blob: 2fd5d2002c0723b2b4eb72a056e0b988b82d8e90 [file] [log] [blame]
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <memory>
#include <vector>
#include "modules/rtp_rtcp/source/rtp_format_vp9.h"
#include "modules/rtp_rtcp/source/rtp_packet_to_send.h"
#include "test/gmock.h"
#include "test/gtest.h"
#include "typedefs.h"
namespace webrtc {
namespace {
void VerifyHeader(const RTPVideoHeaderVP9& expected,
const RTPVideoHeaderVP9& actual) {
EXPECT_EQ(expected.inter_layer_predicted, actual.inter_layer_predicted);
EXPECT_EQ(expected.inter_pic_predicted, actual.inter_pic_predicted);
EXPECT_EQ(expected.flexible_mode, actual.flexible_mode);
EXPECT_EQ(expected.beginning_of_frame, actual.beginning_of_frame);
EXPECT_EQ(expected.end_of_frame, actual.end_of_frame);
EXPECT_EQ(expected.ss_data_available, actual.ss_data_available);
EXPECT_EQ(expected.picture_id, actual.picture_id);
EXPECT_EQ(expected.max_picture_id, actual.max_picture_id);
EXPECT_EQ(expected.temporal_idx, actual.temporal_idx);
EXPECT_EQ(expected.spatial_idx == kNoSpatialIdx ? 0 : expected.spatial_idx,
actual.spatial_idx);
EXPECT_EQ(expected.gof_idx, actual.gof_idx);
EXPECT_EQ(expected.tl0_pic_idx, actual.tl0_pic_idx);
EXPECT_EQ(expected.temporal_up_switch, actual.temporal_up_switch);
EXPECT_EQ(expected.num_ref_pics, actual.num_ref_pics);
for (uint8_t i = 0; i < expected.num_ref_pics; ++i) {
EXPECT_EQ(expected.pid_diff[i], actual.pid_diff[i]);
EXPECT_EQ(expected.ref_picture_id[i], actual.ref_picture_id[i]);
}
if (expected.ss_data_available) {
EXPECT_EQ(expected.spatial_layer_resolution_present,
actual.spatial_layer_resolution_present);
EXPECT_EQ(expected.num_spatial_layers, actual.num_spatial_layers);
if (expected.spatial_layer_resolution_present) {
for (size_t i = 0; i < expected.num_spatial_layers; i++) {
EXPECT_EQ(expected.width[i], actual.width[i]);
EXPECT_EQ(expected.height[i], actual.height[i]);
}
}
EXPECT_EQ(expected.gof.num_frames_in_gof, actual.gof.num_frames_in_gof);
for (size_t i = 0; i < expected.gof.num_frames_in_gof; i++) {
EXPECT_EQ(expected.gof.temporal_up_switch[i],
actual.gof.temporal_up_switch[i]);
EXPECT_EQ(expected.gof.temporal_idx[i], actual.gof.temporal_idx[i]);
EXPECT_EQ(expected.gof.num_ref_pics[i], actual.gof.num_ref_pics[i]);
for (uint8_t j = 0; j < expected.gof.num_ref_pics[i]; j++) {
EXPECT_EQ(expected.gof.pid_diff[i][j], actual.gof.pid_diff[i][j]);
}
}
}
}
void VerifyPayload(const RtpDepacketizer::ParsedPayload& parsed,
const uint8_t* payload,
size_t payload_length) {
EXPECT_EQ(payload, parsed.payload);
EXPECT_EQ(payload_length, parsed.payload_length);
EXPECT_THAT(std::vector<uint8_t>(parsed.payload,
parsed.payload + parsed.payload_length),
::testing::ElementsAreArray(payload, payload_length));
}
void ParseAndCheckPacket(const uint8_t* packet,
const RTPVideoHeaderVP9& expected,
size_t expected_hdr_length,
size_t expected_length) {
std::unique_ptr<RtpDepacketizer> depacketizer(new RtpDepacketizerVp9());
RtpDepacketizer::ParsedPayload parsed;
ASSERT_TRUE(depacketizer->Parse(&parsed, packet, expected_length));
EXPECT_EQ(kRtpVideoVp9, parsed.type.Video.codec);
VerifyHeader(expected, parsed.type.Video.codecHeader.VP9);
const size_t kExpectedPayloadLength = expected_length - expected_hdr_length;
VerifyPayload(parsed, packet + expected_hdr_length, kExpectedPayloadLength);
}
} // namespace
// Payload descriptor for flexible mode
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |I|P|L|F|B|E|V|-| (REQUIRED)
// +-+-+-+-+-+-+-+-+
// I: |M| PICTURE ID | (RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// M: | EXTENDED PID | (RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// L: | T |U| S |D| (CONDITIONALLY RECOMMENDED)
// +-+-+-+-+-+-+-+-+ -|
