blob: a4f17547bdb3b4a9cff07ba2a4fd11e185229982 [file] [log] [blame]
/*
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "video/send_statistics_proxy.h"
#include <algorithm>
#include <array>
#include <cmath>
#include <limits>
#include <utility>
#include "absl/algorithm/container.h"
#include "api/video/video_codec_constants.h"
#include "api/video/video_codec_type.h"
#include "api/video_codecs/video_codec.h"
#include "modules/video_coding/include/video_codec_interface.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/mod_ops.h"
#include "rtc_base/strings/string_builder.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
const float kEncodeTimeWeigthFactor = 0.5f;
const size_t kMaxEncodedFrameMapSize = 150;
const int64_t kMaxEncodedFrameWindowMs = 800;
const uint32_t kMaxEncodedFrameTimestampDiff = 900000; // 10 sec.
const int64_t kBucketSizeMs = 100;
const size_t kBucketCount = 10;
const char kVp8ForcedFallbackEncoderFieldTrial[] =
"WebRTC-VP8-Forced-Fallback-Encoder-v2";
const char kVp8SwCodecName[] = "libvpx";
// Used by histograms. Values of entries should not be changed.
enum HistogramCodecType {
kVideoUnknown = 0,
kVideoVp8 = 1,
kVideoVp9 = 2,
kVideoH264 = 3,
kVideoMax = 64,
};
const char* kRealtimePrefix = "WebRTC.Video.";
const char* kScreenPrefix = "WebRTC.Video.Screenshare.";
const char* GetUmaPrefix(VideoEncoderConfig::ContentType content_type) {
switch (content_type) {
case VideoEncoderConfig::ContentType::kRealtimeVideo:
return kRealtimePrefix;
case VideoEncoderConfig::ContentType::kScreen:
return kScreenPrefix;
}
RTC_NOTREACHED();
return nullptr;
}
HistogramCodecType PayloadNameToHistogramCodecType(
const std::string& payload_name) {
VideoCodecType codecType = PayloadStringToCodecType(payload_name);
switch (codecType) {
case kVideoCodecVP8:
return kVideoVp8;
case kVideoCodecVP9:
return kVideoVp9;
case kVideoCodecH264:
return kVideoH264;
default:
return kVideoUnknown;
}
}
void UpdateCodecTypeHistogram(const std::string& payload_name) {
RTC_HISTOGRAM_ENUMERATION("WebRTC.Video.Encoder.CodecType",
PayloadNameToHistogramCodecType(payload_name),
kVideoMax);
}
bool IsForcedFallbackPossible(const CodecSpecificInfo* codec_info,
int simulcast_index) {
return codec_info->codecType == kVideoCodecVP8 && simulcast_index == 0 &&
(codec_info->codecSpecific.VP8.temporalIdx == 0 ||
codec_info->codecSpecific.VP8.temporalIdx == kNoTemporalIdx);
}
absl::optional<int> GetFallbackMaxPixels(const std::string& group) {
if (group.empty())
return absl::nullopt;
int min_pixels;
int max_pixels;
int min_bps;
if (sscanf(group.c_str(), "-%d,%d,%d", &min_pixels, &max_pixels, &min_bps) !=
3) {
return absl::optional<int>();
}
if (min_pixels <= 0 || max_pixels <= 0 || max_pixels < min_pixels)
return absl::optional<int>();
return absl::optional<int>(max_pixels);
}
absl::optional<int> GetFallbackMaxPixelsIfFieldTrialEnabled() {
std::string group =
webrtc::field_trial::FindFullName(kVp8ForcedFallbackEncoderFieldTrial);
return (group.find("Enabled") == 0) ? GetFallbackMaxPixels(group.substr(7))
: absl::optional<int>();
}
absl::optional<int> GetFallbackMaxPixelsIfFieldTrialDisabled() {
std::string group =
webrtc::field_trial::FindFullName(kVp8ForcedFallbackEncoderFieldTrial);
return (group.find("Disabled") == 0) ? GetFallbackMaxPixels(group.substr(8))
: absl::optional<int>();
}
} // namespace
const int SendStatisticsProxy::kStatsTimeoutMs = 5000;
SendStatisticsProxy::SendStatisticsProxy(
Clock* clock,
const VideoSendStream::Config& config,
VideoEncoderConfig::ContentType content_type)
: clock_(clock),
payload_name_(config.rtp.payload_name),
rtp_config_(config.rtp),
fallback_max_pixels_(GetFallbackMaxPixelsIfFieldTrialEnabled()),
fallback_max_pixels_disabled_(GetFallbackMaxPixelsIfFieldTrialDisabled()),
content_type_(content_type),
start_ms_(clock->TimeInMilliseconds()),
encode_time_(kEncodeTimeWeigthFactor),
quality_downscales_(-1),
cpu_downscales_(-1),
quality_limitation_reason_tracker_(clock_),
media_byte_rate_tracker_(kBucketSizeMs, kBucketCount),
encoded_frame_rate_tracker_(kBucketSizeMs, kBucketCount),
last_num_spatial_layers_(0),
last_num_simulcast_streams_(0),
last_spatial_layer_use_{},
bw_limited_layers_(false),
uma_container_(
new UmaSamplesContainer(GetUmaPrefix(content_type_), stats_, clock)) {
}
SendStatisticsProxy::~SendStatisticsProxy() {
rtc::CritScope lock(&crit_);
uma_container_->UpdateHistograms(rtp_config_, stats_);
int64_t elapsed_sec = (clock_->TimeInMilliseconds() - start_ms_) / 1000;
RTC_HISTOGRAM_COUNTS_100000("WebRTC.Video.SendStreamLifetimeInSeconds",
elapsed_sec);
if (elapsed_sec >= metrics::kMinRunTimeInSeconds)
UpdateCodecTypeHistogram(payload_name_);
}
SendStatisticsProxy::FallbackEncoderInfo::FallbackEncoderInfo() = default;
SendStatisticsProxy::UmaSamplesContainer::UmaSamplesContainer(
const char* prefix,
const VideoSendStream::Stats& stats,
Clock* const clock)
: uma_prefix_(prefix),
clock_(clock),
input_frame_rate_tracker_(100, 10u),
input_fps_counter_(clock, nullptr, true),
sent_fps_counter_(clock, nullptr, true),
total_byte_counter_(clock, nullptr, true),
media_byte_counter_(clock, nullptr, true),
rtx_byte_counter_(clock, nullptr, true),
padding_byte_counter_(clock, nullptr, true),
retransmit_byte_counter_(clock, nullptr, true),
fec_byte_counter_(clock, nullptr, true),
first_rtcp_stats_time_ms_(-1),
first_rtp_stats_time_ms_(-1),
start_stats_(stats),
num_streams_(0),
num_pixels_highest_stream_(0) {
InitializeBitrateCounters(stats);
static_assert(
kMaxEncodedFrameTimestampDiff < std::numeric_limits<uint32_t>::max() / 2,
"has to be smaller than half range");
}
SendStatisticsProxy::UmaSamplesContainer::~UmaSamplesContainer() {}
void SendStatisticsProxy::UmaSamplesContainer::InitializeBitrateCounters(
const VideoSendStream::Stats& stats) {
for (const auto& it : stats.substreams) {
uint32_t ssrc = it.first;
total_byte_counter_.SetLast(it.second.rtp_stats.transmitted.TotalBytes(),
ssrc);
padding_byte_counter_.SetLast(it.second.rtp_stats.transmitted.padding_bytes,
ssrc);
retransmit_byte_counter_.SetLast(
it.second.rtp_stats.retransmitted.TotalBytes(), ssrc);
fec_byte_counter_.SetLast(it.second.rtp_stats.fec.TotalBytes(), ssrc);
if (it.second.is_rtx) {
rtx_byte_counter_.SetLast(it.second.rtp_stats.transmitted.TotalBytes(),
ssrc);
} else {
media_byte_counter_.SetLast(it.second.rtp_stats.MediaPayloadBytes(),
ssrc);
}
}
}
void SendStatisticsProxy::UmaSamplesContainer::RemoveOld(int64_t now_ms) {
while (!encoded_frames_.empty()) {
auto it = encoded_frames_.begin();
if (now_ms - it->second.send_ms < kMaxEncodedFrameWindowMs)
break;
// Use max per timestamp.
