| /* |
| * Copyright 2004 The WebRTC Project Authors. All rights reserved. |
| * |
| * Use of this source code is governed by a BSD-style license |
| * that can be found in the LICENSE file in the root of the source |
| * tree. An additional intellectual property rights grant can be found |
| * in the file PATENTS. All contributing project authors may |
| * be found in the AUTHORS file in the root of the source tree. |
| */ |
| |
| #include "p2p/base/port.h" |
| |
| #include <math.h> |
| |
| #include <algorithm> |
| #include <utility> |
| #include <vector> |
| |
| #include "absl/memory/memory.h" |
| #include "p2p/base/portallocator.h" |
| #include "rtc_base/checks.h" |
| #include "rtc_base/crc32.h" |
| #include "rtc_base/helpers.h" |
| #include "rtc_base/logging.h" |
| #include "rtc_base/messagedigest.h" |
| #include "rtc_base/network.h" |
| #include "rtc_base/numerics/safe_minmax.h" |
| #include "rtc_base/stringencode.h" |
| #include "rtc_base/stringutils.h" |
| #include "rtc_base/third_party/base64/base64.h" |
| |
| namespace { |
| |
| // Determines whether we have seen at least the given maximum number of |
| // pings fail to have a response. |
| inline bool TooManyFailures( |
| const std::vector<cricket::Connection::SentPing>& pings_since_last_response, |
| uint32_t maximum_failures, |
| int rtt_estimate, |
| int64_t now) { |
| // If we haven't sent that many pings, then we can't have failed that many. |
| if (pings_since_last_response.size() < maximum_failures) |
| return false; |
| |
| // Check if the window in which we would expect a response to the ping has |
| // already elapsed. |
| int64_t expected_response_time = |
| pings_since_last_response[maximum_failures - 1].sent_time + rtt_estimate; |
| return now > expected_response_time; |
| } |
| |
| // Determines whether we have gone too long without seeing any response. |
| inline bool TooLongWithoutResponse( |
| const std::vector<cricket::Connection::SentPing>& pings_since_last_response, |
| int64_t maximum_time, |
| int64_t now) { |
| if (pings_since_last_response.size() == 0) |
| return false; |
| |
| auto first = pings_since_last_response[0]; |
| return now > (first.sent_time + maximum_time); |
| } |
| |
| // Helper methods for converting string values of log description fields to |
| // enum. |
| webrtc::IceCandidateType GetCandidateTypeByString(const std::string& type) { |
| if (type == cricket::LOCAL_PORT_TYPE) { |
| return webrtc::IceCandidateType::kLocal; |
| } else if (type == cricket::STUN_PORT_TYPE) { |
| return webrtc::IceCandidateType::kStun; |
| } else if (type == cricket::PRFLX_PORT_TYPE) { |
| return webrtc::IceCandidateType::kPrflx; |
| } else if (type == cricket::RELAY_PORT_TYPE) { |
| return webrtc::IceCandidateType::kRelay; |
| } |
| return webrtc::IceCandidateType::kUnknown; |
| } |
| |
| webrtc::IceCandidatePairProtocol GetProtocolByString( |
| const std::string& protocol) { |
| if (protocol == cricket::UDP_PROTOCOL_NAME) { |
| return webrtc::IceCandidatePairProtocol::kUdp; |
| } else if (protocol == cricket::TCP_PROTOCOL_NAME) { |
| return webrtc::IceCandidatePairProtocol::kTcp; |
| } else if (protocol == cricket::SSLTCP_PROTOCOL_NAME) { |
| return webrtc::IceCandidatePairProtocol::kSsltcp; |
| } else if (protocol == cricket::TLS_PROTOCOL_NAME) { |
| return webrtc::IceCandidatePairProtocol::kTls; |
| } |
| return webrtc::IceCandidatePairProtocol::kUnknown; |
| } |
| |
| webrtc::IceCandidatePairAddressFamily GetAddressFamilyByInt( |
| int address_family) { |
| if (address_family == AF_INET) { |
| return webrtc::IceCandidatePairAddressFamily::kIpv4; |
| } else if (address_family == AF_INET6) { |
| return webrtc::IceCandidatePairAddressFamily::kIpv6; |
| } |
| return webrtc::IceCandidatePairAddressFamily::kUnknown; |
| } |
| |
| webrtc::IceCandidateNetworkType ConvertNetworkType(rtc::AdapterType type) { |
| if (type == rtc::ADAPTER_TYPE_ETHERNET) { |
| return webrtc::IceCandidateNetworkType::kEthernet; |
| } else if (type == rtc::ADAPTER_TYPE_LOOPBACK) { |
| return webrtc::IceCandidateNetworkType::kLoopback; |
| } else if (type == rtc::ADAPTER_TYPE_WIFI) { |
| return webrtc::IceCandidateNetworkType::kWifi; |
| } else if (type == rtc::ADAPTER_TYPE_VPN) { |
| return webrtc::IceCandidateNetworkType::kVpn; |
| } else if (type == rtc::ADAPTER_TYPE_CELLULAR) { |
| return webrtc::IceCandidateNetworkType::kCellular; |
| } |
| return webrtc::IceCandidateNetworkType::kUnknown; |
| } |
| |
| rtc::PacketInfoProtocolType ConvertProtocolTypeToPacketInfoProtocolType( |
| cricket::ProtocolType type) { |
| switch (type) { |
| case cricket::ProtocolType::PROTO_UDP: |
| return rtc::PacketInfoProtocolType::kUdp; |
| case cricket::ProtocolType::PROTO_TCP: |
| return rtc::PacketInfoProtocolType::kTcp; |
| case cricket::ProtocolType::PROTO_SSLTCP: |
| return rtc::PacketInfoProtocolType::kSsltcp; |
| case cricket::ProtocolType::PROTO_TLS: |
| return rtc::PacketInfoProtocolType::kTls; |
| default: |
| return rtc::PacketInfoProtocolType::kUnknown; |
| } |
| } |
| |
| // We will restrict RTT estimates (when used for determining state) to be |
| // within a reasonable range. |
| const int MINIMUM_RTT = 100; // 0.1 seconds |
| const int MAXIMUM_RTT = 60000; // 60 seconds |
| |
| // When we don't have any RTT data, we have to pick something reasonable. We |
| // use a large value just in case the connection is really slow. |
| const int DEFAULT_RTT = 3000; // 3 seconds |
| |
| // Computes our estimate of the RTT given the current estimate. |
| inline int ConservativeRTTEstimate(int rtt) { |
| return rtc::SafeClamp(2 * rtt, MINIMUM_RTT, MAXIMUM_RTT); |
| } |
| |
| // Weighting of the old rtt value to new data. |
| const int RTT_RATIO = 3; // 3 : 1 |
| |
| // The delay before we begin checking if this port is useless. We set |
| // it to a little higher than a total STUN timeout. |
| const int kPortTimeoutDelay = cricket::STUN_TOTAL_TIMEOUT + 5000; |
| |
| // For packet loss estimation. |
| const int64_t kConsiderPacketLostAfter = 3000; // 3 seconds |
| |
| // For packet loss estimation. |
| const int64_t kForgetPacketAfter = 30000; // 30 seconds |
| |
| } // namespace |
| |
| namespace cricket { |
| |
| using webrtc::RTCErrorType; |
| using webrtc::RTCError; |
| |
| // TODO(ronghuawu): Use "local", "srflx", "prflx" and "relay". But this requires |
| // the signaling part be updated correspondingly as well. |
| const char LOCAL_PORT_TYPE[] = "local"; |
| const char STUN_PORT_TYPE[] = "stun"; |
| const char PRFLX_PORT_TYPE[] = "prflx"; |
| const char RELAY_PORT_TYPE[] = "relay"; |
| |
| static const char* const PROTO_NAMES[] = {UDP_PROTOCOL_NAME, TCP_PROTOCOL_NAME, |
| SSLTCP_PROTOCOL_NAME, |
| TLS_PROTOCOL_NAME}; |
| |
| const char* ProtoToString(ProtocolType proto) { |
| return PROTO_NAMES[proto]; |
| } |
| |
| bool StringToProto(const char* value, ProtocolType* proto) { |
| for (size_t i = 0; i <= PROTO_LAST; ++i) { |
| if (_stricmp(PROTO_NAMES[i], value) == 0) { |
| *proto = static_cast<ProtocolType>(i); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // RFC 6544, TCP candidate encoding rules. |
| const int DISCARD_PORT = 9; |
| const char TCPTYPE_ACTIVE_STR[] = "active"; |
| const char TCPTYPE_PASSIVE_STR[] = "passive"; |
| const char TCPTYPE_SIMOPEN_STR[] = "so"; |
| |
| // Foundation: An arbitrary string that is the same for two candidates |
| // that have the same type, base IP address, protocol (UDP, TCP, |
| // etc.), and STUN or TURN server. If any of these are different, |
| // then the foundation will be different. Two candidate pairs with |
| // the same foundation pairs are likely to have similar network |
| // characteristics. Foundations are used in the frozen algorithm. |
| static std::string ComputeFoundation(const std::string& type, |
| const std::string& protocol, |
| const std::string& relay_protocol, |
| const rtc::SocketAddress& base_address) { |
| std::ostringstream ost; |
| ost << type << base_address.ipaddr().ToString() << protocol << relay_protocol; |
| return rtc::ToString(rtc::ComputeCrc32(ost.str())); |
| } |
| |
| CandidateStats::CandidateStats() = default; |
| |
| CandidateStats::CandidateStats(const CandidateStats&) = default; |
| |
| CandidateStats::CandidateStats(Candidate candidate) { |
| this->candidate = candidate; |
| } |
| |
| CandidateStats::~CandidateStats() = default; |
| |
| ConnectionInfo::ConnectionInfo() |
| : best_connection(false), |
| writable(false), |
| receiving(false), |
| timeout(false), |
| new_connection(false), |
| rtt(0), |
| sent_total_bytes(0), |
| sent_bytes_second(0), |
| sent_discarded_packets(0), |
