant but necessary for thread annotations.
RTC_DCHECK_RUN_ON(thread_);
if (start_count_) {
// If network interfaces are already discovered and signal is sent,
// we should trigger network signal immediately for the new clients
// to start allocating ports.
if (sent_first_update_)
thread_->PostTask(SafeTask(task_safety_flag_, [this] {
RTC_DCHECK_RUN_ON(thread_);
SignalNetworksChanged();
}));
} else {
RTC_DCHECK(task_safety_flag_ == nullptr);
task_safety_flag_ = webrtc::PendingTaskSafetyFlag::Create();
thread_->PostTask(SafeTask(task_safety_flag_, [this] {
RTC_DCHECK_RUN_ON(thread_);
UpdateNetworksContinually();
}));
StartNetworkMonitor();
}
++start_count_;
}
void BasicNetworkManager::StopUpdating() {
RTC_DCHECK_RUN_ON(thread_);
if (!start_count_)
return;
--start_count_;
if (!start_count_) {
task_safety_flag_->SetNotAlive();
task_safety_flag_ = nullptr;
sent_first_update_ = false;
StopNetworkMonitor();
}
}
void BasicNetworkManager::StartNetworkMonitor() {
if (network_monitor_factory_ == nullptr) {
return;
}
if (!network_monitor_) {
network_monitor_.reset(
network_monitor_factory_->CreateNetworkMonitor(*field_trials()));
if (!network_monitor_) {
return;
}
network_monitor_->SetNetworksChangedCallback(
[this]() { OnNetworksChanged(); });
}
if (network_monitor_->SupportsBindSocketToNetwork()) {
// Set NetworkBinder on SocketServer so that
// PhysicalSocket::Bind will call
// BasicNetworkManager::BindSocketToNetwork(), (that will lookup interface
// name and then call network_monitor_->BindSocketToNetwork()).
thread_->socketserver()->set_network_binder(this);
}
network_monitor_->Start();
}
void BasicNetworkManager::StopNetworkMonitor() {
if (!network_monitor_) {
return;
}
network_monitor_->Stop();
if (network_monitor_->SupportsBindSocketToNetwork()) {
// Reset NetworkBinder on SocketServer.
if (thread_->socketserver()->network_binder() == this) {
thread_->socketserver()->set_network_binder(nullptr);
}
}
}
IPAddress BasicNetworkManager::QueryDefaultLocalAddress(int family) const {
RTC_DCHECK(family == AF_INET || family == AF_INET6);
std::unique_ptr<Socket> socket(
socket_factory_->CreateSocket(family, SOCK_DGRAM));
if (!socket) {
RTC_LOG_ERR(LS_ERROR) << "Socket creation failed";
return IPAddress();
}
if (socket->Connect(SocketAddress(
family == AF_INET ? kPublicIPv4Host : kPublicIPv6Host, kPublicPort)) <
0) {
if (socket->GetError() != ENETUNREACH &&
socket->GetError() != EHOSTUNREACH) {
// Ignore the expected case of "host/net unreachable" - which happens if
// the network is V4- or V6-only.