sent_width_counter_.Add(it->second.max_width);
sent_height_counter_.Add(it->second.max_height);
// Check number of encoded streams per timestamp.
if (num_streams_ > static_cast<size_t>(it->second.max_simulcast_idx)) {
if (num_streams_ > 1) {
int disabled_streams =
static_cast<int>(num_streams_ - 1 - it->second.max_simulcast_idx);
// Can be limited in resolution or framerate.
uint32_t pixels = it->second.max_width * it->second.max_height;
bool bw_limited_resolution =
disabled_streams > 0 && pixels < num_pixels_highest_stream_;
bw_limited_frame_counter_.Add(bw_limited_resolution);
if (bw_limited_resolution) {
bw_resolutions_disabled_counter_.Add(disabled_streams);
}
}
}
encoded_frames_.erase(it);
}
}
bool SendStatisticsProxy::UmaSamplesContainer::InsertEncodedFrame(
const EncodedImage& encoded_frame,
int simulcast_idx) {
int64_t now_ms = clock_->TimeInMilliseconds();
RemoveOld(now_ms);
if (encoded_frames_.size() > kMaxEncodedFrameMapSize) {
encoded_frames_.clear();
}
// Check for jump in timestamp.
if (!encoded_frames_.empty()) {
uint32_t oldest_timestamp = encoded_frames_.begin()->first;
if (ForwardDiff(oldest_timestamp, encoded_frame.Timestamp()) >
kMaxEncodedFrameTimestampDiff) {
// Gap detected, clear frames to have a sequence where newest timestamp
// is not too far away from oldest in order to distinguish old and new.
encoded_frames_.clear();
}
}
auto it = encoded_frames_.find(encoded_frame.Timestamp());
if (it == encoded_frames_.end()) {
// First frame with this timestamp.
encoded_frames_.insert(
std::make_pair(encoded_frame.Timestamp(),
Frame(now_ms, encoded_frame._encodedWidth,
encoded_frame._encodedHeight, simulcast_idx)));
sent_fps_counter_.Add(1);
return true;
}
it->second.max_width =
std::max(it->second.max_width, encoded_frame._encodedWidth);
it->second.max_height =
std::max(it->second.max_height, encoded_frame._encodedHeight);
it->second.max_simulcast_idx =
std::max(it->second.max_simulcast_idx, simulcast_idx);
return false;
}
void SendStatisticsProxy::UmaSamplesContainer::UpdateHistograms(
const RtpConfig& rtp_config,
const VideoSendStream::Stats& current_stats) {
RTC_DCHECK(uma_prefix_ == kRealtimePrefix || uma_prefix_ == kScreenPrefix);
const int kIndex = uma_prefix_ == kScreenPrefix ? 1 : 0;
const int kMinRequiredPeriodicSamples = 6;
char log_stream_buf[8 * 1024];
rtc::SimpleStringBuilder log_stream(log_stream_buf);
int in_width = input_width_counter_.Avg(kMinRequiredMetricsSamples);
int in_height = input_height_counter_.Avg(kMinRequiredMetricsSamples);
if (in_width != -1) {
RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "InputWidthInPixels",
in_width);
RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "InputHeightInPixels",
in_height);
log_stream << uma_prefix_ << "InputWidthInPixels " << in_width << "\n"
<< uma_prefix_ << "InputHeightInPixels " << in_height << "\n";
}
AggregatedStats in_fps = input_fps_counter_.GetStats();
if (in_fps.num_samples >= kMinRequiredPeriodicSamples) {
RTC_HISTOGRAMS_COUNTS_100(kIndex, uma_prefix_ + "InputFramesPerSecond",
in_fps.average);
log_stream << uma_prefix_ << "InputFramesPerSecond " << in_fps.ToString()
<< "\n";
}
int sent_width = sent_width_counter_.Avg(kMinRequiredMetricsSamples);
int sent_height = sent_height_counter_.Avg(kMinRequiredMetricsSamples);
if (sent_width != -1) {
RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "SentWidthInPixels",
sent_width);
RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "SentHeightInPixels",
sent_height);
log_stream << uma_prefix_ << "SentWidthInPixels " << sent_width << "\n"
<< uma_prefix_ << "SentHeightInPixels " << sent_height << "\n";
}
AggregatedStats sent_fps = sent_fps_counter_.GetStats();
if (sent_fps.num_samples >= kMinRequiredPeriodicSamples) {
RTC_HISTOGRAMS_COUNTS_100(kIndex, uma_prefix_ + "SentFramesPerSecond",
sent_fps.average);
log_stream << uma_prefix_ << "SentFramesPerSecond " << sent_fps.ToString()
<< "\n";
}
if (in_fps.num_samples > kMinRequiredPeriodicSamples &&
sent_fps.num_samples >= kMinRequiredPeriodicSamples) {
int in_fps_avg = in_fps.average;
if (in_fps_avg > 0) {
int sent_fps_avg = sent_fps.average;
int sent_to_in_fps_ratio_percent =
(100 * sent_fps_avg + in_fps_avg / 2) / in_fps_avg;
// If reported period is small, it may happen that sent_fps is larger than
// input_fps briefly on average. This should be treated as 100% sent to
// input ratio.