| sent_total_packets(0), |
| sent_ping_requests_total(0), |
| sent_ping_requests_before_first_response(0), |
| sent_ping_responses(0), |
| recv_total_bytes(0), |
| recv_bytes_second(0), |
| recv_ping_requests(0), |
| recv_ping_responses(0), |
| key(nullptr), |
| state(IceCandidatePairState::WAITING), |
| priority(0), |
| nominated(false), |
| total_round_trip_time_ms(0) {} |
| |
| ConnectionInfo::ConnectionInfo(const ConnectionInfo&) = default; |
| |
| ConnectionInfo::~ConnectionInfo() = default; |
| |
| Port::Port(rtc::Thread* thread, |
| const std::string& type, |
| rtc::PacketSocketFactory* factory, |
| rtc::Network* network, |
| const std::string& username_fragment, |
| const std::string& password) |
| : thread_(thread), |
| factory_(factory), |
| type_(type), |
| send_retransmit_count_attribute_(false), |
| network_(network), |
| min_port_(0), |
| max_port_(0), |
| component_(ICE_CANDIDATE_COMPONENT_DEFAULT), |
| generation_(0), |
| ice_username_fragment_(username_fragment), |
| password_(password), |
| timeout_delay_(kPortTimeoutDelay), |
| enable_port_packets_(false), |
| ice_role_(ICEROLE_UNKNOWN), |
| tiebreaker_(0), |
| shared_socket_(true) { |
| Construct(); |
| } |
| |
| Port::Port(rtc::Thread* thread, |
| const std::string& type, |
| rtc::PacketSocketFactory* factory, |
| rtc::Network* network, |
| uint16_t min_port, |
| uint16_t max_port, |
| const std::string& username_fragment, |
| const std::string& password) |
| : thread_(thread), |
| factory_(factory), |
| type_(type), |
| send_retransmit_count_attribute_(false), |
| network_(network), |
| min_port_(min_port), |
| max_port_(max_port), |
| component_(ICE_CANDIDATE_COMPONENT_DEFAULT), |
| generation_(0), |
| ice_username_fragment_(username_fragment), |
| password_(password), |
| timeout_delay_(kPortTimeoutDelay), |
| enable_port_packets_(false), |
| ice_role_(ICEROLE_UNKNOWN), |
| tiebreaker_(0), |
| shared_socket_(false) { |
| RTC_DCHECK(factory_ != NULL); |
| Construct(); |
| } |
| |
| void Port::Construct() { |
| // TODO(pthatcher): Remove this old behavior once we're sure no one |
| // relies on it. If the username_fragment and password are empty, |
| // we should just create one. |
| if (ice_username_fragment_.empty()) { |
| RTC_DCHECK(password_.empty()); |
| ice_username_fragment_ = rtc::CreateRandomString(ICE_UFRAG_LENGTH); |
| password_ = rtc::CreateRandomString(ICE_PWD_LENGTH); |
| } |
| network_->SignalTypeChanged.connect(this, &Port::OnNetworkTypeChanged); |
| network_cost_ = network_->GetCost(); |
| |
| thread_->PostDelayed(RTC_FROM_HERE, timeout_delay_, this, |
| MSG_DESTROY_IF_DEAD); |
| RTC_LOG(LS_INFO) << ToString() << ": Port created with network cost " |
| << network_cost_; |
| } |
| |
| Port::~Port() { |
| // Delete all of the remaining connections. We copy the list up front |
| // because each deletion will cause it to be modified. |
| |
| std::vector<Connection*> list; |
| |
| AddressMap::iterator iter = connections_.begin(); |
| while (iter != connections_.end()) { |
| list.push_back(iter->second); |
| ++iter; |
| } |
| |
| for (uint32_t i = 0; i < list.size(); i++) |
| delete list[i]; |
| } |
| |
| const std::string& Port::Type() const { |
| return type_; |
| } |
| rtc::Network* Port::Network() const { |
| return network_; |
| } |
| |
| IceRole Port::GetIceRole() const { |
| return ice_role_; |
| } |
| |
| void Port::SetIceRole(IceRole role) { |
| ice_role_ = role; |
| } |
| |
| void Port::SetIceTiebreaker(uint64_t tiebreaker) { |
| tiebreaker_ = tiebreaker; |
| } |
| uint64_t Port::IceTiebreaker() const { |
| return tiebreaker_; |
| } |
| |
| bool Port::SharedSocket() const { |
| return shared_socket_; |
| } |
| |
| void Port::SetIceParameters(int component, |
| const std::string& username_fragment, |
| const std::string& password) { |
| component_ = component; |
| ice_username_fragment_ = username_fragment; |
| password_ = password; |
| for (Candidate& c : candidates_) { |
| c.set_component(component); |
| c.set_username(username_fragment); |
| c.set_password(password); |
| } |
| } |
| |
| const std::vector<Candidate>& Port::Candidates() const { |
| return candidates_; |
| } |
| |
| Connection* Port::GetConnection(const rtc::SocketAddress& remote_addr) { |
| AddressMap::const_iterator iter = connections_.find(remote_addr); |
| if (iter != connections_.end()) |
| return iter->second; |
| else |
| return NULL; |
| } |
| |
| void Port::AddAddress(const rtc::SocketAddress& address, |
| const rtc::SocketAddress& base_address, |
| const rtc::SocketAddress& related_address, |
| const std::string& protocol, |
| const std::string& relay_protocol, |
| const std::string& tcptype, |
| const std::string& type, |
| uint32_t type_preference, |
| uint32_t relay_preference, |
| bool final) { |
| AddAddress(address, base_address, related_address, protocol, relay_protocol, |
| tcptype, type, type_preference, relay_preference, "", final); |
| } |
| |
| void Port::AddAddress(const rtc::SocketAddress& address, |
| const rtc::SocketAddress& base_address, |
| const rtc::SocketAddress& related_address, |
| const std::string& protocol, |
| const std::string& relay_protocol, |
| const std::string& tcptype, |
| const std::string& type, |
| uint32_t type_preference, |
| uint32_t relay_preference, |
| const std::string& url, |
| bool final) { |
| if (protocol == TCP_PROTOCOL_NAME && type == LOCAL_PORT_TYPE) { |
| RTC_DCHECK(!tcptype.empty()); |
| } |
| |
| std::string foundation = |
| ComputeFoundation(type, protocol, relay_protocol, base_address); |
| Candidate c(component_, protocol, address, 0U, username_fragment(), password_, |
| type, generation_, foundation, network_->id(), network_cost_); |
| c.set_priority( |
| c.GetPriority(type_preference, network_->preference(), relay_preference)); |
| c.set_relay_protocol(relay_protocol); |
| c.set_tcptype(tcptype); |
| c.set_network_name(network_->name()); |
| c.set_network_type(network_->type()); |
| c.set_related_address(related_address); |
| c.set_url(url); |
| candidates_.push_back(c); |
| SignalCandidateReady(this, c); |
| |
| if (final) { |
| SignalPortComplete(this); |
| } |
| } |
| |
| void Port::AddOrReplaceConnection(Connection* conn) { |
| auto ret = connections_.insert( |
| std::make_pair(conn->remote_candidate().address(), conn)); |
| // If there is a different connection on the same remote address, replace |
| // it with the new one and destroy the old one. |
| if (ret.second == false && ret.first->second != conn) { |
| RTC_LOG(LS_WARNING) |
| << ToString() |
| << ": A new connection was created on an existing remote address. " |
| "New remote candidate: " |
| << conn->remote_candidate().ToString(); |
| ret.first->second->SignalDestroyed.disconnect(this); |
| ret.first->second->Destroy(); |
| ret.first->second = conn; |
| } |
| conn->SignalDestroyed.connect(this, &Port::OnConnectionDestroyed); |
| SignalConnectionCreated(this, conn); |
| } |
| |
| void Port::OnReadPacket(const char* data, |
| size_t size, |
| const rtc::SocketAddress& addr, |
| ProtocolType proto) { |
| // If the user has enabled port packets, just hand this over. |
| if (enable_port_packets_) { |
| SignalReadPacket(this, data, size, addr); |
| return; |
| } |
| |
| // If this is an authenticated STUN request, then signal unknown address and |
| // send back a proper binding response. |
| std::unique_ptr<IceMessage> msg; |
| std::string remote_username; |
| if (!GetStunMessage(data, size, addr, &msg, &remote_username)) { |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Received non-STUN packet from unknown address: " |
| << addr.ToSensitiveString(); |
| } else if (!msg) { |
| // STUN message handled already |
| } else if (msg->type() == STUN_BINDING_REQUEST) { |
| RTC_LOG(LS_INFO) << "Received STUN ping id=" |
| << rtc::hex_encode(msg->transaction_id()) |
| << " from unknown address " << addr.ToSensitiveString(); |
| // We need to signal an unknown address before we handle any role conflict |
| // below. Otherwise there would be no candidate pair and TURN entry created |
| // to send the error response in case of a role conflict. |
| SignalUnknownAddress(this, addr, proto, msg.get(), remote_username, false); |
| // Check for role conflicts. |
| if (!MaybeIceRoleConflict(addr, msg.get(), remote_username)) { |
| RTC_LOG(LS_INFO) << "Received conflicting role from the peer."; |
| return; |
| } |
| } else { |
| // NOTE(tschmelcher): STUN_BINDING_RESPONSE is benign. It occurs if we |
| // pruned a connection for this port while it had STUN requests in flight, |
