blob: 48a6d6cecd4cb35d3b8ca45f8c5ca2c6c0b2b901 [file] [log] [blame]
/*
* Copyright (c) 2017 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/audio_processing/aec3/erle_estimator.h"
#include <cmath>
#include "api/array_view.h"
#include "modules/audio_processing/aec3/render_delay_buffer.h"
#include "modules/audio_processing/aec3/spectrum_buffer.h"
#include "rtc_base/random.h"
#include "test/gtest.h"
namespace webrtc {
namespace {
constexpr int kLowFrequencyLimit = kFftLengthBy2 / 2;
constexpr float kTrueErle = 10.f;
constexpr float kTrueErleOnsets = 1.0f;
constexpr float kEchoPathGain = 3.f;
void VerifyErleBands(
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
float reference_lf,
float reference_hf) {
for (size_t ch = 0; ch < erle.size(); ++ch) {
std::for_each(
erle[ch].begin(), erle[ch].begin() + kLowFrequencyLimit,
[reference_lf](float a) { EXPECT_NEAR(reference_lf, a, 0.001); });
std::for_each(
erle[ch].begin() + kLowFrequencyLimit, erle[ch].end(),
[reference_hf](float a) { EXPECT_NEAR(reference_hf, a, 0.001); });
}
}
void VerifyErle(
rtc::ArrayView<const std::array<float, kFftLengthBy2Plus1>> erle,
float erle_time_domain,
float reference_lf,
float reference_hf) {
VerifyErleBands(erle, reference_lf, reference_hf);
EXPECT_NEAR(reference_lf, erle_time_domain, 0.5);
}
void FormFarendTimeFrame(std::vector<std::vector<std::vector<float>>>* x) {
const std::array<float, kBlockSize> frame = {
7459.88, 17209.6, 17383, 20768.9, 16816.7, 18386.3, 4492.83, 9675.85,
6665.52, 14808.6, 9342.3, 7483.28, 19261.7, 4145.98, 1622.18, 13475.2,
7166.32, 6856.61, 21937, 7263.14, 9569.07, 14919, 8413.32, 7551.89,
7848.65, 6011.27, 13080.6, 15865.2, 12656, 17459.6, 4263.93, 4503.03,
9311.79, 21095.8, 12657.9, 13906.6, 19267.2, 11338.1, 16828.9, 11501.6,
11405, 15031.4, 14541.6, 19765.5, 18346.3, 19350.2, 3157.47, 18095.8,
1743.68, 21328.2, 19727.5, 7295.16, 10332.4, 11055.5, 20107.4, 14708.4,
12416.2, 16434, 2454.69, 9840.8, 6867.23, 1615.75, 6059.9, 8394.19};
for (size_t band = 0; band < x->size(); ++band) {
for (size_t channel = 0; channel < (*x)[band].size(); ++channel) {
RTC_DCHECK_GE((*x)[band][channel].size(), frame.size());
std::copy(frame.begin(), frame.end(), (*x)[band][channel].begin());
}
}
}
void FormFarendFrame(const RenderBuffer& render_buffer,
float erle,
std::array<float, kFftLengthBy2Plus1>* X2,
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2,
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) {
const auto& spectrum_buffer = render_buffer.GetSpectrumBuffer();
const int num_render_channels = spectrum_buffer.buffer[0].size();
const int num_capture_channels = Y2.size();
X2->fill(0.f);
for (int ch = 0; ch < num_render_channels; ++ch) {
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
(*X2)[k] += spectrum_buffer.buffer[spectrum_buffer.write][ch][k] /
num_render_channels;
}
}
for (int ch = 0; ch < num_capture_channels; ++ch) {
std::transform(X2->begin(), X2->end(), Y2[ch].begin(),
[](float a) { return a * kEchoPathGain * kEchoPathGain; });
std::transform(Y2[ch].begin(), Y2[ch].end(), E2[ch].begin(),
[erle](float a) { return a / erle; });
}
}
void FormNearendFrame(
std::vector<std::vector<std::vector<float>>>* x,
std::array<float, kFftLengthBy2Plus1>* X2,
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> E2,
rtc::ArrayView<std::array<float, kFftLengthBy2Plus1>> Y2) {
for (size_t band = 0; band < x->size(); ++band) {
for (size_t ch = 0; ch < (*x)[band].size(); ++ch) {
std::fill((*x)[band][ch].begin(), (*x)[band][ch].end(), 0.f);
}
}
X2->fill(0.f);
for (size_t ch = 0; ch < Y2.size(); ++ch) {
Y2[ch].fill(500.f * 1000.f * 1000.f);
E2[ch].fill(Y2[ch][0]);
}
}
void GetFilterFreq(
size_t delay_headroom_samples,
rtc::ArrayView<std::vector<std::array<float, kFftLengthBy2Plus1>>>
filter_frequency_response) {
const size_t delay_headroom_blocks = delay_headroom_samples / kBlockSize;
for (size_t ch = 0; ch < filter_frequency_response[0].size(); ++ch) {
for (auto& block_freq_resp : filter_frequency_response) {
block_freq_resp[ch].fill(0.f);
}
for (size_t k = 0; k < kFftLengthBy2Plus1; ++k) {