// P,F: | P_DIFF |N| (CONDITIONALLY RECOMMENDED) . up to 3 times
// +-+-+-+-+-+-+-+-+ -|
// V: | SS |
// | .. |
// +-+-+-+-+-+-+-+-+
//
// Payload descriptor for non-flexible mode
// 0 1 2 3 4 5 6 7
// +-+-+-+-+-+-+-+-+
// |I|P|L|F|B|E|V|-| (REQUIRED)
// +-+-+-+-+-+-+-+-+
// I: |M| PICTURE ID | (RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// M: | EXTENDED PID | (RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// L: | T |U| S |D| (CONDITIONALLY RECOMMENDED)
// +-+-+-+-+-+-+-+-+
// | TL0PICIDX | (CONDITIONALLY REQUIRED)
// +-+-+-+-+-+-+-+-+
// V: | SS |
// | .. |
// +-+-+-+-+-+-+-+-+
class RtpPacketizerVp9Test : public ::testing::Test {
protected:
static constexpr RtpPacketToSend::ExtensionManager* kNoExtensions = nullptr;
static constexpr size_t kMaxPacketSize = 1200;
RtpPacketizerVp9Test() : packet_(kNoExtensions, kMaxPacketSize) {}
virtual void SetUp() {
expected_.InitRTPVideoHeaderVP9();
}
RtpPacketToSend packet_;
std::unique_ptr<uint8_t[]> payload_;
size_t payload_size_;
size_t payload_pos_;
RTPVideoHeaderVP9 expected_;
std::unique_ptr<RtpPacketizerVp9> packetizer_;
size_t num_packets_;
void Init(size_t payload_size, size_t packet_size) {
payload_.reset(new uint8_t[payload_size]);
memset(payload_.get(), 7, payload_size);
payload_size_ = payload_size;
payload_pos_ = 0;
packetizer_.reset(new RtpPacketizerVp9(expected_, packet_size,
/*last_packet_reduction_len=*/0));
num_packets_ =
packetizer_->SetPayloadData(payload_.get(), payload_size_, nullptr);
}
void CheckPayload(const uint8_t* packet,
size_t start_pos,
size_t end_pos,
bool last) {
for (size_t i = start_pos; i < end_pos; ++i) {
EXPECT_EQ(packet[i], payload_[payload_pos_++]);
}
EXPECT_EQ(last, payload_pos_ == payload_size_);
}
void CreateParseAndCheckPackets(const size_t* expected_hdr_sizes,
const size_t* expected_sizes,
size_t expected_num_packets) {
ASSERT_TRUE(packetizer_.get() != NULL);
if (expected_num_packets == 0) {
EXPECT_FALSE(packetizer_->NextPacket(&packet_));
return;
}
EXPECT_EQ(expected_num_packets, num_packets_);
for (size_t i = 0; i < expected_num_packets; ++i) {
EXPECT_TRUE(packetizer_->NextPacket(&packet_));
auto rtp_payload = packet_.payload();
EXPECT_EQ(expected_sizes[i], rtp_payload.size());
RTPVideoHeaderVP9 hdr = expected_;
hdr.beginning_of_frame = (i == 0);
hdr.end_of_frame = (i + 1) == expected_num_packets;
ParseAndCheckPacket(rtp_payload.data(), hdr, expected_hdr_sizes[i],
rtp_payload.size());
CheckPayload(rtp_payload.data(), expected_hdr_sizes[i],
rtp_payload.size(), (i + 1) == expected_num_packets);
expected_.ss_data_available = false;
}
}
};
TEST_F(RtpPacketizerVp9Test, TestEqualSizedMode_OnePacket) {
const size_t kFrameSize = 25;
const size_t kPacketSize = 26;
Init(kFrameSize, kPacketSize);
// One packet:
// I:0, P:0, L:0, F:0, B:1, E:1, V:0 (1hdr + 25 payload)
const size_t kExpectedHdrSizes[] = {1};
const size_t kExpectedSizes[] = {26};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestEqualSizedMode_TwoPackets) {
const size_t kFrameSize = 27;
const size_t kPacketSize = 27;
Init(kFrameSize, kPacketSize);
// Two packets:
// I:0, P:0, L:0, F:0, B:1, E:0, V:0 (1hdr + 14 payload)
// I:0, P:0, L:0, F:0, B:0, E:1, V:0 (1hdr + 13 payload)
const size_t kExpectedHdrSizes[] = {1, 1};
const size_t kExpectedSizes[] = {14, 15};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestTooShortBufferToFitPayload) {
const size_t kFrameSize = 1;
const size_t kPacketSize = 1;
Init(kFrameSize, kPacketSize); // 1hdr + 1 payload
const size_t kExpectedNum = 0;
CreateParseAndCheckPackets(NULL, NULL, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestOneBytePictureId) {
const size_t kFrameSize = 30;
const size_t kPacketSize = 12;