| // because we then get back responses for them, which this code correctly |
| // does not handle. |
| if (msg->type() != STUN_BINDING_RESPONSE) { |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Received unexpected STUN message type: " |
| << msg->type() << " from unknown address: " |
| << addr.ToSensitiveString(); |
| } |
| } |
| } |
| |
| void Port::OnReadyToSend() { |
| AddressMap::iterator iter = connections_.begin(); |
| for (; iter != connections_.end(); ++iter) { |
| iter->second->OnReadyToSend(); |
| } |
| } |
| |
| size_t Port::AddPrflxCandidate(const Candidate& local) { |
| candidates_.push_back(local); |
| return (candidates_.size() - 1); |
| } |
| |
| bool Port::GetStunMessage(const char* data, |
| size_t size, |
| const rtc::SocketAddress& addr, |
| std::unique_ptr<IceMessage>* out_msg, |
| std::string* out_username) { |
| // NOTE: This could clearly be optimized to avoid allocating any memory. |
| // However, at the data rates we'll be looking at on the client side, |
| // this probably isn't worth worrying about. |
| RTC_DCHECK(out_msg != NULL); |
| RTC_DCHECK(out_username != NULL); |
| out_username->clear(); |
| |
| // Don't bother parsing the packet if we can tell it's not STUN. |
| // In ICE mode, all STUN packets will have a valid fingerprint. |
| if (!StunMessage::ValidateFingerprint(data, size)) { |
| return false; |
| } |
| |
| // Parse the request message. If the packet is not a complete and correct |
| // STUN message, then ignore it. |
| std::unique_ptr<IceMessage> stun_msg(new IceMessage()); |
| rtc::ByteBufferReader buf(data, size); |
| if (!stun_msg->Read(&buf) || (buf.Length() > 0)) { |
| return false; |
| } |
| |
| if (stun_msg->type() == STUN_BINDING_REQUEST) { |
| // Check for the presence of USERNAME and MESSAGE-INTEGRITY (if ICE) first. |
| // If not present, fail with a 400 Bad Request. |
| if (!stun_msg->GetByteString(STUN_ATTR_USERNAME) || |
| !stun_msg->GetByteString(STUN_ATTR_MESSAGE_INTEGRITY)) { |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Received STUN request without username/M-I from: " |
| << addr.ToSensitiveString(); |
| SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_BAD_REQUEST, |
| STUN_ERROR_REASON_BAD_REQUEST); |
| return true; |
| } |
| |
| // If the username is bad or unknown, fail with a 401 Unauthorized. |
| std::string local_ufrag; |
| std::string remote_ufrag; |
| if (!ParseStunUsername(stun_msg.get(), &local_ufrag, &remote_ufrag) || |
| local_ufrag != username_fragment()) { |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Received STUN request with bad local username " |
| << local_ufrag << " from " << addr.ToSensitiveString(); |
| SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED, |
| STUN_ERROR_REASON_UNAUTHORIZED); |
| return true; |
| } |
| |
| // If ICE, and the MESSAGE-INTEGRITY is bad, fail with a 401 Unauthorized |
| if (!stun_msg->ValidateMessageIntegrity(data, size, password_)) { |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Received STUN request with bad M-I from " |
| << addr.ToSensitiveString() |
| << ", password_=" << password_; |
| SendBindingErrorResponse(stun_msg.get(), addr, STUN_ERROR_UNAUTHORIZED, |
| STUN_ERROR_REASON_UNAUTHORIZED); |
| return true; |
| } |
| out_username->assign(remote_ufrag); |
| } else if ((stun_msg->type() == STUN_BINDING_RESPONSE) || |
| (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE)) { |
| if (stun_msg->type() == STUN_BINDING_ERROR_RESPONSE) { |
| if (const StunErrorCodeAttribute* error_code = stun_msg->GetErrorCode()) { |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Received STUN binding error: class=" |
| << error_code->eclass() |
| << " number=" << error_code->number() << " reason='" |
| << error_code->reason() << "' from " |
| << addr.ToSensitiveString(); |
| // Return message to allow error-specific processing |
| } else { |
| RTC_LOG(LS_ERROR) |
| << ToString() |
| << ": Received STUN binding error without a error code from " |
| << addr.ToSensitiveString(); |
| return true; |
| } |
| } |
| // NOTE: Username should not be used in verifying response messages. |
| out_username->clear(); |
| } else if (stun_msg->type() == STUN_BINDING_INDICATION) { |
| RTC_LOG(LS_VERBOSE) << ToString() |
| << ": Received STUN binding indication: from " |
| << addr.ToSensitiveString(); |
| out_username->clear(); |
| // No stun attributes will be verified, if it's stun indication message. |
| // Returning from end of the this method. |
| } else { |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Received STUN packet with invalid type (" |
| << stun_msg->type() << ") from " |
| << addr.ToSensitiveString(); |
| return true; |
| } |
| |
| // Return the STUN message found. |
| *out_msg = std::move(stun_msg); |
| return true; |
| } |
| |
| bool Port::IsCompatibleAddress(const rtc::SocketAddress& addr) { |
| // Get a representative IP for the Network this port is configured to use. |
| rtc::IPAddress ip = network_->GetBestIP(); |
| // We use single-stack sockets, so families must match. |
| if (addr.family() != ip.family()) { |
| return false; |
| } |
| // Link-local IPv6 ports can only connect to other link-local IPv6 ports. |
| if (ip.family() == AF_INET6 && |
| (IPIsLinkLocal(ip) != IPIsLinkLocal(addr.ipaddr()))) { |
| return false; |
| } |
| return true; |
| } |
| |
| bool Port::ParseStunUsername(const StunMessage* stun_msg, |
| std::string* local_ufrag, |
| std::string* remote_ufrag) const { |
| // The packet must include a username that either begins or ends with our |
| // fragment. It should begin with our fragment if it is a request and it |
| // should end with our fragment if it is a response. |
| local_ufrag->clear(); |
| remote_ufrag->clear(); |
| const StunByteStringAttribute* username_attr = |
| stun_msg->GetByteString(STUN_ATTR_USERNAME); |
| if (username_attr == NULL) |
| return false; |
| |
| // RFRAG:LFRAG |
| const std::string username = username_attr->GetString(); |
| size_t colon_pos = username.find(":"); |
| if (colon_pos == std::string::npos) { |
| return false; |
| } |
| |
| *local_ufrag = username.substr(0, colon_pos); |
| *remote_ufrag = username.substr(colon_pos + 1, username.size()); |
| return true; |
| } |
| |
| bool Port::MaybeIceRoleConflict(const rtc::SocketAddress& addr, |
| IceMessage* stun_msg, |
| const std::string& remote_ufrag) { |
| // Validate ICE_CONTROLLING or ICE_CONTROLLED attributes. |
| bool ret = true; |
| IceRole remote_ice_role = ICEROLE_UNKNOWN; |
| uint64_t remote_tiebreaker = 0; |
| const StunUInt64Attribute* stun_attr = |
| stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLING); |
| if (stun_attr) { |
| remote_ice_role = ICEROLE_CONTROLLING; |
| remote_tiebreaker = stun_attr->value(); |
| } |
| |
| // If |remote_ufrag| is same as port local username fragment and |
| // tie breaker value received in the ping message matches port |
| // tiebreaker value this must be a loopback call. |
| // We will treat this as valid scenario. |
| if (remote_ice_role == ICEROLE_CONTROLLING && |
| username_fragment() == remote_ufrag && |
| remote_tiebreaker == IceTiebreaker()) { |
| return true; |
| } |
| |
| stun_attr = stun_msg->GetUInt64(STUN_ATTR_ICE_CONTROLLED); |
| if (stun_attr) { |
| remote_ice_role = ICEROLE_CONTROLLED; |
| remote_tiebreaker = stun_attr->value(); |
| } |
| |
| switch (ice_role_) { |
| case ICEROLE_CONTROLLING: |
| if (ICEROLE_CONTROLLING == remote_ice_role) { |
| if (remote_tiebreaker >= tiebreaker_) { |
| SignalRoleConflict(this); |
| } else { |
| // Send Role Conflict (487) error response. |
| SendBindingErrorResponse(stun_msg, addr, STUN_ERROR_ROLE_CONFLICT, |
| STUN_ERROR_REASON_ROLE_CONFLICT); |
| ret = false; |
| } |
| } |
| break; |
| case ICEROLE_CONTROLLED: |
| if (ICEROLE_CONTROLLED == remote_ice_role) { |
| if (remote_tiebreaker < tiebreaker_) { |
| SignalRoleConflict(this); |
| } else { |
| // Send Role Conflict (487) error response. |
| SendBindingErrorResponse(stun_msg, addr, STUN_ERROR_ROLE_CONFLICT, |
| STUN_ERROR_REASON_ROLE_CONFLICT); |
| ret = false; |
| } |
| } |
| break; |
| default: |
| RTC_NOTREACHED(); |
| } |
| return ret; |
| } |
| |
| void Port::CreateStunUsername(const std::string& remote_username, |
| std::string* stun_username_attr_str) const { |
| stun_username_attr_str->clear(); |
| *stun_username_attr_str = remote_username; |
| stun_username_attr_str->append(":"); |
| stun_username_attr_str->append(username_fragment()); |
| } |
| |
| bool Port::HandleIncomingPacket(rtc::AsyncPacketSocket* socket, |
| const char* data, |
| size_t size, |
| const rtc::SocketAddress& remote_addr, |