filter_frequency_response[delay_headroom_blocks][ch][k] = kEchoPathGain;
}
}
}
} // namespace
TEST(ErleEstimator, VerifyErleIncreaseAndHold) {
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
for (size_t num_render_channels : {1, 2, 4, 8}) {
for (size_t num_capture_channels : {1, 2, 4}) {
std::array<float, kFftLengthBy2Plus1> X2;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(
num_capture_channels);
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(
num_capture_channels);
std::vector<bool> converged_filters(num_capture_channels, true);
EchoCanceller3Config config;
config.erle.onset_detection = true;
std::vector<std::vector<std::vector<float>>> x(
kNumBands,
std::vector<std::vector<float>>(num_render_channels,
std::vector<float>(kBlockSize, 0.f)));
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
filter_frequency_response(
config.filter.main.length_blocks,
std::vector<std::array<float, kFftLengthBy2Plus1>>(
num_capture_channels));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz,
num_render_channels));
GetFilterFreq(config.delay.delay_headroom_samples,
filter_frequency_response);
ErleEstimator estimator(0, config, num_capture_channels);
FormFarendTimeFrame(&x);
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
// Verifies that the ERLE estimate is properly increased to higher values.
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2,
E2, Y2);
for (size_t k = 0; k < 200; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.max_l, config.erle.max_h);
FormNearendFrame(&x, &X2, E2, Y2);
// Verifies that the ERLE is not immediately decreased during nearend
// activity.
for (size_t k = 0; k < 50; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.max_l, config.erle.max_h);
}
}
}
TEST(ErleEstimator, VerifyErleTrackingOnOnsets) {
constexpr int kSampleRateHz = 48000;
constexpr size_t kNumBands = NumBandsForRate(kSampleRateHz);
for (size_t num_render_channels : {1, 2, 4, 8}) {
for (size_t num_capture_channels : {1, 2, 4}) {
std::array<float, kFftLengthBy2Plus1> X2;
std::vector<std::array<float, kFftLengthBy2Plus1>> E2(
num_capture_channels);
std::vector<std::array<float, kFftLengthBy2Plus1>> Y2(
num_capture_channels);
std::vector<bool> converged_filters(num_capture_channels, true);
EchoCanceller3Config config;
config.erle.onset_detection = true;
std::vector<std::vector<std::vector<float>>> x(
kNumBands,
std::vector<std::vector<float>>(num_render_channels,
std::vector<float>(kBlockSize, 0.f)));
std::vector<std::vector<std::array<float, kFftLengthBy2Plus1>>>
filter_frequency_response(
config.filter.main.length_blocks,
std::vector<std::array<float, kFftLengthBy2Plus1>>(
num_capture_channels));
std::unique_ptr<RenderDelayBuffer> render_delay_buffer(
RenderDelayBuffer::Create(config, kSampleRateHz,
num_render_channels));
GetFilterFreq(config.delay.delay_headroom_samples,
filter_frequency_response);
ErleEstimator estimator(/*startup_phase_length_blocks=*/0, config,
num_capture_channels);
FormFarendTimeFrame(&x);
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
for (size_t burst = 0; burst < 20; ++burst) {
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(),
kTrueErleOnsets, &X2, E2, Y2);
for (size_t k = 0; k < 10; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
FormFarendFrame(*render_delay_buffer->GetRenderBuffer(), kTrueErle, &X2,
E2, Y2);
for (size_t k = 0; k < 200; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
FormNearendFrame(&x, &X2, E2, Y2);
for (size_t k = 0; k < 300; ++k) {
render_delay_buffer->Insert(x);
render_delay_buffer->PrepareCaptureProcessing();
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
}
VerifyErleBands(estimator.ErleOnsets(), config.erle.min, config.erle.min);
FormNearendFrame(&x, &X2, E2, Y2);
for (size_t k = 0; k < 1000; k++) {
estimator.Update(*render_delay_buffer->GetRenderBuffer(),
filter_frequency_response, X2, Y2, E2,
converged_filters);
}
// Verifies that during ne activity, Erle converges to the Erle for
// onsets.
VerifyErle(estimator.Erle(), std::pow(2.f, estimator.FullbandErleLog2()),
config.erle.min, config.erle.min);
}
}
}
} // namespace webrtc