if (sent_to_in_fps_ratio_percent > 100)
sent_to_in_fps_ratio_percent = 100;
RTC_HISTOGRAMS_PERCENTAGE(kIndex,
uma_prefix_ + "SentToInputFpsRatioPercent",
sent_to_in_fps_ratio_percent);
log_stream << uma_prefix_ << "SentToInputFpsRatioPercent "
<< sent_to_in_fps_ratio_percent << "\n";
}
}
int encode_ms = encode_time_counter_.Avg(kMinRequiredMetricsSamples);
if (encode_ms != -1) {
RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "EncodeTimeInMs",
encode_ms);
log_stream << uma_prefix_ << "EncodeTimeInMs " << encode_ms << "\n";
}
int key_frames_permille =
key_frame_counter_.Permille(kMinRequiredMetricsSamples);
if (key_frames_permille != -1) {
RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "KeyFramesSentInPermille",
key_frames_permille);
log_stream << uma_prefix_ << "KeyFramesSentInPermille "
<< key_frames_permille << "\n";
}
int quality_limited =
quality_limited_frame_counter_.Percent(kMinRequiredMetricsSamples);
if (quality_limited != -1) {
RTC_HISTOGRAMS_PERCENTAGE(kIndex,
uma_prefix_ + "QualityLimitedResolutionInPercent",
quality_limited);
log_stream << uma_prefix_ << "QualityLimitedResolutionInPercent "
<< quality_limited << "\n";
}
int downscales = quality_downscales_counter_.Avg(kMinRequiredMetricsSamples);
if (downscales != -1) {
RTC_HISTOGRAMS_ENUMERATION(
kIndex, uma_prefix_ + "QualityLimitedResolutionDownscales", downscales,
20);
}
int cpu_limited =
cpu_limited_frame_counter_.Percent(kMinRequiredMetricsSamples);
if (cpu_limited != -1) {
RTC_HISTOGRAMS_PERCENTAGE(
kIndex, uma_prefix_ + "CpuLimitedResolutionInPercent", cpu_limited);
}
int bw_limited =
bw_limited_frame_counter_.Percent(kMinRequiredMetricsSamples);
if (bw_limited != -1) {
RTC_HISTOGRAMS_PERCENTAGE(
kIndex, uma_prefix_ + "BandwidthLimitedResolutionInPercent",
bw_limited);
}
int num_disabled =
bw_resolutions_disabled_counter_.Avg(kMinRequiredMetricsSamples);
if (num_disabled != -1) {
RTC_HISTOGRAMS_ENUMERATION(
kIndex, uma_prefix_ + "BandwidthLimitedResolutionsDisabled",
num_disabled, 10);
}
int delay_ms = delay_counter_.Avg(kMinRequiredMetricsSamples);
if (delay_ms != -1)
RTC_HISTOGRAMS_COUNTS_100000(kIndex, uma_prefix_ + "SendSideDelayInMs",
delay_ms);
int max_delay_ms = max_delay_counter_.Avg(kMinRequiredMetricsSamples);
if (max_delay_ms != -1) {
RTC_HISTOGRAMS_COUNTS_100000(kIndex, uma_prefix_ + "SendSideDelayMaxInMs",
max_delay_ms);
}
for (const auto& it : qp_counters_) {
int qp_vp8 = it.second.vp8.Avg(kMinRequiredMetricsSamples);
if (qp_vp8 != -1) {
int spatial_idx = it.first;
if (spatial_idx == -1) {
RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.Vp8",
qp_vp8);
} else if (spatial_idx == 0) {
RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.Vp8.S0",
qp_vp8);
} else if (spatial_idx == 1) {
RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.Vp8.S1",
qp_vp8);
} else if (spatial_idx == 2) {
RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.Vp8.S2",
qp_vp8);
} else {
RTC_LOG(LS_WARNING)
<< "QP stats not recorded for VP8 spatial idx " << spatial_idx;
}
}
int qp_vp9 = it.second.vp9.Avg(kMinRequiredMetricsSamples);
if (qp_vp9 != -1) {
int spatial_idx = it.first;
if (spatial_idx == -1) {
RTC_HISTOGRAMS_COUNTS_500(kIndex, uma_prefix_ + "Encoded.Qp.Vp9",
qp_vp9);
} else if (spatial_idx == 0) {
RTC_HISTOGRAMS_COUNTS_500(kIndex, uma_prefix_ + "Encoded.Qp.Vp9.S0",
qp_vp9);
} else if (spatial_idx == 1) {
RTC_HISTOGRAMS_COUNTS_500(kIndex, uma_prefix_ + "Encoded.Qp.Vp9.S1",
qp_vp9);
} else if (spatial_idx == 2) {
RTC_HISTOGRAMS_COUNTS_500(kIndex, uma_prefix_ + "Encoded.Qp.Vp9.S2",
qp_vp9);
} else {
RTC_LOG(LS_WARNING)
<< "QP stats not recorded for VP9 spatial layer " << spatial_idx;
}
}
int qp_h264 = it.second.h264.Avg(kMinRequiredMetricsSamples);
if (qp_h264 != -1) {
int spatial_idx = it.first;
if (spatial_idx == -1) {
RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.H264",
qp_h264);
} else if (spatial_idx == 0) {
RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.H264.S0",
qp_h264);
} else if (spatial_idx == 1) {
RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.H264.S1",
qp_h264);
} else if (spatial_idx == 2) {
RTC_HISTOGRAMS_COUNTS_200(kIndex, uma_prefix_ + "Encoded.Qp.H264.S2",
qp_h264);
} else {
RTC_LOG(LS_WARNING)
<< "QP stats not recorded for H264 spatial idx " << spatial_idx;
}
}
}
if (first_rtp_stats_time_ms_ != -1) {
quality_adapt_timer_.Stop(clock_->TimeInMilliseconds());
int64_t elapsed_sec = quality_adapt_timer_.total_ms / 1000;
if (elapsed_sec >= metrics::kMinRunTimeInSeconds) {
int quality_changes = current_stats.number_of_quality_adapt_changes -
start_stats_.number_of_quality_adapt_changes;
// Only base stats on changes during a call, discard initial changes.
int initial_changes =
initial_quality_changes_.down + initial_quality_changes_.up;
if (initial_changes <= quality_changes)
quality_changes -= initial_changes;
RTC_HISTOGRAMS_COUNTS_100(kIndex,
uma_prefix_ + "AdaptChangesPerMinute.Quality",
quality_changes * 60 / elapsed_sec);
}
cpu_adapt_timer_.Stop(clock_->TimeInMilliseconds());
elapsed_sec = cpu_adapt_timer_.total_ms / 1000;
if (elapsed_sec >= metrics::kMinRunTimeInSeconds) {
int cpu_changes = current_stats.number_of_cpu_adapt_changes -
start_stats_.number_of_cpu_adapt_changes;
RTC_HISTOGRAMS_COUNTS_100(kIndex,
uma_prefix_ + "AdaptChangesPerMinute.Cpu",
cpu_changes * 60 / elapsed_sec);
}
}
if (first_rtcp_stats_time_ms_ != -1) {
int64_t elapsed_sec =
(clock_->TimeInMilliseconds() - first_rtcp_stats_time_ms_) / 1000;
if (elapsed_sec >= metrics::kMinRunTimeInSeconds) {
int fraction_lost = report_block_stats_.FractionLostInPercent();
if (fraction_lost != -1) {
RTC_HISTOGRAMS_PERCENTAGE(
kIndex, uma_prefix_ + "SentPacketsLostInPercent", fraction_lost);
log_stream << uma_prefix_ << "SentPacketsLostInPercent "
<< fraction_lost << "\n";
}
// The RTCP packet type counters, delivered via the
// RtcpPacketTypeCounterObserver interface, are aggregates over the entire
// life of the send stream and are not reset when switching content type.