expected_.picture_id = kMaxOneBytePictureId; // 2 byte payload descriptor
expected_.max_picture_id = kMaxOneBytePictureId;
Init(kFrameSize, kPacketSize);
// Three packets:
// I:1, P:0, L:0, F:0, B:1, E:0, V:0 (2hdr + 10 payload)
// I:1, P:0, L:0, F:0, B:0, E:0, V:0 (2hdr + 10 payload)
// I:1, P:0, L:0, F:0, B:0, E:1, V:0 (2hdr + 10 payload)
const size_t kExpectedHdrSizes[] = {2, 2, 2};
const size_t kExpectedSizes[] = {12, 12, 12};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestTwoBytePictureId) {
const size_t kFrameSize = 31;
const size_t kPacketSize = 13;
expected_.picture_id = kMaxTwoBytePictureId; // 3 byte payload descriptor
Init(kFrameSize, kPacketSize);
// Four packets:
// I:1, P:0, L:0, F:0, B:1, E:0, V:0 (3hdr + 8 payload)
// I:1, P:0, L:0, F:0, B:0, E:0, V:0 (3hdr + 8 payload)
// I:1, P:0, L:0, F:0, B:0, E:0, V:0 (3hdr + 8 payload)
// I:1, P:0, L:0, F:0, B:0, E:1, V:0 (3hdr + 7 payload)
const size_t kExpectedHdrSizes[] = {3, 3, 3, 3};
const size_t kExpectedSizes[] = {10, 11, 11, 11};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestLayerInfoWithNonFlexibleMode) {
const size_t kFrameSize = 30;
const size_t kPacketSize = 25;
expected_.temporal_idx = 3;
expected_.temporal_up_switch = true; // U
expected_.num_spatial_layers = 3;
expected_.spatial_idx = 2;
expected_.inter_layer_predicted = true; // D
expected_.tl0_pic_idx = 117;
Init(kFrameSize, kPacketSize);
// Two packets:
// | I:0, P:0, L:1, F:0, B:1, E:0, V:0 | (3hdr + 15 payload)
// L: | T:3, U:1, S:2, D:1 | TL0PICIDX:117 |
// | I:0, P:0, L:1, F:0, B:0, E:1, V:0 | (3hdr + 15 payload)
// L: | T:3, U:1, S:2, D:1 | TL0PICIDX:117 |
const size_t kExpectedHdrSizes[] = {3, 3};
const size_t kExpectedSizes[] = {18, 18};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestLayerInfoWithFlexibleMode) {
const size_t kFrameSize = 21;
const size_t kPacketSize = 23;
expected_.flexible_mode = true;
expected_.temporal_idx = 3;
expected_.temporal_up_switch = true; // U
expected_.num_spatial_layers = 3;
expected_.spatial_idx = 2;
expected_.inter_layer_predicted = false; // D
Init(kFrameSize, kPacketSize);
// One packet:
// I:0, P:0, L:1, F:1, B:1, E:1, V:0 (2hdr + 21 payload)
// L: T:3, U:1, S:2, D:0
const size_t kExpectedHdrSizes[] = {2};
const size_t kExpectedSizes[] = {23};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestRefIdx) {
const size_t kFrameSize = 16;
const size_t kPacketSize = 21;
expected_.inter_pic_predicted = true; // P
expected_.flexible_mode = true; // F
expected_.picture_id = 2;
expected_.max_picture_id = kMaxOneBytePictureId;
expected_.num_ref_pics = 3;
expected_.pid_diff[0] = 1;
expected_.pid_diff[1] = 3;
expected_.pid_diff[2] = 127;
expected_.ref_picture_id[0] = 1; // 2 - 1 = 1
expected_.ref_picture_id[1] = 127; // (kMaxPictureId + 1) + 2 - 3 = 127
expected_.ref_picture_id[2] = 3; // (kMaxPictureId + 1) + 2 - 127 = 3
Init(kFrameSize, kPacketSize);
// Two packets:
// I:1, P:1, L:0, F:1, B:1, E:1, V:0 (5hdr + 16 payload)
// I: 2
// P,F: P_DIFF:1, N:1
// P_DIFF:3, N:1
// P_DIFF:127, N:0
const size_t kExpectedHdrSizes[] = {5};
const size_t kExpectedSizes[] = {21};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestRefIdxFailsWithoutPictureId) {
const size_t kFrameSize = 16;
const size_t kPacketSize = 21;
expected_.inter_pic_predicted = true;
expected_.flexible_mode = true;
expected_.num_ref_pics = 1;
expected_.pid_diff[0] = 3;
Init(kFrameSize, kPacketSize);
const size_t kExpectedNum = 0;
CreateParseAndCheckPackets(NULL, NULL, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestSsDataWithoutSpatialResolutionPresent) {
const size_t kFrameSize = 21;
const size_t kPacketSize = 26;
expected_.ss_data_available = true;
expected_.num_spatial_layers = 1;
