|  | /* | 
|  | *  Copyright (c) 2016 The WebRTC project authors. All Rights Reserved. | 
|  | * | 
|  | *  Use of this source code is governed by a BSD-style license | 
|  | *  that can be found in the LICENSE file in the root of the source | 
|  | *  tree. An additional intellectual property rights grant can be found | 
|  | *  in the file PATENTS.  All contributing project authors may | 
|  | *  be found in the AUTHORS file in the root of the source tree. | 
|  | */ | 
|  |  | 
|  | #include "api/numerics/samples_stats_counter.h" | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <random> | 
|  | #include <vector> | 
|  |  | 
|  | #include "absl/algorithm/container.h" | 
|  | #include "test/gtest.h" | 
|  |  | 
|  | namespace webrtc { | 
|  | namespace { | 
|  |  | 
|  | SamplesStatsCounter CreateStatsFilledWithIntsFrom1ToN(int n) { | 
|  | std::vector<double> data; | 
|  | for (int i = 1; i <= n; i++) { | 
|  | data.push_back(i); | 
|  | } | 
|  | absl::c_shuffle(data, std::mt19937(std::random_device()())); | 
|  |  | 
|  | SamplesStatsCounter stats; | 
|  | for (double v : data) { | 
|  | stats.AddSample(v); | 
|  | } | 
|  | return stats; | 
|  | } | 
|  |  | 
|  | // Add n samples drawn from uniform distribution in [a;b]. | 
|  | SamplesStatsCounter CreateStatsFromUniformDistribution(int n, | 
|  | double a, | 
|  | double b) { | 
|  | std::mt19937 gen{std::random_device()()}; | 
|  | std::uniform_real_distribution<> dis(a, b); | 
|  |  | 
|  | SamplesStatsCounter stats; | 
|  | for (int i = 1; i <= n; i++) { | 
|  | stats.AddSample(dis(gen)); | 
|  | } | 
|  | return stats; | 
|  | } | 
|  |  | 
|  | class SamplesStatsCounterTest : public ::testing::TestWithParam<int> {}; | 
|  |  | 
|  | constexpr int SIZE_FOR_MERGE = 10; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, FullSimpleTest) { | 
|  | SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(100); | 
|  |  | 
|  | EXPECT_TRUE(!stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMax(), 100.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetSum(), 5050.0); | 
|  | EXPECT_NEAR(stats.GetAverage(), 50.5, 1e-6); | 
|  | for (int i = 1; i <= 100; i++) { | 
|  | double p = i / 100.0; | 
|  | EXPECT_GE(stats.GetPercentile(p), i); | 
|  | EXPECT_LT(stats.GetPercentile(p), i + 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, VarianceAndDeviation) { | 
|  | SamplesStatsCounter stats; | 
|  | stats.AddSample(2); | 
|  | stats.AddSample(2); | 
|  | stats.AddSample(-1); | 
|  | stats.AddSample(5); | 
|  |  | 
|  | EXPECT_DOUBLE_EQ(stats.GetAverage(), 2.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetVariance(), 4.5); | 
|  | EXPECT_DOUBLE_EQ(stats.GetStandardDeviation(), sqrt(4.5)); | 
|  | } | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, FractionPercentile) { | 
|  | SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(5); | 
|  |  | 
|  | EXPECT_DOUBLE_EQ(stats.GetPercentile(0.5), 3); | 
|  | } | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, TestBorderValues) { | 
|  | SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(5); | 
|  |  | 
|  | EXPECT_GE(stats.GetPercentile(0.01), 1); | 
|  | EXPECT_LT(stats.GetPercentile(0.01), 2); | 
|  | EXPECT_DOUBLE_EQ(stats.GetPercentile(1.0), 5); | 
|  | } | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, VarianceFromUniformDistribution) { | 
|  | // Check variance converge to 1/12 for [0;1) uniform distribution. | 
|  | // Acts as a sanity check for NumericStabilityForVariance test. | 
|  | SamplesStatsCounter stats = CreateStatsFromUniformDistribution(1e6, 0, 1); | 
|  |  | 
|  | EXPECT_NEAR(stats.GetVariance(), 1. / 12, 1e-3); | 
|  | } | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, NumericStabilityForVariance) { | 
|  | // Same test as VarianceFromUniformDistribution, | 
|  | // except the range is shifted to [1e9;1e9+1). | 
|  | // Variance should also converge to 1/12. | 
|  | // NB: Although we lose precision for the samples themselves, the fractional | 
|  | //     part still enjoys 22 bits of mantissa and errors should even out, | 
|  | //     so that couldn't explain a mismatch. | 
|  | SamplesStatsCounter stats = | 
|  | CreateStatsFromUniformDistribution(1e6, 1e9, 1e9 + 1); | 
|  |  | 
|  | EXPECT_NEAR(stats.GetVariance(), 1. / 12, 1e-3); | 
|  | } | 
|  |  | 
|  | TEST_P(SamplesStatsCounterTest, AddSamples) { | 