// For the purpose of these statistics though, we want new counts when
// switching since we switch histogram name. On every reset of the
// UmaSamplesContainer, we save the initial state of the counters, so that
// we can calculate the delta here and aggregate over all ssrcs.
RtcpPacketTypeCounter counters;
for (uint32_t ssrc : rtp_config.ssrcs) {
auto kv = current_stats.substreams.find(ssrc);
if (kv == current_stats.substreams.end())
continue;
RtcpPacketTypeCounter stream_counters =
kv->second.rtcp_packet_type_counts;
kv = start_stats_.substreams.find(ssrc);
if (kv != start_stats_.substreams.end())
stream_counters.Subtract(kv->second.rtcp_packet_type_counts);
counters.Add(stream_counters);
}
RTC_HISTOGRAMS_COUNTS_10000(kIndex,
uma_prefix_ + "NackPacketsReceivedPerMinute",
counters.nack_packets * 60 / elapsed_sec);
RTC_HISTOGRAMS_COUNTS_10000(kIndex,
uma_prefix_ + "FirPacketsReceivedPerMinute",
counters.fir_packets * 60 / elapsed_sec);
RTC_HISTOGRAMS_COUNTS_10000(kIndex,
uma_prefix_ + "PliPacketsReceivedPerMinute",
counters.pli_packets * 60 / elapsed_sec);
if (counters.nack_requests > 0) {
RTC_HISTOGRAMS_PERCENTAGE(
kIndex, uma_prefix_ + "UniqueNackRequestsReceivedInPercent",
counters.UniqueNackRequestsInPercent());
}
}
}
if (first_rtp_stats_time_ms_ != -1) {
int64_t elapsed_sec =
(clock_->TimeInMilliseconds() - first_rtp_stats_time_ms_) / 1000;
if (elapsed_sec >= metrics::kMinRunTimeInSeconds) {
RTC_HISTOGRAMS_COUNTS_100(kIndex, uma_prefix_ + "NumberOfPauseEvents",
target_rate_updates_.pause_resume_events);
log_stream << uma_prefix_ << "NumberOfPauseEvents "
<< target_rate_updates_.pause_resume_events << "\n";
int paused_time_percent =
paused_time_counter_.Percent(metrics::kMinRunTimeInSeconds * 1000);
if (paused_time_percent != -1) {
RTC_HISTOGRAMS_PERCENTAGE(kIndex, uma_prefix_ + "PausedTimeInPercent",
paused_time_percent);
log_stream << uma_prefix_ << "PausedTimeInPercent "
<< paused_time_percent << "\n";
}
}
}
if (fallback_info_.is_possible) {
// Double interval since there is some time before fallback may occur.
const int kMinRunTimeMs = 2 * metrics::kMinRunTimeInSeconds * 1000;
int64_t elapsed_ms = fallback_info_.elapsed_ms;
int fallback_time_percent = fallback_active_counter_.Percent(kMinRunTimeMs);
if (fallback_time_percent != -1 && elapsed_ms >= kMinRunTimeMs) {
RTC_HISTOGRAMS_PERCENTAGE(
kIndex, uma_prefix_ + "Encoder.ForcedSwFallbackTimeInPercent.Vp8",
fallback_time_percent);
RTC_HISTOGRAMS_COUNTS_100(
kIndex, uma_prefix_ + "Encoder.ForcedSwFallbackChangesPerMinute.Vp8",
fallback_info_.on_off_events * 60 / (elapsed_ms / 1000));
}
}
AggregatedStats total_bytes_per_sec = total_byte_counter_.GetStats();
if (total_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) {
RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "BitrateSentInKbps",
total_bytes_per_sec.average * 8 / 1000);
log_stream << uma_prefix_ << "BitrateSentInBps "
<< total_bytes_per_sec.ToStringWithMultiplier(8) << "\n";
}
AggregatedStats media_bytes_per_sec = media_byte_counter_.GetStats();
if (media_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) {
RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "MediaBitrateSentInKbps",
media_bytes_per_sec.average * 8 / 1000);
log_stream << uma_prefix_ << "MediaBitrateSentInBps "
<< media_bytes_per_sec.ToStringWithMultiplier(8) << "\n";
}
AggregatedStats padding_bytes_per_sec = padding_byte_counter_.GetStats();
if (padding_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) {
RTC_HISTOGRAMS_COUNTS_10000(kIndex,
uma_prefix_ + "PaddingBitrateSentInKbps",
padding_bytes_per_sec.average * 8 / 1000);
log_stream << uma_prefix_ << "PaddingBitrateSentInBps "
<< padding_bytes_per_sec.ToStringWithMultiplier(8) << "\n";
}
AggregatedStats retransmit_bytes_per_sec =
retransmit_byte_counter_.GetStats();
if (retransmit_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) {
RTC_HISTOGRAMS_COUNTS_10000(kIndex,
uma_prefix_ + "RetransmittedBitrateSentInKbps",
retransmit_bytes_per_sec.average * 8 / 1000);
log_stream << uma_prefix_ << "RetransmittedBitrateSentInBps "
<< retransmit_bytes_per_sec.ToStringWithMultiplier(8) << "\n";
}
if (!rtp_config.rtx.ssrcs.empty()) {
AggregatedStats rtx_bytes_per_sec = rtx_byte_counter_.GetStats();
int rtx_bytes_per_sec_avg = -1;
if (rtx_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) {
rtx_bytes_per_sec_avg = rtx_bytes_per_sec.average;
log_stream << uma_prefix_ << "RtxBitrateSentInBps "
<< rtx_bytes_per_sec.ToStringWithMultiplier(8) << "\n";
} else if (total_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) {
rtx_bytes_per_sec_avg = 0; // RTX enabled but no RTX data sent, record 0.