expected_.spatial_layer_resolution_present = false;
expected_.gof.num_frames_in_gof = 1;
expected_.gof.temporal_idx[0] = 0;
expected_.gof.temporal_up_switch[0] = true;
expected_.gof.num_ref_pics[0] = 1;
expected_.gof.pid_diff[0][0] = 4;
Init(kFrameSize, kPacketSize);
// One packet:
// I:0, P:0, L:0, F:0, B:1, E:1, V:1 (5hdr + 21 payload)
// N_S:0, Y:0, G:1
// N_G:1
// T:0, U:1, R:1 | P_DIFF[0][0]:4
const size_t kExpectedHdrSizes[] = {5};
const size_t kExpectedSizes[] = {26};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestSsDataWithoutGbitPresent) {
const size_t kFrameSize = 21;
const size_t kPacketSize = 23;
expected_.ss_data_available = true;
expected_.num_spatial_layers = 1;
expected_.spatial_layer_resolution_present = false;
expected_.gof.num_frames_in_gof = 0;
Init(kFrameSize, kPacketSize);
// One packet:
// I:0, P:0, L:0, F:0, B:1, E:1, V:1 (2hdr + 21 payload)
// N_S:0, Y:0, G:0
const size_t kExpectedHdrSizes[] = {2};
const size_t kExpectedSizes[] = {23};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestSsData) {
const size_t kFrameSize = 21;
const size_t kPacketSize = 40;
expected_.ss_data_available = true;
expected_.num_spatial_layers = 2;
expected_.spatial_layer_resolution_present = true;
expected_.width[0] = 640;
expected_.width[1] = 1280;
expected_.height[0] = 360;
expected_.height[1] = 720;
expected_.gof.num_frames_in_gof = 3;
expected_.gof.temporal_idx[0] = 0;
expected_.gof.temporal_idx[1] = 1;
expected_.gof.temporal_idx[2] = 2;
expected_.gof.temporal_up_switch[0] = true;
expected_.gof.temporal_up_switch[1] = true;
expected_.gof.temporal_up_switch[2] = false;
expected_.gof.num_ref_pics[0] = 0;
expected_.gof.num_ref_pics[1] = 3;
expected_.gof.num_ref_pics[2] = 2;
expected_.gof.pid_diff[1][0] = 5;
expected_.gof.pid_diff[1][1] = 6;
expected_.gof.pid_diff[1][2] = 7;
expected_.gof.pid_diff[2][0] = 8;
expected_.gof.pid_diff[2][1] = 9;
Init(kFrameSize, kPacketSize);
// One packet:
// I:0, P:0, L:0, F:0, B:1, E:1, V:1 (19hdr + 21 payload)
// N_S:1, Y:1, G:1
// WIDTH:640 // 2 bytes
// HEIGHT:360 // 2 bytes
// WIDTH:1280 // 2 bytes
// HEIGHT:720 // 2 bytes
// N_G:3
// T:0, U:1, R:0
// T:1, U:1, R:3 | P_DIFF[1][0]:5 | P_DIFF[1][1]:6 | P_DIFF[1][2]:7
// T:2, U:0, R:2 | P_DIFF[2][0]:8 | P_DIFF[2][0]:9
const size_t kExpectedHdrSizes[] = {19};
const size_t kExpectedSizes[] = {40};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestSsDataDoesNotFitInAveragePacket) {
const size_t kFrameSize = 24;
const size_t kPacketSize = 20;
expected_.ss_data_available = true;
expected_.num_spatial_layers = 2;
expected_.spatial_layer_resolution_present = true;
expected_.width[0] = 640;
expected_.width[1] = 1280;
expected_.height[0] = 360;
expected_.height[1] = 720;
expected_.gof.num_frames_in_gof = 3;
expected_.gof.temporal_idx[0] = 0;
expected_.gof.temporal_idx[1] = 1;
expected_.gof.temporal_idx[2] = 2;
expected_.gof.temporal_up_switch[0] = true;
expected_.gof.temporal_up_switch[1] = true;
expected_.gof.temporal_up_switch[2] = false;
expected_.gof.num_ref_pics[0] = 0;
expected_.gof.num_ref_pics[1] = 3;
expected_.gof.num_ref_pics[2] = 2;
expected_.gof.pid_diff[1][0] = 5;
expected_.gof.pid_diff[1][1] = 6;
expected_.gof.pid_diff[1][2] = 7;
expected_.gof.pid_diff[2][0] = 8;
expected_.gof.pid_diff[2][1] = 9;
Init(kFrameSize, kPacketSize);
// Three packets:
// I:0, P:0, L:0, F:0, B:1, E:1, V:1 (19hdr + 1 payload)
// N_S:1, Y:1, G:1
// WIDTH:640 // 2 bytes
// HEIGHT:360 // 2 bytes
// WIDTH:1280 // 2 bytes
// HEIGHT:720 // 2 bytes
// N_G:3
// T:0, U:1, R:0
// T:1, U:1, R:3 | P_DIFF[1][0]:5 | P_DIFF[1][1]:6 | P_DIFF[1][2]:7
// T:2, U:0, R:2 | P_DIFF[2][0]:8 | P_DIFF[2][0]:9
// Last two packets 1 bytes vp9 hdrs and the rest of payload 14 and 9 bytes.