RTC_LOG(LS_INFO) << "Connect failed with " << socket->GetError();
}
return IPAddress();
}
return socket->GetLocalAddress().ipaddr();
}
void BasicNetworkManager::UpdateNetworksOnce() {
if (!start_count_)
return;
std::vector<std::unique_ptr<Network>> list;
if (!CreateNetworks(false, &list)) {
SignalError();
} else {
bool changed;
NetworkManager::Stats stats;
MergeNetworkList(std::move(list), &changed, &stats);
set_default_local_addresses(QueryDefaultLocalAddress(AF_INET),
QueryDefaultLocalAddress(AF_INET6));
if (changed || !sent_first_update_) {
SignalNetworksChanged();
sent_first_update_ = true;
}
}
}
void BasicNetworkManager::UpdateNetworksContinually() {
UpdateNetworksOnce();
thread_->PostDelayedTask(SafeTask(task_safety_flag_,
[this] {
RTC_DCHECK_RUN_ON(thread_);
UpdateNetworksContinually();
}),
TimeDelta::Millis(kNetworksUpdateIntervalMs));
}
void BasicNetworkManager::DumpNetworks() {
RTC_DCHECK_RUN_ON(thread_);
std::vector<const Network*> list = GetNetworks();
RTC_LOG(LS_INFO) << "NetworkManager detected " << list.size() << " networks:";
for (const Network* network : list) {
RTC_LOG(LS_INFO) << network->ToString() << ": " << network->description()
<< ", active ? " << network->active()
<< ((network->ignored()) ? ", Ignored" : "");
}
}
NetworkBindingResult BasicNetworkManager::BindSocketToNetwork(
int socket_fd,
const IPAddress& address) {
RTC_DCHECK_RUN_ON(thread_);
std::string if_name;
if (bind_using_ifname_) {
Network* net = GetNetworkFromAddress(address);
if (net != nullptr) {
if_name = net->name();
}
}
return network_monitor_->BindSocketToNetwork(socket_fd, address, if_name);
}
Network::Network(absl::string_view name,
absl::string_view desc,
const IPAddress& prefix,
int prefix_length,
AdapterType type,
const webrtc::FieldTrialsView* field_trials)
: field_trials_(field_trials),
name_(name),
description_(desc),
prefix_(prefix),
prefix_length_(prefix_length),
key_(MakeNetworkKey(name, prefix, prefix_length)),
scope_id_(0),
ignored_(false),
type_(type),
preference_(0) {}
Network::Network(const Network&) = default;
Network::~Network() = default;
// Sets the addresses of this network. Returns true if the address set changed.
// Change detection is short circuited if the changed argument is true.
bool Network::SetIPs(const std::vector<InterfaceAddress>& ips, bool changed) {
// Detect changes with a nested loop; n-squared but we expect on the order
// of 2-3 addresses per network.
changed = changed || ips.size() != ips_.size();
if (!changed) {
for (const InterfaceAddress& ip : ips) {
if (!absl::c_linear_search(ips_, ip)) {
changed = true;
break;
}
}
}
ips_ = ips;
return changed;
}
// Select the best IP address to use from this Network.
IPAddress Network::GetBestIP() const {
if (ips_.size() == 0) {
return IPAddress();
}
if (prefix_.family() == AF_INET) {
return static_cast<IPAddress>(ips_.at(0));
}
InterfaceAddress selected_ip, link_local_ip, ula_ip;
const bool prefer_global_ipv6_to_link_local =
PreferGlobalIPv6Address(field_trials_);
for (const InterfaceAddress& ip : ips_) {
// Ignore any address which has been deprecated already.
if (ip.ipv6_flags() & IPV6_ADDRESS_FLAG_DEPRECATED)
continue;
if (prefer_global_ipv6_to_link_local && IPIsLinkLocal(ip)) {
link_local_ip = ip;
continue;
}
// ULA address should only be returned when we have no other
// global IP.
if (IPIsULA(static_cast<const IPAddress&>(ip))) {
ula_ip = ip;
continue;
}
selected_ip = ip;
// Search could stop once a temporary non-deprecated one is found.
if (ip.ipv6_flags() & IPV6_ADDRESS_FLAG_TEMPORARY)
break;
}
if (IPIsUnspec(selected_ip)) {
if (prefer_global_ipv6_to_link_local && !IPIsUnspec(link_local_ip)) {
// No proper global IPv6 address found, use link local address instead.
selected_ip = link_local_ip;
} else if (!IPIsUnspec(ula_ip)) {
// No proper global and link local address found, use ULA instead.