}
if (rtx_bytes_per_sec_avg != -1) {
RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "RtxBitrateSentInKbps",
rtx_bytes_per_sec_avg * 8 / 1000);
}
}
if (rtp_config.flexfec.payload_type != -1 ||
rtp_config.ulpfec.red_payload_type != -1) {
AggregatedStats fec_bytes_per_sec = fec_byte_counter_.GetStats();
if (fec_bytes_per_sec.num_samples > kMinRequiredPeriodicSamples) {
RTC_HISTOGRAMS_COUNTS_10000(kIndex, uma_prefix_ + "FecBitrateSentInKbps",
fec_bytes_per_sec.average * 8 / 1000);
log_stream << uma_prefix_ << "FecBitrateSentInBps "
<< fec_bytes_per_sec.ToStringWithMultiplier(8) << "\n";
}
}
log_stream << "Frames encoded " << current_stats.frames_encoded << "\n"
<< uma_prefix_ << "DroppedFrames.Capturer "
<< current_stats.frames_dropped_by_capturer << "\n";
RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "DroppedFrames.Capturer",
current_stats.frames_dropped_by_capturer);
log_stream << uma_prefix_ << "DroppedFrames.EncoderQueue "
<< current_stats.frames_dropped_by_encoder_queue << "\n";
RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "DroppedFrames.EncoderQueue",
current_stats.frames_dropped_by_encoder_queue);
log_stream << uma_prefix_ << "DroppedFrames.Encoder "
<< current_stats.frames_dropped_by_encoder << "\n";
RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "DroppedFrames.Encoder",
current_stats.frames_dropped_by_encoder);
log_stream << uma_prefix_ << "DroppedFrames.Ratelimiter "
<< current_stats.frames_dropped_by_rate_limiter;
RTC_HISTOGRAMS_COUNTS_1000(kIndex, uma_prefix_ + "DroppedFrames.Ratelimiter",
current_stats.frames_dropped_by_rate_limiter);
RTC_LOG(LS_INFO) << log_stream.str();
}
void SendStatisticsProxy::OnEncoderReconfigured(
const VideoEncoderConfig& config,
const std::vector<VideoStream>& streams) {
rtc::CritScope lock(&crit_);
if (content_type_ != config.content_type) {
uma_container_->UpdateHistograms(rtp_config_, stats_);
uma_container_.reset(new UmaSamplesContainer(
GetUmaPrefix(config.content_type), stats_, clock_));
content_type_ = config.content_type;
}
uma_container_->encoded_frames_.clear();
uma_container_->num_streams_ = streams.size();
uma_container_->num_pixels_highest_stream_ =
streams.empty() ? 0 : (streams.back().width * streams.back().height);
}
void SendStatisticsProxy::OnEncodedFrameTimeMeasured(int encode_time_ms,
int encode_usage_percent) {
RTC_DCHECK_GE(encode_time_ms, 0);
rtc::CritScope lock(&crit_);
uma_container_->encode_time_counter_.Add(encode_time_ms);
encode_time_.Apply(1.0f, encode_time_ms);
stats_.avg_encode_time_ms = std::round(encode_time_.filtered());
stats_.total_encode_time_ms += encode_time_ms;
stats_.encode_usage_percent = encode_usage_percent;
}
void SendStatisticsProxy::OnSuspendChange(bool is_suspended) {
int64_t now_ms = clock_->TimeInMilliseconds();
rtc::CritScope lock(&crit_);
stats_.suspended = is_suspended;
if (is_suspended) {
// Pause framerate (add min pause time since there may be frames/packets
// that are not yet sent).
const int64_t kMinMs = 500;
uma_container_->input_fps_counter_.ProcessAndPauseForDuration(kMinMs);
uma_container_->sent_fps_counter_.ProcessAndPauseForDuration(kMinMs);
// Pause bitrate stats.
uma_container_->total_byte_counter_.ProcessAndPauseForDuration(kMinMs);
uma_container_->media_byte_counter_.ProcessAndPauseForDuration(kMinMs);
uma_container_->rtx_byte_counter_.ProcessAndPauseForDuration(kMinMs);
uma_container_->padding_byte_counter_.ProcessAndPauseForDuration(kMinMs);
uma_container_->retransmit_byte_counter_.ProcessAndPauseForDuration(kMinMs);
uma_container_->fec_byte_counter_.ProcessAndPauseForDuration(kMinMs);
// Stop adaptation stats.
uma_container_->cpu_adapt_timer_.Stop(now_ms);
uma_container_->quality_adapt_timer_.Stop(now_ms);
} else {
// Start adaptation stats if scaling is enabled.
if (cpu_downscales_ >= 0)
uma_container_->cpu_adapt_timer_.Start(now_ms);
if (quality_downscales_ >= 0)
uma_container_->quality_adapt_timer_.Start(now_ms);
// Stop pause explicitly for stats that may be zero/not updated for some
// time.
uma_container_->rtx_byte_counter_.ProcessAndStopPause();
uma_container_->padding_byte_counter_.ProcessAndStopPause();
uma_container_->retransmit_byte_counter_.ProcessAndStopPause();
uma_container_->fec_byte_counter_.ProcessAndStopPause();
}
}
VideoSendStream::Stats SendStatisticsProxy::GetStats() {
rtc::CritScope lock(&crit_);
PurgeOldStats();
stats_.input_frame_rate =
round(uma_container_->input_frame_rate_tracker_.ComputeRate());
stats_.content_type =
content_type_ == VideoEncoderConfig::ContentType::kRealtimeVideo
? VideoContentType::UNSPECIFIED
: VideoContentType::SCREENSHARE;
stats_.encode_frame_rate = round(encoded_frame_rate_tracker_.ComputeRate());
stats_.media_bitrate_bps = media_byte_rate_tracker_.ComputeRate() * 8;
stats_.quality_limitation_durations_ms =
quality_limitation_reason_tracker_.DurationsMs();
return stats_;
}
void SendStatisticsProxy::PurgeOldStats() {
int64_t old_stats_ms = clock_->TimeInMilliseconds() - kStatsTimeoutMs;
for (std::map<uint32_t, VideoSendStream::StreamStats>::iterator it =
stats_.substreams.begin();
it != stats_.substreams.end(); ++it) {
uint32_t ssrc = it->first;
if (update_times_[ssrc].resolution_update_ms <= old_stats_ms) {
it->second.width = 0;
it->second.height = 0;
}
}
}
VideoSendStream::StreamStats* SendStatisticsProxy::GetStatsEntry(
uint32_t ssrc) {
std::map<uint32_t, VideoSendStream::StreamStats>::iterator it =
stats_.substreams.find(ssrc);
if (it != stats_.substreams.end())
return &it->second;
bool is_media = absl::c_linear_search(rtp_config_.ssrcs, ssrc);
bool is_flexfec = rtp_config_.flexfec.payload_type != -1 &&
ssrc == rtp_config_.flexfec.ssrc;
bool is_rtx = absl::c_linear_search(rtp_config_.rtx.ssrcs, ssrc);
if (!is_media && !is_flexfec && !is_rtx)
return nullptr;
// Insert new entry and return ptr.