const size_t kExpectedHdrSizes[] = {19, 1, 1};
const size_t kExpectedSizes[] = {20, 15, 10};
const size_t kExpectedNum = GTEST_ARRAY_SIZE_(kExpectedSizes);
CreateParseAndCheckPackets(kExpectedHdrSizes, kExpectedSizes, kExpectedNum);
}
TEST_F(RtpPacketizerVp9Test, TestOnlyHighestSpatialLayerSetMarker) {
const size_t kFrameSize = 10;
const size_t kPacketSize = 8;
const size_t kLastPacketReductionLen = 0;
const uint8_t kFrame[kFrameSize] = {7};
const RTPFragmentationHeader* kNoFragmentation = nullptr;
RTPVideoHeaderVP9 vp9_header;
vp9_header.InitRTPVideoHeaderVP9();
vp9_header.flexible_mode = true;
vp9_header.num_spatial_layers = 3;
RtpPacketToSend packet(kNoExtensions);
vp9_header.spatial_idx = 0;
RtpPacketizerVp9 packetizer0(vp9_header, kPacketSize,
kLastPacketReductionLen);
packetizer0.SetPayloadData(kFrame, sizeof(kFrame), kNoFragmentation);
ASSERT_TRUE(packetizer0.NextPacket(&packet));
EXPECT_FALSE(packet.Marker());
ASSERT_TRUE(packetizer0.NextPacket(&packet));
EXPECT_FALSE(packet.Marker());
vp9_header.spatial_idx = 1;
RtpPacketizerVp9 packetizer1(vp9_header, kPacketSize,
kLastPacketReductionLen);
packetizer1.SetPayloadData(kFrame, sizeof(kFrame), kNoFragmentation);
ASSERT_TRUE(packetizer1.NextPacket(&packet));
EXPECT_FALSE(packet.Marker());
ASSERT_TRUE(packetizer1.NextPacket(&packet));
EXPECT_FALSE(packet.Marker());
vp9_header.spatial_idx = 2;
RtpPacketizerVp9 packetizer2(vp9_header, kPacketSize,
kLastPacketReductionLen);
packetizer2.SetPayloadData(kFrame, sizeof(kFrame), kNoFragmentation);
ASSERT_TRUE(packetizer2.NextPacket(&packet));
EXPECT_FALSE(packet.Marker());
ASSERT_TRUE(packetizer2.NextPacket(&packet));
EXPECT_TRUE(packet.Marker());
}
TEST_F(RtpPacketizerVp9Test, TestGeneratesMinimumNumberOfPackets) {
const size_t kFrameSize = 10;
const size_t kPacketSize = 8;
const size_t kLastPacketReductionLen = 0;
// Calculated by hand. One packet can contain
// |kPacketSize| - |kVp9MinDiscriptorSize| = 6 bytes of the frame payload,
// thus to fit 10 bytes two packets are required.