|  | int data[SIZE_FOR_MERGE] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; | 
|  | // Split the data in different partitions. | 
|  | // We have 11 distinct tests: | 
|  | //   * Empty merged with full sequence. | 
|  | //   * 1 sample merged with 9 last. | 
|  | //   * 2 samples merged with 8 last. | 
|  | //   [...] | 
|  | //   * Full merged with empty sequence. | 
|  | // All must lead to the same result. | 
|  | SamplesStatsCounter stats0, stats1; | 
|  | for (int i = 0; i < GetParam(); ++i) { | 
|  | stats0.AddSample(data[i]); | 
|  | } | 
|  | for (int i = GetParam(); i < SIZE_FOR_MERGE; ++i) { | 
|  | stats1.AddSample(data[i]); | 
|  | } | 
|  | stats0.AddSamples(stats1); | 
|  |  | 
|  | EXPECT_EQ(stats0.GetMin(), 0); | 
|  | EXPECT_EQ(stats0.GetMax(), 9); | 
|  | EXPECT_DOUBLE_EQ(stats0.GetAverage(), 4.5); | 
|  | EXPECT_DOUBLE_EQ(stats0.GetVariance(), 8.25); | 
|  | EXPECT_DOUBLE_EQ(stats0.GetStandardDeviation(), sqrt(8.25)); | 
|  | EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.1), 0.9); | 
|  | EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.5), 4.5); | 
|  | EXPECT_DOUBLE_EQ(stats0.GetPercentile(0.9), 8.1); | 
|  | } | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, MultiplyRight) { | 
|  | SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(10); | 
|  |  | 
|  | EXPECT_TRUE(!stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMax(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetAverage(), 5.5); | 
|  |  | 
|  | SamplesStatsCounter multiplied_stats = stats * 10; | 
|  | EXPECT_TRUE(!multiplied_stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(multiplied_stats.GetMin(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(multiplied_stats.GetMax(), 100.0); | 
|  | EXPECT_DOUBLE_EQ(multiplied_stats.GetAverage(), 55.0); | 
|  | EXPECT_EQ(multiplied_stats.GetSamples().size(), stats.GetSamples().size()); | 
|  |  | 
|  | // Check that origin stats were not modified. | 
|  | EXPECT_TRUE(!stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMax(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetAverage(), 5.5); | 
|  | } | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, MultiplyLeft) { | 
|  | SamplesStatsCounter stats = CreateStatsFilledWithIntsFrom1ToN(10); | 
|  |  | 
|  | EXPECT_TRUE(!stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMax(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetAverage(), 5.5); | 
|  |  | 
|  | SamplesStatsCounter multiplied_stats = 10 * stats; | 
|  | EXPECT_TRUE(!multiplied_stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(multiplied_stats.GetMin(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(multiplied_stats.GetMax(), 100.0); | 
|  | EXPECT_DOUBLE_EQ(multiplied_stats.GetAverage(), 55.0); | 
|  | EXPECT_EQ(multiplied_stats.GetSamples().size(), stats.GetSamples().size()); | 
|  |  | 
|  | // Check that origin stats were not modified. | 
|  | EXPECT_TRUE(!stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMin(), 1.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMax(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetAverage(), 5.5); | 
|  | } | 
|  |  | 
|  | TEST(SamplesStatsCounterTest, Divide) { | 
|  | SamplesStatsCounter stats; | 
|  | for (int i = 1; i <= 10; i++) { | 
|  | stats.AddSample(i * 10); | 
|  | } | 
|  |  | 
|  | EXPECT_TRUE(!stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMin(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMax(), 100.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetAverage(), 55.0); | 
|  |  | 
|  | SamplesStatsCounter divided_stats = stats / 10; | 
|  | EXPECT_TRUE(!divided_stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(divided_stats.GetMin(), 1.0); | 
|  | EXPECT_DOUBLE_EQ(divided_stats.GetMax(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(divided_stats.GetAverage(), 5.5); | 
|  | EXPECT_EQ(divided_stats.GetSamples().size(), stats.GetSamples().size()); | 
|  |  | 
|  | // Check that origin stats were not modified. | 
|  | EXPECT_TRUE(!stats.IsEmpty()); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMin(), 10.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetMax(), 100.0); | 
|  | EXPECT_DOUBLE_EQ(stats.GetAverage(), 55.0); | 
|  | } | 
|  |  | 
|  | INSTANTIATE_TEST_SUITE_P(SamplesStatsCounterTests, | 
|  | SamplesStatsCounterTest, | 
|  | ::testing::Range(0, SIZE_FOR_MERGE + 1)); | 
|  |  | 
|  | }  // namespace webrtc |