| const rtc::PacketTime& packet_time) { |
| RTC_NOTREACHED(); |
| return false; |
| } |
| |
| bool Port::CanHandleIncomingPacketsFrom(const rtc::SocketAddress&) const { |
| return false; |
| } |
| |
| void Port::SendBindingResponse(StunMessage* request, |
| const rtc::SocketAddress& addr) { |
| RTC_DCHECK(request->type() == STUN_BINDING_REQUEST); |
| |
| // Retrieve the username from the request. |
| const StunByteStringAttribute* username_attr = |
| request->GetByteString(STUN_ATTR_USERNAME); |
| RTC_DCHECK(username_attr != NULL); |
| if (username_attr == NULL) { |
| // No valid username, skip the response. |
| return; |
| } |
| |
| // Fill in the response message. |
| StunMessage response; |
| response.SetType(STUN_BINDING_RESPONSE); |
| response.SetTransactionID(request->transaction_id()); |
| const StunUInt32Attribute* retransmit_attr = |
| request->GetUInt32(STUN_ATTR_RETRANSMIT_COUNT); |
| if (retransmit_attr) { |
| // Inherit the incoming retransmit value in the response so the other side |
| // can see our view of lost pings. |
| response.AddAttribute(absl::make_unique<StunUInt32Attribute>( |
| STUN_ATTR_RETRANSMIT_COUNT, retransmit_attr->value())); |
| |
| if (retransmit_attr->value() > CONNECTION_WRITE_CONNECT_FAILURES) { |
| RTC_LOG(LS_INFO) |
| << ToString() |
| << ": Received a remote ping with high retransmit count: " |
| << retransmit_attr->value(); |
| } |
| } |
| |
| response.AddAttribute(absl::make_unique<StunXorAddressAttribute>( |
| STUN_ATTR_XOR_MAPPED_ADDRESS, addr)); |
| response.AddMessageIntegrity(password_); |
| response.AddFingerprint(); |
| |
| // Send the response message. |
| rtc::ByteBufferWriter buf; |
| response.Write(&buf); |
| rtc::PacketOptions options(DefaultDscpValue()); |
| options.info_signaled_after_sent.packet_type = |
| rtc::PacketType::kIceConnectivityCheckResponse; |
| auto err = SendTo(buf.Data(), buf.Length(), addr, options, false); |
| if (err < 0) { |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Failed to send STUN ping response, to=" |
| << addr.ToSensitiveString() << ", err=" << err |
| << ", id=" << rtc::hex_encode(response.transaction_id()); |
| } else { |
| // Log at LS_INFO if we send a stun ping response on an unwritable |
| // connection. |
| Connection* conn = GetConnection(addr); |
| rtc::LoggingSeverity sev = |
| (conn && !conn->writable()) ? rtc::LS_INFO : rtc::LS_VERBOSE; |
| RTC_LOG_V(sev) << ToString() << ": Sent STUN ping response, to=" |
| << addr.ToSensitiveString() |
| << ", id=" << rtc::hex_encode(response.transaction_id()); |
| |
| conn->stats_.sent_ping_responses++; |
| conn->LogCandidatePairEvent( |
| webrtc::IceCandidatePairEventType::kCheckResponseSent); |
| } |
| } |
| |
| void Port::SendBindingErrorResponse(StunMessage* request, |
| const rtc::SocketAddress& addr, |
| int error_code, |
| const std::string& reason) { |
| RTC_DCHECK(request->type() == STUN_BINDING_REQUEST); |
| |
| // Fill in the response message. |
| StunMessage response; |
| response.SetType(STUN_BINDING_ERROR_RESPONSE); |
| response.SetTransactionID(request->transaction_id()); |
| |
| // When doing GICE, we need to write out the error code incorrectly to |
| // maintain backwards compatiblility. |
| auto error_attr = StunAttribute::CreateErrorCode(); |
| error_attr->SetCode(error_code); |
| error_attr->SetReason(reason); |
| response.AddAttribute(std::move(error_attr)); |
| |
| // Per Section 10.1.2, certain error cases don't get a MESSAGE-INTEGRITY, |
| // because we don't have enough information to determine the shared secret. |
| if (error_code != STUN_ERROR_BAD_REQUEST && |
| error_code != STUN_ERROR_UNAUTHORIZED) |
| response.AddMessageIntegrity(password_); |
| response.AddFingerprint(); |
| |
| // Send the response message. |
| rtc::ByteBufferWriter buf; |
| response.Write(&buf); |
| rtc::PacketOptions options(DefaultDscpValue()); |
| options.info_signaled_after_sent.packet_type = |
| rtc::PacketType::kIceConnectivityCheckResponse; |
| SendTo(buf.Data(), buf.Length(), addr, options, false); |
| RTC_LOG(LS_INFO) << ToString() |
| << ": Sending STUN binding error: reason=" << reason |
| << " to " << addr.ToSensitiveString(); |
| } |
| |
| void Port::KeepAliveUntilPruned() { |
| // If it is pruned, we won't bring it up again. |
| if (state_ == State::INIT) { |
| state_ = State::KEEP_ALIVE_UNTIL_PRUNED; |
| } |
| } |
| |
| void Port::Prune() { |
| state_ = State::PRUNED; |
| thread_->Post(RTC_FROM_HERE, this, MSG_DESTROY_IF_DEAD); |
| } |
| |
| void Port::OnMessage(rtc::Message* pmsg) { |
| RTC_DCHECK(pmsg->message_id == MSG_DESTROY_IF_DEAD); |
| bool dead = |
| (state_ == State::INIT || state_ == State::PRUNED) && |
| connections_.empty() && |
| rtc::TimeMillis() - last_time_all_connections_removed_ >= timeout_delay_; |
| if (dead) { |
| Destroy(); |
| } |
| } |
| |
| void Port::OnNetworkTypeChanged(const rtc::Network* network) { |
| RTC_DCHECK(network == network_); |
| |
| UpdateNetworkCost(); |
| } |
| |
| std::string Port::ToString() const { |
| std::stringstream ss; |
| ss << "Port[" << std::hex << this << std::dec << ":" << content_name_ << ":" |
| << component_ << ":" << generation_ << ":" << type_ << ":" |
| << network_->ToString() << "]"; |
| return ss.str(); |
| } |
| |
| // TODO(honghaiz): Make the network cost configurable from user setting. |
| void Port::UpdateNetworkCost() { |
| uint16_t new_cost = network_->GetCost(); |
| if (network_cost_ == new_cost) { |
| return; |
| } |
| RTC_LOG(LS_INFO) << "Network cost changed from " << network_cost_ << " to " |
| << new_cost |
| << ". Number of candidates created: " << candidates_.size() |
| << ". Number of connections created: " |
| << connections_.size(); |
| network_cost_ = new_cost; |
| for (cricket::Candidate& candidate : candidates_) { |
| candidate.set_network_cost(network_cost_); |
| } |
| // Network cost change will affect the connection selection criteria. |
| // Signal the connection state change on each connection to force a |
| // re-sort in P2PTransportChannel. |
| for (auto kv : connections_) { |
| Connection* conn = kv.second; |
| conn->SignalStateChange(conn); |
| } |
| } |
| |
| void Port::EnablePortPackets() { |
| enable_port_packets_ = true; |
| } |
| |
| void Port::OnConnectionDestroyed(Connection* conn) { |
| AddressMap::iterator iter = |
| connections_.find(conn->remote_candidate().address()); |
| RTC_DCHECK(iter != connections_.end()); |
| connections_.erase(iter); |
| HandleConnectionDestroyed(conn); |
| |
| // Ports time out after all connections fail if it is not marked as |
| // "keep alive until pruned." |
| // Note: If a new connection is added after this message is posted, but it |
| // fails and is removed before kPortTimeoutDelay, then this message will |
| // not cause the Port to be destroyed. |
| if (connections_.empty()) { |
| last_time_all_connections_removed_ = rtc::TimeMillis(); |
| thread_->PostDelayed(RTC_FROM_HERE, timeout_delay_, this, |
| MSG_DESTROY_IF_DEAD); |
| } |
| } |
| |
| void Port::Destroy() { |
| RTC_DCHECK(connections_.empty()); |
| RTC_LOG(LS_INFO) << ToString() << ": Port deleted"; |
| SignalDestroyed(this); |
| delete this; |
| } |
| |
| const std::string Port::username_fragment() const { |
| return ice_username_fragment_; |
| } |
| |
| void Port::CopyPortInformationToPacketInfo(rtc::PacketInfo* info) const { |
| info->protocol = ConvertProtocolTypeToPacketInfoProtocolType(GetProtocol()); |
| info->network_id = Network()->id(); |
| } |
| |
| // A ConnectionRequest is a simple STUN ping used to determine writability. |
| class ConnectionRequest : public StunRequest { |
| public: |
| explicit ConnectionRequest(Connection* connection) |
| : StunRequest(new IceMessage()), connection_(connection) {} |
| |
| void Prepare(StunMessage* request) override { |
| request->SetType(STUN_BINDING_REQUEST); |
| std::string username; |
| connection_->port()->CreateStunUsername( |
| connection_->remote_candidate().username(), &username); |
| request->AddAttribute(absl::make_unique<StunByteStringAttribute>( |
| STUN_ATTR_USERNAME, username)); |
| |
| // connection_ already holds this ping, so subtract one from count. |
| if (connection_->port()->send_retransmit_count_attribute()) { |
| request->AddAttribute(absl::make_unique<StunUInt32Attribute>( |
| STUN_ATTR_RETRANSMIT_COUNT, |
| static_cast<uint32_t>(connection_->pings_since_last_response_.size() - |
| 1))); |
| } |
| uint32_t network_info = connection_->port()->Network()->id(); |
| network_info = (network_info << 16) | connection_->port()->network_cost(); |
| request->AddAttribute(absl::make_unique<StunUInt32Attribute>( |