const size_t kMinNumberOfPackets = 2;
const uint8_t kFrame[kFrameSize] = {7};
const RTPFragmentationHeader* kNoFragmentation = nullptr;
RTPVideoHeaderVP9 vp9_header;
vp9_header.InitRTPVideoHeaderVP9();
RtpPacketToSend packet(kNoExtensions);
RtpPacketizerVp9 packetizer(vp9_header, kPacketSize, kLastPacketReductionLen);
EXPECT_EQ(kMinNumberOfPackets, packetizer.SetPayloadData(
kFrame, sizeof(kFrame), kNoFragmentation));
ASSERT_TRUE(packetizer.NextPacket(&packet));
EXPECT_FALSE(packet.Marker());
ASSERT_TRUE(packetizer.NextPacket(&packet));
EXPECT_TRUE(packet.Marker());
}
TEST_F(RtpPacketizerVp9Test, TestRespectsLastPacketReductionLen) {
const size_t kFrameSize = 10;
const size_t kPacketSize = 8;
const size_t kLastPacketReductionLen = 5;
// Calculated by hand. VP9 payload descriptor is 2 bytes. Like in the test
// above, 1 packet is not enough. 2 packets can contain
// 2*(|kPacketSize| - |kVp9MinDiscriptorSize|) - |kLastPacketReductionLen| = 7
// But three packets are enough, since they have capacity of 3*(8-2)-5=13
// bytes.
const size_t kMinNumberOfPackets = 3;
const uint8_t kFrame[kFrameSize] = {7};
const RTPFragmentationHeader* kNoFragmentation = nullptr;
RTPVideoHeaderVP9 vp9_header;
vp9_header.InitRTPVideoHeaderVP9();
vp9_header.flexible_mode = true;
RtpPacketToSend packet(kNoExtensions);
RtpPacketizerVp9 packetizer0(vp9_header, kPacketSize,
kLastPacketReductionLen);
EXPECT_EQ(
packetizer0.SetPayloadData(kFrame, sizeof(kFrame), kNoFragmentation),
kMinNumberOfPackets);
ASSERT_TRUE(packetizer0.NextPacket(&packet));
EXPECT_FALSE(packet.Marker());
ASSERT_TRUE(packetizer0.NextPacket(&packet));
EXPECT_FALSE(packet.Marker());
ASSERT_TRUE(packetizer0.NextPacket(&packet));
EXPECT_TRUE(packet.Marker());
}
class RtpDepacketizerVp9Test : public ::testing::Test {
protected:
RtpDepacketizerVp9Test()
: depacketizer_(new RtpDepacketizerVp9()) {}
virtual void SetUp() {
expected_.InitRTPVideoHeaderVP9();
}
RTPVideoHeaderVP9 expected_;
std::unique_ptr<RtpDepacketizer> depacketizer_;
};
TEST_F(RtpDepacketizerVp9Test, ParseBasicHeader) {
const uint8_t kHeaderLength = 1;
uint8_t packet[4] = {0};
packet[0] = 0x0C; // I:0 P:0 L:0 F:0 B:1 E:1 V:0 R:0
expected_.beginning_of_frame = true;
expected_.end_of_frame = true;
ParseAndCheckPacket(packet, expected_, kHeaderLength, sizeof(packet));
}
TEST_F(RtpDepacketizerVp9Test, ParseOneBytePictureId) {
const uint8_t kHeaderLength = 2;
uint8_t packet[10] = {0};
packet[0] = 0x80; // I:1 P:0 L:0 F:0 B:0 E:0 V:0 R:0
packet[1] = kMaxOneBytePictureId;
expected_.picture_id = kMaxOneBytePictureId;
expected_.max_picture_id = kMaxOneBytePictureId;
ParseAndCheckPacket(packet, expected_, kHeaderLength, sizeof(packet));
}
TEST_F(RtpDepacketizerVp9Test, ParseTwoBytePictureId) {
const uint8_t kHeaderLength = 3;
uint8_t packet[10] = {0};
packet[0] = 0x80; // I:1 P:0 L:0 F:0 B:0 E:0 V:0 R:0
packet[1] = 0x80 | ((kMaxTwoBytePictureId >> 8) & 0x7F);
packet[2] = kMaxTwoBytePictureId & 0xFF;
expected_.picture_id = kMaxTwoBytePictureId;
expected_.max_picture_id = kMaxTwoBytePictureId;
ParseAndCheckPacket(packet, expected_, kHeaderLength, sizeof(packet));
}
TEST_F(RtpDepacketizerVp9Test, ParseLayerInfoWithNonFlexibleMode) {
const uint8_t kHeaderLength = 3;