VideoSendStream::StreamStats* entry = &stats_.substreams[ssrc];
entry->is_rtx = is_rtx;
entry->is_flexfec = is_flexfec;
return entry;
}
void SendStatisticsProxy::OnInactiveSsrc(uint32_t ssrc) {
rtc::CritScope lock(&crit_);
VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc);
if (!stats)
return;
stats->total_bitrate_bps = 0;
stats->retransmit_bitrate_bps = 0;
stats->height = 0;
stats->width = 0;
}
void SendStatisticsProxy::OnSetEncoderTargetRate(uint32_t bitrate_bps) {
rtc::CritScope lock(&crit_);
if (uma_container_->target_rate_updates_.last_ms == -1 && bitrate_bps == 0)
return; // Start on first non-zero bitrate, may initially be zero.
int64_t now = clock_->TimeInMilliseconds();
if (uma_container_->target_rate_updates_.last_ms != -1) {
bool was_paused = stats_.target_media_bitrate_bps == 0;
int64_t diff_ms = now - uma_container_->target_rate_updates_.last_ms;
uma_container_->paused_time_counter_.Add(was_paused, diff_ms);
// Use last to not include update when stream is stopped and video disabled.
if (uma_container_->target_rate_updates_.last_paused_or_resumed)
++uma_container_->target_rate_updates_.pause_resume_events;
// Check if video is paused/resumed.
uma_container_->target_rate_updates_.last_paused_or_resumed =
(bitrate_bps == 0) != was_paused;
}
uma_container_->target_rate_updates_.last_ms = now;
stats_.target_media_bitrate_bps = bitrate_bps;
}
void SendStatisticsProxy::UpdateEncoderFallbackStats(
const CodecSpecificInfo* codec_info,
int pixels,
int simulcast_index) {
UpdateFallbackDisabledStats(codec_info, pixels, simulcast_index);
if (!fallback_max_pixels_ || !uma_container_->fallback_info_.is_possible) {
return;
}
if (!IsForcedFallbackPossible(codec_info, simulcast_index)) {
uma_container_->fallback_info_.is_possible = false;
return;
}
FallbackEncoderInfo* fallback_info = &uma_container_->fallback_info_;
const int64_t now_ms = clock_->TimeInMilliseconds();
bool is_active = fallback_info->is_active;
if (encoder_changed_) {
// Implementation changed.
const bool last_was_vp8_software =
encoder_changed_->previous_encoder_implementation == kVp8SwCodecName;
is_active = encoder_changed_->new_encoder_implementation == kVp8SwCodecName;
encoder_changed_.reset();
if (!is_active && !last_was_vp8_software) {
// First or not a VP8 SW change, update stats on next call.
return;
}
if (is_active && (pixels > *fallback_max_pixels_)) {
// Pixels should not be above |fallback_max_pixels_|. If above skip to
// avoid fallbacks due to failure.
fallback_info->is_possible = false;
return;
}
stats_.has_entered_low_resolution = true;
++fallback_info->on_off_events;
}
if (fallback_info->last_update_ms) {
int64_t diff_ms = now_ms - *(fallback_info->last_update_ms);
// If the time diff since last update is greater than |max_frame_diff_ms|,
// video is considered paused/muted and the change is not included.
if (diff_ms < fallback_info->max_frame_diff_ms) {
uma_container_->fallback_active_counter_.Add(fallback_info->is_active,
diff_ms);
fallback_info->elapsed_ms += diff_ms;
}
}
fallback_info->is_active = is_active;
fallback_info->last_update_ms.emplace(now_ms);
}
void SendStatisticsProxy::UpdateFallbackDisabledStats(
const CodecSpecificInfo* codec_info,
int pixels,
int simulcast_index) {
if (!fallback_max_pixels_disabled_ ||
!uma_container_->fallback_info_disabled_.is_possible ||
stats_.has_entered_low_resolution) {
return;
}
if (!IsForcedFallbackPossible(codec_info, simulcast_index) ||
stats_.encoder_implementation_name == kVp8SwCodecName) {
uma_container_->fallback_info_disabled_.is_possible = false;
return;
}
if (pixels <= *fallback_max_pixels_disabled_ ||
uma_container_->fallback_info_disabled_.min_pixel_limit_reached) {
stats_.has_entered_low_resolution = true;
}
}
void SendStatisticsProxy::OnMinPixelLimitReached() {
rtc::CritScope lock(&crit_);
uma_container_->fallback_info_disabled_.min_pixel_limit_reached = true;
}
void SendStatisticsProxy::OnSendEncodedImage(
const EncodedImage& encoded_image,
const CodecSpecificInfo* codec_info) {
// Simulcast is used for VP8, H264 and Generic.
int simulcast_idx =
(codec_info && (codec_info->codecType == kVideoCodecVP8 ||
codec_info->codecType == kVideoCodecH264 ||
codec_info->codecType == kVideoCodecGeneric))
? encoded_image.SpatialIndex().value_or(0)
: 0;
rtc::CritScope lock(&crit_);
++stats_.frames_encoded;
// The current encode frame rate is based on previously encoded frames.
double encode_frame_rate = encoded_frame_rate_tracker_.ComputeRate();
// We assume that less than 1 FPS is not a trustworthy estimate - perhaps we
// just started encoding for the first time or after a pause. Assuming frame
// rate is at least 1 FPS is conservative to avoid too large increments.
if (encode_frame_rate < 1.0)
encode_frame_rate = 1.0;
double target_frame_size_bytes =
stats_.target_media_bitrate_bps / (8.0 * encode_frame_rate);
// |stats_.target_media_bitrate_bps| is set in
// SendStatisticsProxy::OnSetEncoderTargetRate.
stats_.total_encoded_bytes_target += round(target_frame_size_bytes);
if (codec_info) {
UpdateEncoderFallbackStats(
codec_info, encoded_image._encodedWidth * encoded_image._encodedHeight,
simulcast_idx);
}
if (static_cast<size_t>(simulcast_idx) >= rtp_config_.ssrcs.size()) {
RTC_LOG(LS_ERROR) << "Encoded image outside simulcast range ("
<< simulcast_idx << " >= " << rtp_config_.ssrcs.size()
<< ").";
return;
}
uint32_t ssrc = rtp_config_.ssrcs[simulcast_idx];
VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc);
if (!stats)
return;
// Report resolution of top spatial layer in case of VP9 SVC.
bool is_svc_low_spatial_layer =
(codec_info && codec_info->codecType == kVideoCodecVP9)
? !codec_info->codecSpecific.VP9.end_of_picture
: false;
if (!stats->width || !stats->height || !is_svc_low_spatial_layer) {
stats->width = encoded_image._encodedWidth;
stats->height = encoded_image._encodedHeight;
update_times_[ssrc].resolution_update_ms = clock_->TimeInMilliseconds();
}
uma_container_->key_frame_counter_.Add(encoded_image._frameType ==
VideoFrameType::kVideoFrameKey);
if (encoded_image.qp_ != -1) {
if (!stats_.qp_sum)
stats_.qp_sum = 0;
*stats_.qp_sum += encoded_image.qp_;
if (codec_info) {
if (codec_info->codecType == kVideoCodecVP8) {
int spatial_idx = (rtp_config_.ssrcs.size() == 1) ? -1 : simulcast_idx;
uma_container_->qp_counters_[spatial_idx].vp8.Add(encoded_image.qp_);
} else if (codec_info->codecType == kVideoCodecVP9) {
int spatial_idx = encoded_image.SpatialIndex().value_or(-1);
uma_container_->qp_counters_[spatial_idx].vp9.Add(encoded_image.qp_);
} else if (codec_info->codecType == kVideoCodecH264) {
int spatial_idx = (rtp_config_.ssrcs.size() == 1) ? -1 : simulcast_idx;
uma_container_->qp_counters_[spatial_idx].h264.Add(encoded_image.qp_);
}
}
}
// If any of the simulcast streams have a huge frame, it should be counted
// as a single difficult input frame.