| STUN_ATTR_NETWORK_INFO, network_info)); |
| |
| // Adding ICE_CONTROLLED or ICE_CONTROLLING attribute based on the role. |
| if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLING) { |
| request->AddAttribute(absl::make_unique<StunUInt64Attribute>( |
| STUN_ATTR_ICE_CONTROLLING, connection_->port()->IceTiebreaker())); |
| // We should have either USE_CANDIDATE attribute or ICE_NOMINATION |
| // attribute but not both. That was enforced in p2ptransportchannel. |
| if (connection_->use_candidate_attr()) { |
| request->AddAttribute(absl::make_unique<StunByteStringAttribute>( |
| STUN_ATTR_USE_CANDIDATE)); |
| } |
| if (connection_->nomination() && |
| connection_->nomination() != connection_->acked_nomination()) { |
| request->AddAttribute(absl::make_unique<StunUInt32Attribute>( |
| STUN_ATTR_NOMINATION, connection_->nomination())); |
| } |
| } else if (connection_->port()->GetIceRole() == ICEROLE_CONTROLLED) { |
| request->AddAttribute(absl::make_unique<StunUInt64Attribute>( |
| STUN_ATTR_ICE_CONTROLLED, connection_->port()->IceTiebreaker())); |
| } else { |
| RTC_NOTREACHED(); |
| } |
| |
| // Adding PRIORITY Attribute. |
| // Changing the type preference to Peer Reflexive and local preference |
| // and component id information is unchanged from the original priority. |
| // priority = (2^24)*(type preference) + |
| // (2^8)*(local preference) + |
| // (2^0)*(256 - component ID) |
| uint32_t type_preference = |
| (connection_->local_candidate().protocol() == TCP_PROTOCOL_NAME) |
| ? ICE_TYPE_PREFERENCE_PRFLX_TCP |
| : ICE_TYPE_PREFERENCE_PRFLX; |
| uint32_t prflx_priority = |
| type_preference << 24 | |
| (connection_->local_candidate().priority() & 0x00FFFFFF); |
| request->AddAttribute(absl::make_unique<StunUInt32Attribute>( |
| STUN_ATTR_PRIORITY, prflx_priority)); |
| |
| // Adding Message Integrity attribute. |
| request->AddMessageIntegrity(connection_->remote_candidate().password()); |
| // Adding Fingerprint. |
| request->AddFingerprint(); |
| } |
| |
| void OnResponse(StunMessage* response) override { |
| connection_->OnConnectionRequestResponse(this, response); |
| } |
| |
| void OnErrorResponse(StunMessage* response) override { |
| connection_->OnConnectionRequestErrorResponse(this, response); |
| } |
| |
| void OnTimeout() override { connection_->OnConnectionRequestTimeout(this); } |
| |
| void OnSent() override { |
| connection_->OnConnectionRequestSent(this); |
| // Each request is sent only once. After a single delay , the request will |
| // time out. |
| timeout_ = true; |
| } |
| |
| int resend_delay() override { return CONNECTION_RESPONSE_TIMEOUT; } |
| |
| private: |
| Connection* connection_; |
| }; |
| |
| // |
| // Connection |
| // |
| |
| Connection::Connection(Port* port, |
| size_t index, |
| const Candidate& remote_candidate) |
| : id_(rtc::CreateRandomId()), |
| port_(port), |
| local_candidate_index_(index), |
| remote_candidate_(remote_candidate), |
| recv_rate_tracker_(100, 10u), |
| send_rate_tracker_(100, 10u), |
| write_state_(STATE_WRITE_INIT), |
| receiving_(false), |
| connected_(true), |
| pruned_(false), |
| use_candidate_attr_(false), |
| remote_ice_mode_(ICEMODE_FULL), |
| requests_(port->thread()), |
| rtt_(DEFAULT_RTT), |
| last_ping_sent_(0), |
| last_ping_received_(0), |
| last_data_received_(0), |
| last_ping_response_received_(0), |
| packet_loss_estimator_(kConsiderPacketLostAfter, kForgetPacketAfter), |
| reported_(false), |
| state_(IceCandidatePairState::WAITING), |
| time_created_ms_(rtc::TimeMillis()) { |
| // All of our connections start in WAITING state. |
| // TODO(mallinath) - Start connections from STATE_FROZEN. |
| // Wire up to send stun packets |
| requests_.SignalSendPacket.connect(this, &Connection::OnSendStunPacket); |
| RTC_LOG(LS_INFO) << ToString() << ": Connection created"; |
| } |
| |
| Connection::~Connection() {} |
| |
| const Candidate& Connection::local_candidate() const { |
| RTC_DCHECK(local_candidate_index_ < port_->Candidates().size()); |
| return port_->Candidates()[local_candidate_index_]; |
| } |
| |
| const Candidate& Connection::remote_candidate() const { |
| return remote_candidate_; |
| } |
| |
| uint64_t Connection::priority() const { |
| uint64_t priority = 0; |
| // RFC 5245 - 5.7.2. Computing Pair Priority and Ordering Pairs |
| // Let G be the priority for the candidate provided by the controlling |
| // agent. Let D be the priority for the candidate provided by the |
| // controlled agent. |
| // pair priority = 2^32*MIN(G,D) + 2*MAX(G,D) + (G>D?1:0) |
| IceRole role = port_->GetIceRole(); |
| if (role != ICEROLE_UNKNOWN) { |
| uint32_t g = 0; |
| uint32_t d = 0; |
| if (role == ICEROLE_CONTROLLING) { |
| g = local_candidate().priority(); |
| d = remote_candidate_.priority(); |
| } else { |
| g = remote_candidate_.priority(); |
| d = local_candidate().priority(); |
| } |
| priority = std::min(g, d); |
| priority = priority << 32; |
| priority += 2 * std::max(g, d) + (g > d ? 1 : 0); |
| } |
| return priority; |
| } |
| |
| void Connection::set_write_state(WriteState value) { |
| WriteState old_value = write_state_; |
| write_state_ = value; |
| if (value != old_value) { |
| RTC_LOG(LS_VERBOSE) << ToString() << ": set_write_state from: " << old_value |
| << " to " << value; |
| SignalStateChange(this); |
| } |
| } |
| |
| void Connection::UpdateReceiving(int64_t now) { |
| bool receiving; |
| if (last_ping_sent() < last_ping_response_received()) { |
| // We consider any candidate pair that has its last connectivity check |
| // acknowledged by a response as receiving, particularly for backup |
| // candidate pairs that send checks at a much slower pace than the selected |
| // one. Otherwise, a backup candidate pair constantly becomes not receiving |
| // as a side effect of a long ping interval, since we do not have a separate |
| // receiving timeout for backup candidate pairs. See |
| // IceConfig.ice_backup_candidate_pair_ping_interval, |
| // IceConfig.ice_connection_receiving_timeout and their default value. |
| receiving = true; |
| } else { |
| receiving = |
| last_received() > 0 && now <= last_received() + receiving_timeout(); |
| } |
| if (receiving_ == receiving) { |
| return; |
| } |
| RTC_LOG(LS_VERBOSE) << ToString() << ": set_receiving to " << receiving; |
| receiving_ = receiving; |
| receiving_unchanged_since_ = now; |
| SignalStateChange(this); |
| } |
| |
| void Connection::set_state(IceCandidatePairState state) { |
| IceCandidatePairState old_state = state_; |
| state_ = state; |
| if (state != old_state) { |
| RTC_LOG(LS_VERBOSE) << ToString() << ": set_state"; |
| } |
| } |
| |
| void Connection::set_connected(bool value) { |
| bool old_value = connected_; |
| connected_ = value; |
| if (value != old_value) { |
| RTC_LOG(LS_VERBOSE) << ToString() << ": Change connected_ to " << value; |
| SignalStateChange(this); |
| } |
| } |
| |
| void Connection::set_use_candidate_attr(bool enable) { |
| use_candidate_attr_ = enable; |
| } |
| |
| int Connection::unwritable_timeout() const { |
| return unwritable_timeout_.value_or(CONNECTION_WRITE_CONNECT_TIMEOUT); |
| } |
| |
| int Connection::unwritable_min_checks() const { |
| return unwritable_min_checks_.value_or(CONNECTION_WRITE_CONNECT_FAILURES); |
| } |
| |
| int Connection::receiving_timeout() const { |
| return receiving_timeout_.value_or(WEAK_CONNECTION_RECEIVE_TIMEOUT); |
| } |
| |
| void Connection::OnSendStunPacket(const void* data, |
| size_t size, |
| StunRequest* req) { |
| rtc::PacketOptions options(port_->DefaultDscpValue()); |
| options.info_signaled_after_sent.packet_type = |
| rtc::PacketType::kIceConnectivityCheck; |
| auto err = |
| port_->SendTo(data, size, remote_candidate_.address(), options, false); |
| if (err < 0) { |
| RTC_LOG(LS_WARNING) << ToString() |
| << ": Failed to send STUN ping " |
| " err=" |
| << err << " id=" << rtc::hex_encode(req->id()); |
| } |
| } |
| |
| void Connection::OnReadPacket(const char* data, |
| size_t size, |
| const rtc::PacketTime& packet_time) { |
| std::unique_ptr<IceMessage> msg; |
| std::string remote_ufrag; |
| const rtc::SocketAddress& addr(remote_candidate_.address()); |
| if (!port_->GetStunMessage(data, size, addr, &msg, &remote_ufrag)) { |
| // The packet did not parse as a valid STUN message |
| // This is a data packet, pass it along. |
| last_data_received_ = rtc::TimeMillis(); |
| UpdateReceiving(last_data_received_); |
| recv_rate_tracker_.AddSamples(size); |
| SignalReadPacket(this, data, size, packet_time); |
| |
| // If timed out sending writability checks, start up again |