const uint8_t kTemporalIdx = 2;
const uint8_t kUbit = 1;
const uint8_t kSpatialIdx = 1;
const uint8_t kDbit = 1;
const uint8_t kTl0PicIdx = 17;
uint8_t packet[13] = {0};
packet[0] = 0x20; // I:0 P:0 L:1 F:0 B:0 E:0 V:0 R:0
packet[1] = (kTemporalIdx << 5) | (kUbit << 4) | (kSpatialIdx << 1) | kDbit;
packet[2] = kTl0PicIdx;
// T:2 U:1 S:1 D:1
// TL0PICIDX:17
expected_.temporal_idx = kTemporalIdx;
expected_.temporal_up_switch = kUbit ? true : false;
expected_.spatial_idx = kSpatialIdx;
expected_.inter_layer_predicted = kDbit ? true : false;
expected_.tl0_pic_idx = kTl0PicIdx;
ParseAndCheckPacket(packet, expected_, kHeaderLength, sizeof(packet));
}
TEST_F(RtpDepacketizerVp9Test, ParseLayerInfoWithFlexibleMode) {
const uint8_t kHeaderLength = 2;
const uint8_t kTemporalIdx = 2;
const uint8_t kUbit = 1;
const uint8_t kSpatialIdx = 0;
const uint8_t kDbit = 0;
uint8_t packet[13] = {0};
packet[0] = 0x38; // I:0 P:0 L:1 F:1 B:1 E:0 V:0 R:0
packet[1] = (kTemporalIdx << 5) | (kUbit << 4) | (kSpatialIdx << 1) | kDbit;
// I:0 P:0 L:1 F:1 B:1 E:0 V:0
// L: T:2 U:1 S:0 D:0
expected_.beginning_of_frame = true;
expected_.flexible_mode = true;
expected_.temporal_idx = kTemporalIdx;
expected_.temporal_up_switch = kUbit ? true : false;
expected_.spatial_idx = kSpatialIdx;
expected_.inter_layer_predicted = kDbit ? true : false;
ParseAndCheckPacket(packet, expected_, kHeaderLength, sizeof(packet));
}
TEST_F(RtpDepacketizerVp9Test, ParseRefIdx) {
const uint8_t kHeaderLength = 6;
const int16_t kPictureId = 17;
const uint8_t kPdiff1 = 17;
const uint8_t kPdiff2 = 18;
const uint8_t kPdiff3 = 127;
uint8_t packet[13] = {0};
packet[0] = 0xD8; // I:1 P:1 L:0 F:1 B:1 E:0 V:0 R:0
packet[1] = 0x80 | ((kPictureId >> 8) & 0x7F); // Two byte pictureID.
packet[2] = kPictureId;
packet[3] = (kPdiff1 << 1) | 1; // P_DIFF N:1
packet[4] = (kPdiff2 << 1) | 1; // P_DIFF N:1
packet[5] = (kPdiff3 << 1) | 0; // P_DIFF N:0
// I:1 P:1 L:0 F:1 B:1 E:0 V:0
// I: PICTURE ID:17
// I:
// P,F: P_DIFF:17 N:1 => refPicId = 17 - 17 = 0
// P,F: P_DIFF:18 N:1 => refPicId = (kMaxPictureId + 1) + 17 - 18 = 0x7FFF
// P,F: P_DIFF:127 N:0 => refPicId = (kMaxPictureId + 1) + 17 - 127 = 32658
expected_.beginning_of_frame = true;
expected_.inter_pic_predicted = true;
expected_.flexible_mode = true;
expected_.picture_id = kPictureId;
expected_.num_ref_pics = 3;
expected_.pid_diff[0] = kPdiff1;
expected_.pid_diff[1] = kPdiff2;
expected_.pid_diff[2] = kPdiff3;
expected_.ref_picture_id[0] = 0;
expected_.ref_picture_id[1] = 0x7FFF;
expected_.ref_picture_id[2] = 32658;
ParseAndCheckPacket(packet, expected_, kHeaderLength, sizeof(packet));
}
TEST_F(RtpDepacketizerVp9Test, ParseRefIdxFailsWithNoPictureId) {
const uint8_t kPdiff = 3;
uint8_t packet[13] = {0};
packet[0] = 0x58; // I:0 P:1 L:0 F:1 B:1 E:0 V:0 R:0
packet[1] = (kPdiff << 1); // P,F: P_DIFF:3 N:0
RtpDepacketizer::ParsedPayload parsed;
EXPECT_FALSE(depacketizer_->Parse(&parsed, packet, sizeof(packet)));
}
TEST_F(RtpDepacketizerVp9Test, ParseRefIdxFailsWithTooManyRefPics) {
const uint8_t kPdiff = 3;
uint8_t packet[13] = {0};
packet[0] = 0xD8; // I:1 P:1 L:0 F:1 B:1 E:0 V:0 R:0
packet[1] = kMaxOneBytePictureId; // I: PICTURE ID:127
