blob: 46caef42d90027ec985c1aa16aacc505822e99d2 [file] [log] [blame]
/*
* Copyright (c) 2018 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/video_coding/codecs/vp9/svc_rate_allocator.h"
#include <algorithm>
#include <cmath>
#include <numeric>
#include "rtc_base/checks.h"
namespace webrtc {
namespace {
const float kSpatialLayeringRateScalingFactor = 0.55f;
const float kTemporalLayeringRateScalingFactor = 0.55f;
} // namespace
SvcRateAllocator::SvcRateAllocator(const VideoCodec& codec) : codec_(codec) {
RTC_DCHECK_EQ(codec.codecType, kVideoCodecVP9);
}
VideoBitrateAllocation SvcRateAllocator::GetAllocation(
uint32_t total_bitrate_bps,
uint32_t framerate_fps) {
VideoBitrateAllocation bitrate_allocation;
size_t num_spatial_layers = codec_.VP9().numberOfSpatialLayers;
RTC_CHECK(num_spatial_layers > 0);
size_t num_temporal_layers = codec_.VP9().numberOfTemporalLayers;
RTC_CHECK(num_temporal_layers > 0);
if (codec_.maxBitrate != 0) {
total_bitrate_bps = std::min(total_bitrate_bps, codec_.maxBitrate * 1000);
}
if (codec_.mode == kScreensharing) {
// At screen sharing bitrate allocation is handled by VP9 encoder wrapper.
bitrate_allocation.SetBitrate(0, 0, total_bitrate_bps);
return bitrate_allocation;
}
std::vector<size_t> spatial_layer_bitrate_bps;
if (codec_.spatialLayers[0].maxBitrate == 0) {
// Layers' parameters are not initialized. Do simple split.
spatial_layer_bitrate_bps =
SplitBitrate(num_spatial_layers, total_bitrate_bps,
kSpatialLayeringRateScalingFactor);
} else {
// Distribute total bitrate across spatial layers. If there is not enough
// bitrate to provide all layers with at least minimum required bitrate
// then number of layers is reduced by one and distribution is repeated
// until that condition is met or if number of layers is reduced to one.
for (;; --num_spatial_layers) {
spatial_layer_bitrate_bps =
SplitBitrate(num_spatial_layers, total_bitrate_bps,
kSpatialLayeringRateScalingFactor);
bool enough_bitrate = true;
size_t excess_rate = 0;
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
RTC_DCHECK_GT(codec_.spatialLayers[sl_idx].maxBitrate, 0);
RTC_DCHECK_GE(codec_.spatialLayers[sl_idx].maxBitrate,
codec_.spatialLayers[sl_idx].minBitrate);
const size_t min_bitrate_bps =
codec_.spatialLayers[sl_idx].minBitrate * 1000;
const size_t max_bitrate_bps =
codec_.spatialLayers[sl_idx].maxBitrate * 1000;
spatial_layer_bitrate_bps[sl_idx] += excess_rate;
if (spatial_layer_bitrate_bps[sl_idx] < max_bitrate_bps) {
excess_rate = 0;
} else {
excess_rate = spatial_layer_bitrate_bps[sl_idx] - max_bitrate_bps;
spatial_layer_bitrate_bps[sl_idx] = max_bitrate_bps;
}
if (spatial_layer_bitrate_bps[sl_idx] < min_bitrate_bps) {
enough_bitrate = false;
break;
}
}
if (enough_bitrate || num_spatial_layers == 1) {
break;
}
}
}
for (size_t sl_idx = 0; sl_idx < num_spatial_layers; ++sl_idx) {
std::vector<size_t> temporal_layer_bitrate_bps =
SplitBitrate(num_temporal_layers, spatial_layer_bitrate_bps[sl_idx],
kTemporalLayeringRateScalingFactor);
// Distribute rate across temporal layers. Allocate more bits to lower
// layers since they are used for prediction of higher layers and their
// references are far apart.
if (num_temporal_layers == 1) {
bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[0]);
} else if (num_temporal_layers == 2) {
bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[1]);
bitrate_allocation.SetBitrate(sl_idx, 1, temporal_layer_bitrate_bps[0]);
} else {
RTC_CHECK_EQ(num_temporal_layers, 3);
// In case of three temporal layers the high layer has two frames and the
// middle layer has one frame within GOP (in between two consecutive low
// layer frames). Thus high layer requires more bits (comparing pure
// bitrate of layer, excluding bitrate of base layers) to keep quality on
// par with lower layers.
bitrate_allocation.SetBitrate(sl_idx, 0, temporal_layer_bitrate_bps[2]);
bitrate_allocation.SetBitrate(sl_idx, 1, temporal_layer_bitrate_bps[0]);
bitrate_allocation.SetBitrate(sl_idx, 2, temporal_layer_bitrate_bps[1]);
}
}
return bitrate_allocation;
}
uint32_t SvcRateAllocator::GetPreferredBitrateBps(uint32_t framerate) {
return GetAllocation(codec_.maxBitrate * 1000, framerate).get_sum_bps();
}
std::vector<size_t> SvcRateAllocator::SplitBitrate(size_t num_layers,
size_t total_bitrate,
float rate_scaling_factor) {
std::vector<size_t> bitrates;
double denominator = 0.0;
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
denominator += std::pow(rate_scaling_factor, layer_idx);
}
double numerator = std::pow(rate_scaling_factor, num_layers - 1);
for (size_t layer_idx = 0; layer_idx < num_layers; ++layer_idx) {
bitrates.push_back(numerator * total_bitrate / denominator);
numerator /= rate_scaling_factor;
}
const size_t sum = std::accumulate(bitrates.begin(), bitrates.end(), 0);
// Ensure the sum of split bitrates doesn't exceed the total bitrate.
RTC_DCHECK_LE(sum, total_bitrate);
// Keep the sum of split bitrates equal to the total bitrate by adding bits,
// which were lost due to rounding, to the latest layer.
bitrates.back() += total_bitrate - sum;
return bitrates;
}
} // namespace webrtc