| if (!pruned_ && (write_state_ == STATE_WRITE_TIMEOUT)) { |
| RTC_LOG(LS_WARNING) |
| << "Received a data packet on a timed-out Connection. " |
| "Resetting state to STATE_WRITE_INIT."; |
| set_write_state(STATE_WRITE_INIT); |
| } |
| } else if (!msg) { |
| // The packet was STUN, but failed a check and was handled internally. |
| } else { |
| // The packet is STUN and passed the Port checks. |
| // Perform our own checks to ensure this packet is valid. |
| // If this is a STUN request, then update the receiving bit and respond. |
| // If this is a STUN response, then update the writable bit. |
| // Log at LS_INFO if we receive a ping on an unwritable connection. |
| rtc::LoggingSeverity sev = (!writable() ? rtc::LS_INFO : rtc::LS_VERBOSE); |
| switch (msg->type()) { |
| case STUN_BINDING_REQUEST: |
| RTC_LOG_V(sev) << ToString() << ": Received STUN ping, id=" |
| << rtc::hex_encode(msg->transaction_id()); |
| |
| if (remote_ufrag == remote_candidate_.username()) { |
| HandleBindingRequest(msg.get()); |
| } else { |
| // The packet had the right local username, but the remote username |
| // was not the right one for the remote address. |
| RTC_LOG(LS_ERROR) |
| << ToString() |
| << ": Received STUN request with bad remote username " |
| << remote_ufrag; |
| port_->SendBindingErrorResponse(msg.get(), addr, |
| STUN_ERROR_UNAUTHORIZED, |
| STUN_ERROR_REASON_UNAUTHORIZED); |
| } |
| break; |
| |
| // Response from remote peer. Does it match request sent? |
| // This doesn't just check, it makes callbacks if transaction |
| // id's match. |
| case STUN_BINDING_RESPONSE: |
| case STUN_BINDING_ERROR_RESPONSE: |
| if (msg->ValidateMessageIntegrity(data, size, |
| remote_candidate().password())) { |
| requests_.CheckResponse(msg.get()); |
| } |
| // Otherwise silently discard the response message. |
| break; |
| |
| // Remote end point sent an STUN indication instead of regular binding |
| // request. In this case |last_ping_received_| will be updated but no |
| // response will be sent. |
| case STUN_BINDING_INDICATION: |
| ReceivedPing(); |
| break; |
| |
| default: |
| RTC_NOTREACHED(); |
| break; |
| } |
| } |
| } |
| |
| void Connection::HandleBindingRequest(IceMessage* msg) { |
| // This connection should now be receiving. |
| ReceivedPing(); |
| |
| const rtc::SocketAddress& remote_addr = remote_candidate_.address(); |
| const std::string& remote_ufrag = remote_candidate_.username(); |
| // Check for role conflicts. |
| if (!port_->MaybeIceRoleConflict(remote_addr, msg, remote_ufrag)) { |
| // Received conflicting role from the peer. |
| RTC_LOG(LS_INFO) << "Received conflicting role from the peer."; |
| return; |
| } |
| |
| stats_.recv_ping_requests++; |
| LogCandidatePairEvent(webrtc::IceCandidatePairEventType::kCheckReceived); |
| |
| // This is a validated stun request from remote peer. |
| port_->SendBindingResponse(msg, remote_addr); |
| |
| // If it timed out on writing check, start up again |
| if (!pruned_ && write_state_ == STATE_WRITE_TIMEOUT) { |
| set_write_state(STATE_WRITE_INIT); |
| } |
| |
| if (port_->GetIceRole() == ICEROLE_CONTROLLED) { |
| const StunUInt32Attribute* nomination_attr = |
| msg->GetUInt32(STUN_ATTR_NOMINATION); |
| uint32_t nomination = 0; |
| if (nomination_attr) { |
| nomination = nomination_attr->value(); |
| if (nomination == 0) { |
| RTC_LOG(LS_ERROR) << "Invalid nomination: " << nomination; |
| } |
| } else { |
| const StunByteStringAttribute* use_candidate_attr = |
| msg->GetByteString(STUN_ATTR_USE_CANDIDATE); |
| if (use_candidate_attr) { |
| nomination = 1; |
| } |
| } |
| // We don't un-nominate a connection, so we only keep a larger nomination. |
| if (nomination > remote_nomination_) { |
| set_remote_nomination(nomination); |
| SignalNominated(this); |
| } |
| } |
| // Set the remote cost if the network_info attribute is available. |
| // Note: If packets are re-ordered, we may get incorrect network cost |
| // temporarily, but it should get the correct value shortly after that. |
| const StunUInt32Attribute* network_attr = |
| msg->GetUInt32(STUN_ATTR_NETWORK_INFO); |
| if (network_attr) { |
| uint32_t network_info = network_attr->value(); |
| uint16_t network_cost = static_cast<uint16_t>(network_info); |
| if (network_cost != remote_candidate_.network_cost()) { |
| remote_candidate_.set_network_cost(network_cost); |
| // Network cost change will affect the connection ranking, so signal |
| // state change to force a re-sort in P2PTransportChannel. |
| SignalStateChange(this); |
| } |
| } |
| } |
| |
| void Connection::OnReadyToSend() { |
| SignalReadyToSend(this); |
| } |
| |
| void Connection::Prune() { |
| if (!pruned_ || active()) { |
| RTC_LOG(LS_INFO) << ToString() << ": Connection pruned"; |
| pruned_ = true; |
| requests_.Clear(); |
| set_write_state(STATE_WRITE_TIMEOUT); |
| } |
| } |
| |
| void Connection::Destroy() { |
| // TODO(deadbeef, nisse): This may leak if an application closes a |
| // PeerConnection and then quickly destroys the PeerConnectionFactory (along |
| // with the networking thread on which this message is posted). Also affects |
| // tests, with a workaround in |
| // AutoSocketServerThread::~AutoSocketServerThread. |
| RTC_LOG(LS_VERBOSE) << ToString() << ": Connection destroyed"; |
| port_->thread()->Post(RTC_FROM_HERE, this, MSG_DELETE); |
| LogCandidatePairConfig(webrtc::IceCandidatePairConfigType::kDestroyed); |
| } |
| |
| void Connection::FailAndDestroy() { |
| set_state(IceCandidatePairState::FAILED); |
| Destroy(); |
| } |
| |
| void Connection::FailAndPrune() { |
| set_state(IceCandidatePairState::FAILED); |
| Prune(); |
| } |
| |
| void Connection::PrintPingsSinceLastResponse(std::string* s, size_t max) { |
| std::ostringstream oss; |
| oss << std::boolalpha; |
| if (pings_since_last_response_.size() > max) { |
| for (size_t i = 0; i < max; i++) { |
| const SentPing& ping = pings_since_last_response_[i]; |
| oss << rtc::hex_encode(ping.id) << " "; |
| } |
| oss << "... " << (pings_since_last_response_.size() - max) << " more"; |
| } else { |
| for (const SentPing& ping : pings_since_last_response_) { |
| oss << rtc::hex_encode(ping.id) << " "; |
| } |
| } |
| *s = oss.str(); |
| } |
| |
| void Connection::UpdateState(int64_t now) { |
| int rtt = ConservativeRTTEstimate(rtt_); |
| |
| if (RTC_LOG_CHECK_LEVEL(LS_VERBOSE)) { |
| std::string pings; |
| PrintPingsSinceLastResponse(&pings, 5); |
| RTC_LOG(LS_VERBOSE) << ToString() |
| << ": UpdateState()" |
| ", ms since last received response=" |
| << now - last_ping_response_received_ |
| << ", ms since last received data=" |
| << now - last_data_received_ << ", rtt=" << rtt |
| << ", pings_since_last_response=" << pings; |
| } |
| |
| // Check the writable state. (The order of these checks is important.) |
| // |
| // Before becoming unwritable, we allow for a fixed number of pings to fail |
| // (i.e., receive no response). We also have to give the response time to |
| // get back, so we include a conservative estimate of this. |
| // |
| // Before timing out writability, we give a fixed amount of time. This is to |
| // allow for changes in network conditions. |
| |
| if ((write_state_ == STATE_WRITABLE) && |
| TooManyFailures(pings_since_last_response_, unwritable_min_checks(), rtt, |
| now) && |
| TooLongWithoutResponse(pings_since_last_response_, unwritable_timeout(), |
| now)) { |
| uint32_t max_pings = unwritable_min_checks(); |
| RTC_LOG(LS_INFO) << ToString() << ": Unwritable after " << max_pings |
| << " ping failures and " |
| << now - pings_since_last_response_[0].sent_time |
| << " ms without a response," |
| " ms since last received ping=" |
| << now - last_ping_received_ |
| << " ms since last received data=" |
| << now - last_data_received_ << " rtt=" << rtt; |
| set_write_state(STATE_WRITE_UNRELIABLE); |
| } |
| if ((write_state_ == STATE_WRITE_UNRELIABLE || |
| write_state_ == STATE_WRITE_INIT) && |
| TooLongWithoutResponse(pings_since_last_response_, |
| CONNECTION_WRITE_TIMEOUT, now)) { |
| RTC_LOG(LS_INFO) << ToString() << ": Timed out after " |
| << now - pings_since_last_response_[0].sent_time |
| << " ms without a response, rtt=" << rtt; |
| set_write_state(STATE_WRITE_TIMEOUT); |
| } |
| |
| // Update the receiving state. |
| UpdateReceiving(now); |
| if (dead(now)) { |
| Destroy(); |
| } |
| } |
| |
| void Connection::Ping(int64_t now) { |
| last_ping_sent_ = now; |
| ConnectionRequest* req = new ConnectionRequest(this); |
| // If not using renomination, we use "1" to mean "nominated" and "0" to mean |