// https://w3c.github.io/webrtc-stats/#dom-rtcvideosenderstats-hugeframessent
if (encoded_image.timing_.flags & VideoSendTiming::kTriggeredBySize) {
if (!last_outlier_timestamp_ ||
*last_outlier_timestamp_ < encoded_image.capture_time_ms_) {
last_outlier_timestamp_.emplace(encoded_image.capture_time_ms_);
++stats_.huge_frames_sent;
}
}
media_byte_rate_tracker_.AddSamples(encoded_image.size());
if (uma_container_->InsertEncodedFrame(encoded_image, simulcast_idx)) {
encoded_frame_rate_tracker_.AddSamples(1);
}
stats_.bw_limited_resolution |= quality_downscales_ > 0;
if (quality_downscales_ != -1) {
uma_container_->quality_limited_frame_counter_.Add(quality_downscales_ > 0);
if (quality_downscales_ > 0)
uma_container_->quality_downscales_counter_.Add(quality_downscales_);
}
}
void SendStatisticsProxy::OnEncoderImplementationChanged(
const std::string& implementation_name) {
rtc::CritScope lock(&crit_);
encoder_changed_ = EncoderChangeEvent{stats_.encoder_implementation_name,
implementation_name};
stats_.encoder_implementation_name = implementation_name;
}
int SendStatisticsProxy::GetInputFrameRate() const {
rtc::CritScope lock(&crit_);
return round(uma_container_->input_frame_rate_tracker_.ComputeRate());
}
int SendStatisticsProxy::GetSendFrameRate() const {
rtc::CritScope lock(&crit_);
return round(encoded_frame_rate_tracker_.ComputeRate());
}
void SendStatisticsProxy::OnIncomingFrame(int width, int height) {
rtc::CritScope lock(&crit_);
uma_container_->input_frame_rate_tracker_.AddSamples(1);
uma_container_->input_fps_counter_.Add(1);
uma_container_->input_width_counter_.Add(width);
uma_container_->input_height_counter_.Add(height);
if (cpu_downscales_ >= 0) {
uma_container_->cpu_limited_frame_counter_.Add(
stats_.cpu_limited_resolution);
}
if (encoded_frame_rate_tracker_.TotalSampleCount() == 0) {
// Set start time now instead of when first key frame is encoded to avoid a
// too high initial estimate.
encoded_frame_rate_tracker_.AddSamples(0);
}
}
void SendStatisticsProxy::OnFrameDropped(DropReason reason) {
rtc::CritScope lock(&crit_);
switch (reason) {
case DropReason::kSource:
++stats_.frames_dropped_by_capturer;
break;
case DropReason::kEncoderQueue:
++stats_.frames_dropped_by_encoder_queue;
break;
case DropReason::kEncoder:
++stats_.frames_dropped_by_encoder;
break;
case DropReason::kMediaOptimization:
++stats_.frames_dropped_by_rate_limiter;
break;
}
}
void SendStatisticsProxy::OnAdaptationChanged(
AdaptationReason reason,
const AdaptationSteps& cpu_counts,
const AdaptationSteps& quality_counts) {
rtc::CritScope lock(&crit_);
switch (reason) {
case AdaptationReason::kNone:
SetAdaptTimer(cpu_counts, &uma_container_->cpu_adapt_timer_);
SetAdaptTimer(quality_counts, &uma_container_->quality_adapt_timer_);
break;
case AdaptationReason::kCpu:
++stats_.number_of_cpu_adapt_changes;
break;
case AdaptationReason::kQuality:
TryUpdateInitialQualityResolutionAdaptUp(quality_counts);
++stats_.number_of_quality_adapt_changes;
break;
}
cpu_downscales_ = cpu_counts.num_resolution_reductions.value_or(-1);
quality_downscales_ = quality_counts.num_resolution_reductions.value_or(-1);
cpu_counts_ = cpu_counts;
quality_counts_ = quality_counts;
UpdateAdaptationStats();
}
void SendStatisticsProxy::UpdateAdaptationStats() {
bool is_cpu_limited = cpu_counts_.num_resolution_reductions > 0 ||
cpu_counts_.num_framerate_reductions > 0;
bool is_bandwidth_limited = quality_counts_.num_resolution_reductions > 0 ||
quality_counts_.num_framerate_reductions > 0 ||
bw_limited_layers_;
if (is_bandwidth_limited) {
// We may be both CPU limited and bandwidth limited at the same time but
// there is no way to express this in standardized stats. Heuristically,
// bandwidth is more likely to be a limiting factor than CPU, and more
// likely to vary over time, so only when we aren't bandwidth limited do we
// want to know about our CPU being the bottleneck.
quality_limitation_reason_tracker_.SetReason(
QualityLimitationReason::kBandwidth);
} else if (is_cpu_limited) {
quality_limitation_reason_tracker_.SetReason(QualityLimitationReason::kCpu);
} else {
quality_limitation_reason_tracker_.SetReason(
QualityLimitationReason::kNone);
}
stats_.cpu_limited_resolution = cpu_counts_.num_resolution_reductions > 0;
stats_.cpu_limited_framerate = cpu_counts_.num_framerate_reductions > 0;
stats_.bw_limited_resolution = quality_counts_.num_resolution_reductions > 0;
stats_.bw_limited_framerate = quality_counts_.num_framerate_reductions > 0;
// If bitrate allocator has disabled some layers frame-rate or resolution are
// limited depending on the encoder configuration.
if (bw_limited_layers_) {
switch (content_type_) {
case VideoEncoderConfig::ContentType::kRealtimeVideo: {
stats_.bw_limited_resolution = true;
break;
}
case VideoEncoderConfig::ContentType::kScreen: {
stats_.bw_limited_framerate = true;
break;
}
}
}
stats_.quality_limitation_reason =
quality_limitation_reason_tracker_.current_reason();
// |stats_.quality_limitation_durations_ms| depends on the current time
// when it is polled; it is updated in SendStatisticsProxy::GetStats().
}
void SendStatisticsProxy::OnBitrateAllocationUpdated(
const VideoCodec& codec,
const VideoBitrateAllocation& allocation) {
int num_spatial_layers = 0;
for (int i = 0; i < kMaxSpatialLayers; i++) {
if (codec.spatialLayers[i].active) {
num_spatial_layers++;
}
}
int num_simulcast_streams = 0;
for (int i = 0; i < kMaxSimulcastStreams; i++) {
if (codec.simulcastStream[i].active) {
num_simulcast_streams++;
}
}
std::array<bool, kMaxSpatialLayers> spatial_layers;
for (int i = 0; i < kMaxSpatialLayers; i++) {
spatial_layers[i] = (allocation.GetSpatialLayerSum(i) > 0);
}
rtc::CritScope lock(&crit_);
bw_limited_layers_ = allocation.is_bw_limited();
UpdateAdaptationStats();
if (spatial_layers != last_spatial_layer_use_) {
// If the number of spatial layers has changed, the resolution change is
// not due to quality limitations, it is because the configuration
// changed.