packet[2] = (kPdiff << 1) | 1; // P,F: P_DIFF:3 N:1
packet[3] = (kPdiff << 1) | 1; // P,F: P_DIFF:3 N:1
packet[4] = (kPdiff << 1) | 1; // P,F: P_DIFF:3 N:1
packet[5] = (kPdiff << 1) | 0; // P,F: P_DIFF:3 N:0
RtpDepacketizer::ParsedPayload parsed;
EXPECT_FALSE(depacketizer_->Parse(&parsed, packet, sizeof(packet)));
}
TEST_F(RtpDepacketizerVp9Test, ParseSsData) {
const uint8_t kHeaderLength = 6;
const uint8_t kYbit = 0;
const size_t kNs = 2;
const size_t kNg = 2;
uint8_t packet[23] = {0};
packet[0] = 0x0A; // I:0 P:0 L:0 F:0 B:1 E:0 V:1 R:0
packet[1] = ((kNs - 1) << 5) | (kYbit << 4) | (1 << 3); // N_S Y G:1 -
packet[2] = kNg; // N_G
packet[3] = (0 << 5) | (1 << 4) | (0 << 2) | 0; // T:0 U:1 R:0 -
packet[4] = (2 << 5) | (0 << 4) | (1 << 2) | 0; // T:2 U:0 R:1 -
packet[5] = 33;
expected_.beginning_of_frame = true;
expected_.ss_data_available = true;
expected_.num_spatial_layers = kNs;
expected_.spatial_layer_resolution_present = kYbit ? true : false;
expected_.gof.num_frames_in_gof = kNg;
expected_.gof.temporal_idx[0] = 0;
expected_.gof.temporal_idx[1] = 2;
expected_.gof.temporal_up_switch[0] = true;
expected_.gof.temporal_up_switch[1] = false;
expected_.gof.num_ref_pics[0] = 0;
expected_.gof.num_ref_pics[1] = 1;
expected_.gof.pid_diff[1][0] = 33;
ParseAndCheckPacket(packet, expected_, kHeaderLength, sizeof(packet));
}
TEST_F(RtpDepacketizerVp9Test, ParseFirstPacketInKeyFrame) {
uint8_t packet[2] = {0};
packet[0] = 0x08; // I:0 P:0 L:0 F:0 B:1 E:0 V:0 R:0
RtpDepacketizer::ParsedPayload parsed;
ASSERT_TRUE(depacketizer_->Parse(&parsed, packet, sizeof(packet)));
EXPECT_EQ(kVideoFrameKey, parsed.frame_type);
EXPECT_TRUE(parsed.type.Video.is_first_packet_in_frame);
}
TEST_F(RtpDepacketizerVp9Test, ParseLastPacketInDeltaFrame) {
uint8_t packet[2] = {0};
packet[0] = 0x44; // I:0 P:1 L:0 F:0 B:0 E:1 V:0 R:0
RtpDepacketizer::ParsedPayload parsed;
ASSERT_TRUE(depacketizer_->Parse(&parsed, packet, sizeof(packet)));
EXPECT_EQ(kVideoFrameDelta, parsed.frame_type);
EXPECT_FALSE(parsed.type.Video.is_first_packet_in_frame);
}
TEST_F(RtpDepacketizerVp9Test, ParseResolution) {
const uint16_t kWidth[2] = {640, 1280};
const uint16_t kHeight[2] = {360, 720};
uint8_t packet[20] = {0};
packet[0] = 0x0A; // I:0 P:0 L:0 F:0 B:1 E:0 V:1 R:0
packet[1] = (1 << 5) | (1 << 4) | 0; // N_S:1 Y:1 G:0
packet[2] = kWidth[0] >> 8;
packet[3] = kWidth[0] & 0xFF;
packet[4] = kHeight[0] >> 8;
packet[5] = kHeight[0] & 0xFF;
packet[6] = kWidth[1] >> 8;
packet[7] = kWidth[1] & 0xFF;
packet[8] = kHeight[1] >> 8;
packet[9] = kHeight[1] & 0xFF;
RtpDepacketizer::ParsedPayload parsed;
ASSERT_TRUE(depacketizer_->Parse(&parsed, packet, sizeof(packet)));
EXPECT_EQ(kWidth[0], parsed.type.Video.width);
EXPECT_EQ(kHeight[0], parsed.type.Video.height);
}
TEST_F(RtpDepacketizerVp9Test, ParseFailsForNoPayloadLength) {
uint8_t packet[1] = {0};
RtpDepacketizer::ParsedPayload parsed;
EXPECT_FALSE(depacketizer_->Parse(&parsed, packet, 0));
}
TEST_F(RtpDepacketizerVp9Test, ParseFailsForTooShortBufferToFitPayload) {
const uint8_t kHeaderLength = 1;
uint8_t packet[kHeaderLength] = {0};
RtpDepacketizer::ParsedPayload parsed;
EXPECT_FALSE(depacketizer_->Parse(&parsed, packet, sizeof(packet)));
}
} // namespace webrtc