| // "not nominated". If using renomination, values greater than 1 are used for |
| // re-nominated pairs. |
| int nomination = use_candidate_attr_ ? 1 : 0; |
| if (nomination_ > 0) { |
| nomination = nomination_; |
| } |
| pings_since_last_response_.push_back(SentPing(req->id(), now, nomination)); |
| packet_loss_estimator_.ExpectResponse(req->id(), now); |
| RTC_LOG(LS_VERBOSE) << ToString() << ": Sending STUN ping, id=" |
| << rtc::hex_encode(req->id()) |
| << ", nomination=" << nomination_; |
| requests_.Send(req); |
| state_ = IceCandidatePairState::IN_PROGRESS; |
| num_pings_sent_++; |
| } |
| |
| void Connection::ReceivedPing() { |
| last_ping_received_ = rtc::TimeMillis(); |
| UpdateReceiving(last_ping_received_); |
| } |
| |
| void Connection::ReceivedPingResponse(int rtt, const std::string& request_id) { |
| RTC_DCHECK_GE(rtt, 0); |
| // We've already validated that this is a STUN binding response with |
| // the correct local and remote username for this connection. |
| // So if we're not already, become writable. We may be bringing a pruned |
| // connection back to life, but if we don't really want it, we can always |
| // prune it again. |
| auto iter = std::find_if( |
| pings_since_last_response_.begin(), pings_since_last_response_.end(), |
| [request_id](const SentPing& ping) { return ping.id == request_id; }); |
| if (iter != pings_since_last_response_.end() && |
| iter->nomination > acked_nomination_) { |
| acked_nomination_ = iter->nomination; |
| } |
| |
| total_round_trip_time_ms_ += rtt; |
| current_round_trip_time_ms_ = static_cast<uint32_t>(rtt); |
| |
| pings_since_last_response_.clear(); |
| last_ping_response_received_ = rtc::TimeMillis(); |
| UpdateReceiving(last_ping_response_received_); |
| set_write_state(STATE_WRITABLE); |
| set_state(IceCandidatePairState::SUCCEEDED); |
| if (rtt_samples_ > 0) { |
| rtt_ = rtc::GetNextMovingAverage(rtt_, rtt, RTT_RATIO); |
| } else { |
| rtt_ = rtt; |
| } |
| rtt_samples_++; |
| } |
| |
| bool Connection::dead(int64_t now) const { |
| if (last_received() > 0) { |
| // If it has ever received anything, we keep it alive until it hasn't |
| // received anything for DEAD_CONNECTION_RECEIVE_TIMEOUT. This covers the |
| // normal case of a successfully used connection that stops working. This |
| // also allows a remote peer to continue pinging over a locally inactive |
| // (pruned) connection. |
| return (now > (last_received() + DEAD_CONNECTION_RECEIVE_TIMEOUT)); |
| } |
| |
| if (active()) { |
| // If it has never received anything, keep it alive as long as it is |
| // actively pinging and not pruned. Otherwise, the connection might be |
| // deleted before it has a chance to ping. This is the normal case for a |
| // new connection that is pinging but hasn't received anything yet. |
| return false; |
| } |
| |
| // If it has never received anything and is not actively pinging (pruned), we |
| // keep it around for at least MIN_CONNECTION_LIFETIME to prevent connections |
| // from being pruned too quickly during a network change event when two |
| // networks would be up simultaneously but only for a brief period. |
| return now > (time_created_ms_ + MIN_CONNECTION_LIFETIME); |
| } |
| |
| bool Connection::stable(int64_t now) const { |
| // A connection is stable if it's RTT has converged and it isn't missing any |
| // responses. We should send pings at a higher rate until the RTT converges |
| // and whenever a ping response is missing (so that we can detect |
| // unwritability faster) |
| return rtt_converged() && !missing_responses(now); |
| } |
| |
| std::string Connection::ToDebugId() const { |
| std::stringstream ss; |
| ss << std::hex << this; |
| return ss.str(); |
| } |
| |
| uint32_t Connection::ComputeNetworkCost() const { |
| // TODO(honghaiz): Will add rtt as part of the network cost. |
| return port()->network_cost() + remote_candidate_.network_cost(); |
| } |
| |
| std::string Connection::ToString() const { |
| const char CONNECT_STATE_ABBREV[2] = { |
| '-', // not connected (false) |
| 'C', // connected (true) |
| }; |
| const char RECEIVE_STATE_ABBREV[2] = { |
| '-', // not receiving (false) |
| 'R', // receiving (true) |
| }; |
| const char WRITE_STATE_ABBREV[4] = { |
| 'W', // STATE_WRITABLE |
| 'w', // STATE_WRITE_UNRELIABLE |
| '-', // STATE_WRITE_INIT |
| 'x', // STATE_WRITE_TIMEOUT |
| }; |
| const std::string ICESTATE[4] = { |
| "W", // STATE_WAITING |
| "I", // STATE_INPROGRESS |
| "S", // STATE_SUCCEEDED |
| "F" // STATE_FAILED |
| }; |
| const std::string SELECTED_STATE_ABBREV[2] = { |
| "-", // candidate pair not selected (false) |
| "S", // selected (true) |
| }; |
| const Candidate& local = local_candidate(); |
| const Candidate& remote = remote_candidate(); |
| std::stringstream ss; |
| ss << "Conn[" << ToDebugId() << ":" << port_->content_name() << ":" |
| << port_->Network()->ToString() << ":" << local.id() << ":" |
| << local.component() << ":" << local.generation() << ":" << local.type() |
| << ":" << local.protocol() << ":" << local.address().ToSensitiveString() |
| << "->" << remote.id() << ":" << remote.component() << ":" |
| << remote.priority() << ":" << remote.type() << ":" << remote.protocol() |
| << ":" << remote.address().ToSensitiveString() << "|" |
| << CONNECT_STATE_ABBREV[connected()] << RECEIVE_STATE_ABBREV[receiving()] |
| << WRITE_STATE_ABBREV[write_state()] << ICESTATE[static_cast<int>(state())] |
| << "|" << SELECTED_STATE_ABBREV[selected()] << "|" << remote_nomination() |
| << "|" << nomination() << "|" << priority() << "|"; |
| if (rtt_ < DEFAULT_RTT) { |
| ss << rtt_ << "]"; |
| } else { |
| ss << "-]"; |
| } |
| return ss.str(); |
| } |
| |
| std::string Connection::ToSensitiveString() const { |
| return ToString(); |
| } |
| |
| const webrtc::IceCandidatePairDescription& Connection::ToLogDescription() { |
| if (log_description_.has_value()) { |
| return log_description_.value(); |
| } |
| const Candidate& local = local_candidate(); |
| const Candidate& remote = remote_candidate(); |
| const rtc::Network* network = port()->Network(); |
| log_description_ = webrtc::IceCandidatePairDescription(); |
| log_description_->local_candidate_type = |
| GetCandidateTypeByString(local.type()); |
| log_description_->local_relay_protocol = |
| GetProtocolByString(local.relay_protocol()); |
| log_description_->local_network_type = ConvertNetworkType(network->type()); |
| log_description_->local_address_family = |
| GetAddressFamilyByInt(local.address().family()); |
| log_description_->remote_candidate_type = |
| GetCandidateTypeByString(remote.type()); |
| log_description_->remote_address_family = |
| GetAddressFamilyByInt(remote.address().family()); |
| log_description_->candidate_pair_protocol = |
| GetProtocolByString(local.protocol()); |
| return log_description_.value(); |
| } |
| |
| void Connection::LogCandidatePairConfig( |
| webrtc::IceCandidatePairConfigType type) { |
| if (ice_event_log_ == nullptr) { |
| return; |
| } |
| ice_event_log_->LogCandidatePairConfig(type, id(), ToLogDescription()); |
| } |
| |
| void Connection::LogCandidatePairEvent(webrtc::IceCandidatePairEventType type) { |
| if (ice_event_log_ == nullptr) { |
| return; |
| } |
| ice_event_log_->LogCandidatePairEvent(type, id()); |
| } |
| |
| void Connection::OnConnectionRequestResponse(ConnectionRequest* request, |
| StunMessage* response) { |
| // Log at LS_INFO if we receive a ping response on an unwritable |
| // connection. |
| rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; |
| |
| int rtt = request->Elapsed(); |
| |
| if (RTC_LOG_CHECK_LEVEL_V(sev)) { |
| std::string pings; |
| PrintPingsSinceLastResponse(&pings, 5); |
| RTC_LOG_V(sev) << ToString() << ": Received STUN ping response, id=" |
| << rtc::hex_encode(request->id()) |
| << ", code=0" // Makes logging easier to parse. |
| ", rtt=" |
| << rtt << ", pings_since_last_response=" << pings; |
| } |
| ReceivedPingResponse(rtt, request->id()); |
| |
| int64_t time_received = rtc::TimeMillis(); |
| packet_loss_estimator_.ReceivedResponse(request->id(), time_received); |
| |
| stats_.recv_ping_responses++; |
| LogCandidatePairEvent( |
| webrtc::IceCandidatePairEventType::kCheckResponseReceived); |
| |
| MaybeUpdateLocalCandidate(request, response); |
| } |
| |
| void Connection::OnConnectionRequestErrorResponse(ConnectionRequest* request, |
| StunMessage* response) { |
| int error_code = response->GetErrorCodeValue(); |
| RTC_LOG(LS_WARNING) << ToString() << ": Received STUN error response id=" |
| << rtc::hex_encode(request->id()) |
| << " code=" << error_code |