if (last_num_spatial_layers_ == num_spatial_layers &&
last_num_simulcast_streams_ == num_simulcast_streams) {
++stats_.quality_limitation_resolution_changes;
}
last_spatial_layer_use_ = spatial_layers;
}
last_num_spatial_layers_ = num_spatial_layers;
last_num_simulcast_streams_ = num_simulcast_streams;
}
// TODO(asapersson): Include fps changes.
void SendStatisticsProxy::OnInitialQualityResolutionAdaptDown() {
rtc::CritScope lock(&crit_);
++uma_container_->initial_quality_changes_.down;
}
void SendStatisticsProxy::TryUpdateInitialQualityResolutionAdaptUp(
const AdaptationSteps& quality_counts) {
if (uma_container_->initial_quality_changes_.down == 0)
return;
if (quality_downscales_ > 0 &&
quality_counts.num_resolution_reductions.value_or(-1) <
quality_downscales_) {
// Adapting up in quality.
if (uma_container_->initial_quality_changes_.down >
uma_container_->initial_quality_changes_.up) {
++uma_container_->initial_quality_changes_.up;
}
}
}
void SendStatisticsProxy::SetAdaptTimer(const AdaptationSteps& counts,
StatsTimer* timer) {
if (counts.num_resolution_reductions || counts.num_framerate_reductions) {
// Adaptation enabled.
if (!stats_.suspended)
timer->Start(clock_->TimeInMilliseconds());
return;
}
timer->Stop(clock_->TimeInMilliseconds());
}
void SendStatisticsProxy::RtcpPacketTypesCounterUpdated(
uint32_t ssrc,
const RtcpPacketTypeCounter& packet_counter) {
rtc::CritScope lock(&crit_);
VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc);
if (!stats)
return;
stats->rtcp_packet_type_counts = packet_counter;
if (uma_container_->first_rtcp_stats_time_ms_ == -1)
uma_container_->first_rtcp_stats_time_ms_ = clock_->TimeInMilliseconds();
}
void SendStatisticsProxy::StatisticsUpdated(const RtcpStatistics& statistics,
uint32_t ssrc) {
rtc::CritScope lock(&crit_);
VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc);
if (!stats)
return;
stats->rtcp_stats = statistics;
uma_container_->report_block_stats_.Store(ssrc, statistics);
}
void SendStatisticsProxy::OnReportBlockDataUpdated(
ReportBlockData report_block_data) {
rtc::CritScope lock(&crit_);
VideoSendStream::StreamStats* stats =
GetStatsEntry(report_block_data.report_block().source_ssrc);
if (!stats)
return;
stats->report_block_data = std::move(report_block_data);
}
void SendStatisticsProxy::DataCountersUpdated(
const StreamDataCounters& counters,
uint32_t ssrc) {
rtc::CritScope lock(&crit_);
VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc);
RTC_DCHECK(stats) << "DataCountersUpdated reported for unknown ssrc " << ssrc;
if (stats->is_flexfec) {
// The same counters are reported for both the media ssrc and flexfec ssrc.
// Bitrate stats are summed for all SSRCs. Use fec stats from media update.
return;
}
stats->rtp_stats = counters;
if (uma_container_->first_rtp_stats_time_ms_ == -1) {
int64_t now_ms = clock_->TimeInMilliseconds();
uma_container_->first_rtp_stats_time_ms_ = now_ms;
uma_container_->cpu_adapt_timer_.Restart(now_ms);
uma_container_->quality_adapt_timer_.Restart(now_ms);
}
uma_container_->total_byte_counter_.Set(counters.transmitted.TotalBytes(),
ssrc);
uma_container_->padding_byte_counter_.Set(counters.transmitted.padding_bytes,
ssrc);
uma_container_->retransmit_byte_counter_.Set(
counters.retransmitted.TotalBytes(), ssrc);
uma_container_->fec_byte_counter_.Set(counters.fec.TotalBytes(), ssrc);
if (stats->is_rtx) {
uma_container_->rtx_byte_counter_.Set(counters.transmitted.TotalBytes(),
ssrc);
} else {
uma_container_->media_byte_counter_.Set(counters.MediaPayloadBytes(), ssrc);
}
}
void SendStatisticsProxy::Notify(uint32_t total_bitrate_bps,
uint32_t retransmit_bitrate_bps,
uint32_t ssrc) {
rtc::CritScope lock(&crit_);
VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc);
if (!stats)
return;
stats->total_bitrate_bps = total_bitrate_bps;
stats->retransmit_bitrate_bps = retransmit_bitrate_bps;
}
void SendStatisticsProxy::FrameCountUpdated(const FrameCounts& frame_counts,
uint32_t ssrc) {
rtc::CritScope lock(&crit_);
VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc);
if (!stats)
return;
stats->frame_counts = frame_counts;
}
void SendStatisticsProxy::SendSideDelayUpdated(int avg_delay_ms,
int max_delay_ms,
uint64_t total_delay_ms,
uint32_t ssrc) {
rtc::CritScope lock(&crit_);
VideoSendStream::StreamStats* stats = GetStatsEntry(ssrc);
if (!stats)
return;
stats->avg_delay_ms = avg_delay_ms;
stats->max_delay_ms = max_delay_ms;
stats->total_packet_send_delay_ms = total_delay_ms;
uma_container_->delay_counter_.Add(avg_delay_ms);
uma_container_->max_delay_counter_.Add(max_delay_ms);
}
void SendStatisticsProxy::StatsTimer::Start(int64_t now_ms) {
if (start_ms == -1)
start_ms = now_ms;
}
void SendStatisticsProxy::StatsTimer::Stop(int64_t now_ms) {
if (start_ms != -1) {
total_ms += now_ms - start_ms;
start_ms = -1;
}
}
void SendStatisticsProxy::StatsTimer::Restart(int64_t now_ms) {
total_ms = 0;
if (start_ms != -1)
start_ms = now_ms;
}
void SendStatisticsProxy::SampleCounter::Add(int sample) {
sum += sample;
++num_samples;
}
int SendStatisticsProxy::SampleCounter::Avg(
int64_t min_required_samples) const {
if (num_samples < min_required_samples || num_samples == 0)
return -1;
return static_cast<int>((sum + (num_samples / 2)) / num_samples);
}
void SendStatisticsProxy::BoolSampleCounter::Add(bool sample) {
if (sample)
++sum;
++num_samples;
}
void SendStatisticsProxy::BoolSampleCounter::Add(bool sample, int64_t count) {
if (sample)
sum += count;
num_samples += count;
}
int SendStatisticsProxy::BoolSampleCounter::Percent(
int64_t min_required_samples) const {
return Fraction(min_required_samples, 100.0f);
}
int SendStatisticsProxy::BoolSampleCounter::Permille(
int64_t min_required_samples) const {
return Fraction(min_required_samples, 1000.0f);
}
int SendStatisticsProxy::BoolSampleCounter::Fraction(
int64_t min_required_samples,
float multiplier) const {
if (num_samples < min_required_samples || num_samples == 0)
return -1;
return static_cast<int>((sum * multiplier / num_samples) + 0.5f);
}
} // namespace webrtc