selected_ip = ula_ip;
}
}
return static_cast<IPAddress>(selected_ip);
}
webrtc::MdnsResponderInterface* Network::GetMdnsResponder() const {
if (mdns_responder_provider_ == nullptr) {
return nullptr;
}
return mdns_responder_provider_->GetMdnsResponder();
}
uint16_t Network::GetCost(const webrtc::FieldTrialsView* field_trials) const {
return GetCost(
*webrtc::AlwaysValidPointer<const webrtc::FieldTrialsView,
webrtc::FieldTrialBasedConfig>(field_trials));
}
uint16_t Network::GetCost(const webrtc::FieldTrialsView& field_trials) const {
AdapterType type = IsVpn() ? underlying_type_for_vpn_ : type_;
const bool use_differentiated_cellular_costs =
field_trials.IsEnabled("WebRTC-UseDifferentiatedCellularCosts");
const bool add_network_cost_to_vpn =
field_trials.IsEnabled("WebRTC-AddNetworkCostToVpn");
return ComputeNetworkCostByType(type, IsVpn(),
use_differentiated_cellular_costs,
add_network_cost_to_vpn);
}
// This is the inverse of ComputeNetworkCostByType().
std::pair<rtc::AdapterType, bool /* vpn */>
Network::GuessAdapterFromNetworkCost(int network_cost) {
switch (network_cost) {
case kNetworkCostMin:
return {rtc::ADAPTER_TYPE_ETHERNET, false};
case kNetworkCostMin + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_ETHERNET, true};
case kNetworkCostLow:
return {rtc::ADAPTER_TYPE_WIFI, false};
case kNetworkCostLow + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_WIFI, true};
case kNetworkCostCellular:
return {rtc::ADAPTER_TYPE_CELLULAR, false};
case kNetworkCostCellular + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_CELLULAR, true};
case kNetworkCostCellular2G:
return {rtc::ADAPTER_TYPE_CELLULAR_2G, false};
case kNetworkCostCellular2G + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_CELLULAR_2G, true};
case kNetworkCostCellular3G:
return {rtc::ADAPTER_TYPE_CELLULAR_3G, false};
case kNetworkCostCellular3G + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_CELLULAR_3G, true};
case kNetworkCostCellular4G:
return {rtc::ADAPTER_TYPE_CELLULAR_4G, false};
case kNetworkCostCellular4G + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_CELLULAR_4G, true};
case kNetworkCostCellular5G:
return {rtc::ADAPTER_TYPE_CELLULAR_5G, false};
case kNetworkCostCellular5G + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_CELLULAR_5G, true};
case kNetworkCostUnknown:
return {rtc::ADAPTER_TYPE_UNKNOWN, false};
case kNetworkCostUnknown + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_UNKNOWN, true};
case kNetworkCostMax:
return {rtc::ADAPTER_TYPE_ANY, false};
case kNetworkCostMax + kNetworkCostVpn:
return {rtc::ADAPTER_TYPE_ANY, true};
}
RTC_LOG(LS_VERBOSE) << "Unknown network cost: " << network_cost;
return {rtc::ADAPTER_TYPE_UNKNOWN, false};
}
std::string Network::ToString() const {
rtc::StringBuilder ss;
// Print out the first space-terminated token of the network desc, plus
// the IP address.
ss << "Net[" << description_.substr(0, description_.find(' ')) << ":"
<< prefix_.ToSensitiveString() << "/" << prefix_length_ << ":"
<< AdapterTypeToString(type_);
if (IsVpn()) {
ss << "/" << AdapterTypeToString(underlying_type_for_vpn_);
}
ss << ":id=" << id_ << "]";
return ss.Release();
}
void BasicNetworkManager::set_vpn_list(const std::vector<NetworkMask>& vpn) {
if (thread_ == nullptr) {
vpn_ = vpn;
} else {
thread_->BlockingCall([this, vpn] { vpn_ = vpn; });
}
}
bool BasicNetworkManager::IsConfiguredVpn(IPAddress prefix,
int prefix_length) const {
RTC_DCHECK_RUN_ON(thread_);
for (const auto& vpn : vpn_) {
if (prefix_length >= vpn.prefix_length()) {
auto copy = TruncateIP(prefix, vpn.prefix_length());
if (copy == vpn.address()) {
return true;
}
}
}
return false;
}
} // namespace rtc