| << " rtt=" << request->Elapsed(); |
| |
| if (error_code == STUN_ERROR_UNKNOWN_ATTRIBUTE || |
| error_code == STUN_ERROR_SERVER_ERROR || |
| error_code == STUN_ERROR_UNAUTHORIZED) { |
| // Recoverable error, retry |
| } else if (error_code == STUN_ERROR_STALE_CREDENTIALS) { |
| // Race failure, retry |
| } else if (error_code == STUN_ERROR_ROLE_CONFLICT) { |
| HandleRoleConflictFromPeer(); |
| } else { |
| // This is not a valid connection. |
| RTC_LOG(LS_ERROR) << ToString() |
| << ": Received STUN error response, code=" << error_code |
| << "; killing connection"; |
| FailAndDestroy(); |
| } |
| } |
| |
| void Connection::OnConnectionRequestTimeout(ConnectionRequest* request) { |
| // Log at LS_INFO if we miss a ping on a writable connection. |
| rtc::LoggingSeverity sev = writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; |
| RTC_LOG_V(sev) << ToString() << ": Timing-out STUN ping " |
| << rtc::hex_encode(request->id()) << " after " |
| << request->Elapsed() << " ms"; |
| } |
| |
| void Connection::OnConnectionRequestSent(ConnectionRequest* request) { |
| // Log at LS_INFO if we send a ping on an unwritable connection. |
| rtc::LoggingSeverity sev = !writable() ? rtc::LS_INFO : rtc::LS_VERBOSE; |
| RTC_LOG_V(sev) << ToString() |
| << ": Sent STUN ping, id=" << rtc::hex_encode(request->id()) |
| << ", use_candidate=" << use_candidate_attr() |
| << ", nomination=" << nomination(); |
| stats_.sent_ping_requests_total++; |
| LogCandidatePairEvent(webrtc::IceCandidatePairEventType::kCheckSent); |
| if (stats_.recv_ping_responses == 0) { |
| stats_.sent_ping_requests_before_first_response++; |
| } |
| } |
| |
| void Connection::HandleRoleConflictFromPeer() { |
| port_->SignalRoleConflict(port_); |
| } |
| |
| void Connection::MaybeSetRemoteIceParametersAndGeneration( |
| const IceParameters& ice_params, |
| int generation) { |
| if (remote_candidate_.username() == ice_params.ufrag && |
| remote_candidate_.password().empty()) { |
| remote_candidate_.set_password(ice_params.pwd); |
| } |
| // TODO(deadbeef): A value of '0' for the generation is used for both |
| // generation 0 and "generation unknown". It should be changed to an |
| // absl::optional to fix this. |
| if (remote_candidate_.username() == ice_params.ufrag && |
| remote_candidate_.password() == ice_params.pwd && |
| remote_candidate_.generation() == 0) { |
| remote_candidate_.set_generation(generation); |
| } |
| } |
| |
| void Connection::MaybeUpdatePeerReflexiveCandidate( |
| const Candidate& new_candidate) { |
| if (remote_candidate_.type() == PRFLX_PORT_TYPE && |
| new_candidate.type() != PRFLX_PORT_TYPE && |
| remote_candidate_.protocol() == new_candidate.protocol() && |
| remote_candidate_.address() == new_candidate.address() && |
| remote_candidate_.username() == new_candidate.username() && |
| remote_candidate_.password() == new_candidate.password() && |
| remote_candidate_.generation() == new_candidate.generation()) { |
| remote_candidate_ = new_candidate; |
| } |
| } |
| |
| void Connection::OnMessage(rtc::Message* pmsg) { |
| RTC_DCHECK(pmsg->message_id == MSG_DELETE); |
| RTC_LOG(LS_INFO) << "Connection deleted with number of pings sent: " |
| << num_pings_sent_; |
| SignalDestroyed(this); |
| delete this; |
| } |
| |
| int64_t Connection::last_received() const { |
| return std::max(last_data_received_, |
| std::max(last_ping_received_, last_ping_response_received_)); |
| } |
| |
| ConnectionInfo Connection::stats() { |
| stats_.recv_bytes_second = round(recv_rate_tracker_.ComputeRate()); |
| stats_.recv_total_bytes = recv_rate_tracker_.TotalSampleCount(); |
| stats_.sent_bytes_second = round(send_rate_tracker_.ComputeRate()); |
| stats_.sent_total_bytes = send_rate_tracker_.TotalSampleCount(); |
| stats_.receiving = receiving_; |
| stats_.writable = write_state_ == STATE_WRITABLE; |
| stats_.timeout = write_state_ == STATE_WRITE_TIMEOUT; |
| stats_.new_connection = !reported_; |
| stats_.rtt = rtt_; |
| stats_.local_candidate = local_candidate(); |
| stats_.remote_candidate = remote_candidate(); |
| stats_.key = this; |
| stats_.state = state_; |
| stats_.priority = priority(); |
| stats_.nominated = nominated(); |
| stats_.total_round_trip_time_ms = total_round_trip_time_ms_; |
| stats_.current_round_trip_time_ms = current_round_trip_time_ms_; |
| return stats_; |
| } |
| |
| void Connection::MaybeUpdateLocalCandidate(ConnectionRequest* request, |
| StunMessage* response) { |
| // RFC 5245 |
| // The agent checks the mapped address from the STUN response. If the |
| // transport address does not match any of the local candidates that the |
| // agent knows about, the mapped address represents a new candidate -- a |
| // peer reflexive candidate. |
| const StunAddressAttribute* addr = |
| response->GetAddress(STUN_ATTR_XOR_MAPPED_ADDRESS); |
| if (!addr) { |
| RTC_LOG(LS_WARNING) |
| << "Connection::OnConnectionRequestResponse - " |
| "No MAPPED-ADDRESS or XOR-MAPPED-ADDRESS found in the " |
| "stun response message"; |
| return; |
| } |
| |
| for (size_t i = 0; i < port_->Candidates().size(); ++i) { |
| if (port_->Candidates()[i].address() == addr->GetAddress()) { |
| if (local_candidate_index_ != i) { |
| RTC_LOG(LS_INFO) << ToString() |
| << ": Updating local candidate type to srflx."; |
| local_candidate_index_ = i; |
| // SignalStateChange to force a re-sort in P2PTransportChannel as this |
| // Connection's local candidate has changed. |
| SignalStateChange(this); |
| } |
| return; |
| } |
| } |
| |
| // RFC 5245 |
| // Its priority is set equal to the value of the PRIORITY attribute |
| // in the Binding request. |
| const StunUInt32Attribute* priority_attr = |
| request->msg()->GetUInt32(STUN_ATTR_PRIORITY); |
| if (!priority_attr) { |
| RTC_LOG(LS_WARNING) << "Connection::OnConnectionRequestResponse - " |
| "No STUN_ATTR_PRIORITY found in the " |
| "stun response message"; |
| return; |
| } |
| const uint32_t priority = priority_attr->value(); |
| std::string id = rtc::CreateRandomString(8); |
| |
| Candidate new_local_candidate; |
| new_local_candidate.set_id(id); |
| new_local_candidate.set_component(local_candidate().component()); |
| new_local_candidate.set_type(PRFLX_PORT_TYPE); |
| new_local_candidate.set_protocol(local_candidate().protocol()); |
| new_local_candidate.set_address(addr->GetAddress()); |
| new_local_candidate.set_priority(priority); |
| new_local_candidate.set_username(local_candidate().username()); |
| new_local_candidate.set_password(local_candidate().password()); |
| new_local_candidate.set_network_name(local_candidate().network_name()); |
| new_local_candidate.set_network_type(local_candidate().network_type()); |
| new_local_candidate.set_related_address(local_candidate().address()); |
| new_local_candidate.set_generation(local_candidate().generation()); |
| new_local_candidate.set_foundation(ComputeFoundation( |
| PRFLX_PORT_TYPE, local_candidate().protocol(), |
| local_candidate().relay_protocol(), local_candidate().address())); |
| new_local_candidate.set_network_id(local_candidate().network_id()); |
| new_local_candidate.set_network_cost(local_candidate().network_cost()); |
| |
| // Change the local candidate of this Connection to the new prflx candidate. |
| RTC_LOG(LS_INFO) << ToString() << ": Updating local candidate type to prflx."; |
| local_candidate_index_ = port_->AddPrflxCandidate(new_local_candidate); |
| |
| // SignalStateChange to force a re-sort in P2PTransportChannel as this |
| // Connection's local candidate has changed. |
| SignalStateChange(this); |
| } |
| |
| bool Connection::rtt_converged() const { |
| return rtt_samples_ > (RTT_RATIO + 1); |
| } |
| |
| bool Connection::missing_responses(int64_t now) const { |
| if (pings_since_last_response_.empty()) { |
| return false; |
| } |
| |
| int64_t waiting = now - pings_since_last_response_[0].sent_time; |
| return waiting > 2 * rtt(); |
| } |
| |
| ProxyConnection::ProxyConnection(Port* port, |
| size_t index, |
| const Candidate& remote_candidate) |
| : Connection(port, index, remote_candidate) {} |
| |
| int ProxyConnection::Send(const void* data, |
| size_t size, |
| const rtc::PacketOptions& options) { |
| stats_.sent_total_packets++; |
| int sent = |
| port_->SendTo(data, size, remote_candidate_.address(), options, true); |
| if (sent <= 0) { |
| RTC_DCHECK(sent < 0); |
| error_ = port_->GetError(); |
| stats_.sent_discarded_packets++; |
| } else { |
| send_rate_tracker_.AddSamples(sent); |
| } |
| return sent; |
| } |
| |
| int ProxyConnection::GetError() { |
| return error_; |
| } |
| |
| } // namespace cricket |